1,053 research outputs found

    The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics

    Get PDF
    Planar microelectrode arrays (MEAs) are devices that can be used in biomedical and basic in vitro research to provide extracellular electrophysiological information about biological systems at high spatial and temporal resolution. Complementary metal oxide semiconductor (CMOS) is a technology with which MEAs can be produced on a microscale featuring high spatial resolution and excellent signal-to-noise characteristics. CMOS MEAs are specialized for the analysis of complete electrogenic cellular networks at the cellular or subcellular level in dissociated cultures, organotypic cultures, and acute tissue slices; they can also function as biosensors to detect biochemical events. Models of disease or the response of cellular networks to pharmacological compounds can be studied in vitro, allowing one to investigate pathologies, such as cardiac arrhythmias, memory impairment due to Alzheimer's disease, or vision impairment caused by ganglion cell degeneration in the retin

    Development of a Plasmonic On-Chip System to Characterize Changes from External Perturbations in Cardiomyocytes

    Get PDF
    Today’s heart-on-a-chip devices are hoped to be the state-of-the-art cell and tissue characterizing tool, in clinically applicable regenerative medicine and cardiac tissue engineering. Due to the coupled electromechanical activity of cardiomyocytes (CM), a comprehensive heart-on-a-chip device as a cell characterizing tool must encompass the capability to quantify cellular contractility, conductivity, excitability, and rhythmicity. This dissertation focuses on developing a successful and statistically relevant surface plasmon resonance (SPR) biosensor for simultaneous recording of neonatal rat cardiomyocytes’ electrophysiological profile and mechanical motion under normal and perturbed conditions. The surface plasmon resonance technique can quantify (1) molecular binding onto a metal film, (2) bulk refractive index changes of the medium near (nm) the metal film, and (3) dielectric property changes of the metal film. We used thin gold metal films (also called chips) as our plasmonic sensor and obtained a periodic signal from spontaneously contracting CMs on the chip. Furthermore, we took advantage of a microfluidic module for controlled drug delivery to CMs on-chip, inhibiting and promoting their signaling pathways under dynamic flow. We identified that ionic channel activity of each contraction period of a live CM syncytium on a gold metal sensor would account for the non-specific ion adsorption onto the metal surface in a periodic manner. Moreover, the contraction of cardiomyocytes following their ion channel activity displaces the medium, changing its bulk refractive index near the metal surface. Hence, the real-time electromechanical activity of CMs using SPR sensors may be extracted as a time series we call the Plasmonic Cardio-Eukaryography Signal (P-CeG). The P-CeG signal render opportunities, where state-of-the-art heart-on-a-chip device complexities may subside to a simpler, faster and cheaper platform for label-free, non-invasive, and high throughput cellular characterization

    Multifunctional nanostructures for intracellular delivery and sensing in electrogenic cells

    Full text link
    In electrophysiology, multielectrode array devices (MEA) are the gold standard for the study of large ensambles of electrogenic cells. In the last decades, thanks to the adoption of nanotechnologies, the study of physiological and pathological conditions of electro-active cells in culture have becomes increasingly accurate. In parallel, studies exploited the integration of nanostructures with delivering capabilities with single-cell specificity and high throughput in biosensing platforms. Delivery and recording have independently led to great advances in neurobiology, however, their integration on a single chip would give complete insights into pathologies development and fundamental advancements in drug screening methods. In this work, we demonstrate how a microfluidic-MEA technology may be used to record both spontaneous and chemically induced activity in vitro. We propose a device that can deliver molecules to only a few chosen cells and detecting the response in cellular activity at multiple sites simultaneously. In addition, will be discussed how the adoption of nanoporous metamaterial in place of nanostructures might lower costs and speed up production. Furthermore, this same material, will be identified for the first time in this work as photoelectrical modulating material for eliciting electrogenic cells firing activity. Specifically, by converting NIR laser pulses into stimulatory currents, plasmonic metamaterials may be employed to induce action potentials. This method enables remote access to optical pacing with precise spatiotemporal control, allowing to be used as a valid alternative of the traditional genetic-based optical stimulation techniques. Therefore, in addition to pharmaceutical applications, these final characteristics may pave the way for a new generation of minimally invasive, cellular type-independent all-optical plasmonic pacemakers and muscle actuators

    Wakefulness affects synaptic and network activity by increasing extracellular astrocyte-derived adenosine

    Get PDF
    Loss of sleep causes an increase in sleep drive and deficits in hippocampal-dependent memory. Both of these responses are thought to require activation of adenosine A1 receptors (adorA1Rs) and release of transmitter molecules including ATP, which is rapidly converted to adenosine in the extracellular space, from astrocytes in a process termed gliotransmission. Although it is increasingly clear that astrocyte-derived adenosine plays an important role in driving the homeostatic sleep response and the effects of sleep loss on memory (Halassa et al., 2009; Florian et al., 2011), previous studies have not determined whether the concentration of this signaling molecule increases in response to wakefulness. Here, we show that the level of adorA1R activation increases in response to wakefulness in mice (Mus musculus). We found that this increase affected synaptic transmission in the hippocampus and modulated network activity in the cortex. Direct biosensor-based measurement of adenosine showed that the net extracellular concentration of this transmitter increased in response to normal wakefulness and sleep deprivation. Genetic inhibition of gliotransmission prevented this increase and attenuated the wakefulness-dependent changes in synaptic and network regulation by adorA1R. Consequently, we conclude that wakefulness increases the level of extracellular adenosine in the hippocampus and that this increase requires the release of transmitters from astroctyes

    Carbon Fiber-based Microelectrodes and Microbiosensors

    Get PDF

    Multifunctional nanostructures for intracellular delivery and sensing in electrogenic cells

    Get PDF
    Biological studies on in vitro cell cultures are of fundamental importance for investigating cell response to external stimuli, such drugs for specific treatments, or for studying communication between cells. In the electrophysiology field, multielectrode array devices (MEA) are the gold standard for the study of large ensambles of electrogenic cells. Thus, their improvement is a central topic nowadays in neuroscience and cardiology [1]. In the last decades, thanks to the adoption of nanotechnologies, the study of physiological and pathological conditions of electro-active cells in culture have becomes increasingly accurate[2], allowing for monitoring action potentials from many cells simultaneously. In fact, nanoscale biomaterials were able to overcome the limitations of previous technologies, paving the way to the development of platforms for interfacing the electrogenic cells at unprecedented spatiotemporal scales. These devices, together with microfluidics, are starting to be used for drug screening and pharmaceutical drug development since they represent a powerful tool for monitoring cell response when cultures are stimulated by target compounds. Many pharmaceutical agents, however, including various large molecules (enzymes, proteins, antibodies) and even drug-loaded pharmaceutical nanocarriers, need to be delivered intracellularly to exercise their therapeutic action inside the cytoplasm[3]. Nanoscale electrodes offer individual cell access and non-destructive poration of the cellular membrane enabling high capability in the delivery of biomolecules. Among all the techniques, electroporation have proven encouraging potential as alternative to the carrier mediated methods for molecular delivery into cultured cells[4]. In this regard, different groups [5][6][7] exploited the integration of nanostructures with delivering capabilities with single-cell specificity and high throughput in biosensing platforms. These efforts provided powerful tools for advancing applications in therapeutics, diagnostics, and drug discovery, in order to reach an efficient and localized delivery on a chip. Despite these new tactics, there is still a critical need for the development of a functional approach that combines recording capabilities of nanostructured biosensors with intracellular delivery. The device should provide for tight contact between cells and electrode so as to enable highly localized delivery and optimal recording of action potentials in order to attain a high degree of prediction for the disease modeling and drug discovery. This \u201con-chip\u201d approach will help to gain deeper insight in several bio-related studies and analyses, providing a comprehensive knowledge of the entire cellular dynamics when selectively stimulated by the desired bio-molecules. In the first part of this dissertation, a solution will be proposed in order to fill this gap and respond to this need in the biology field. In the first chapter, I will describe briefly the principles of action potentials and how neurons and cardiomyocyte are composed, together with the development of electrophysiology and the advent of multielectrode arrays. In the second chapter, more details about fabrication and cell-electrode system modelling will be explained. In the same chapter, I will explore the development of multielectrode arrays up to the present days, along with the advent of nanotechnologies and the related techniques for improving the previous platforms. The different cell poration techniques will be described in order to reach the best recording capabilities without damaging cells. Electroporation, optoporation and spontaneous poration will be presented and the chosen technique for our application (electroporation) will be reviewed more in detail. In the third chapter, different methodologies for intracellular delivery will be explained, focusing also on the electroporation technique. A small paragraph about the integration of these techniques on chip will be inserted to illustrate the state of the art of these devices. The fourth chapter will explicate in details the Microfluidic multielectrode array idea, the approach used in order to fabricate this novel platform from scratch, the experiments carried out to verify its capabilities and the associated results. In the last paragraph, I will discuss how the proposed platform could became suitable for the day to day uses in research activity by employing nanoporous materials. In fact, big efforts are carried out in order to find appropriate metamaterials as substitutes of the 3D counterparts so as to decrease the cost of device manufacturing that makes them unfitting with research activity. As a novel electrode material, nanoporous metals possess unique properties, such as a low fabrication cost, high plasmonic enhancement and large surface-volume ratio[8]. Nanoporous gold behaves like a metamaterial whose effective dielectric response can be tuned accordingly to the wanted use. These properties make the material suitable for multiple biosensing application, from a high-performance and reliable SERS (surface enhanced raman scattering) substrate [9] to an electrode in CMOS MEAs capable of intracellular recordings[10]. All these properties were explored in the last years, but it could be interesting to further study if the characteristics of this material could make it a good photoelectrical modulating material for eliciting electrogenic cells firing activity. In this way, this technology could be in principle easily implemented on commercial CMOS devices, consenting stimulation and recording at single cell level with high-resolution sensors, opening the way to new methodologies for studying electrogenic cells and tissues. Electrical stimulation of excitable cells is the basis for many implantable devices in cardiac treatment and in neurological studies for treating debilitating neurological syndromes. In order to make the technique less invasive, optical stimulation was widely investigated [11]. The non-genetic photostimulation is starting to make its way in the field since it allows to avoid changing the biological framework by using transient thermal or electrochemical outputs from synthetic materials attached to the target cells[12]. If stimulated with impinging light these materials could inject free charges into the solution resulting in an ionic current at the interface able to eliciting of neurons[13] or cardiomyocyte action potentials. Plasmonic porous materials have all the suitable properties to be considered as an appealing tools for charge injection and consequently for stimulation of electrically active cells [14]. Thus, the second part of this dissertation will exploit the capabilities of these plasmonic metamaterials, placing particular emphasis on the possibility of photoelectrochemical modulation. In particular, in the fifth and last chapter I will describe all the properties and application of the porous material and the mechanism of photoemission. In the experimental paragraphs, the free charge photoemission properties of porous gold will be explored together with plasmonic non-genetic photostimulation of the cardiac cells on commercial CMOS MEAs

    Development of a Novel Platform for in vitro Electrophysiological Recording

    Get PDF
    The accurate monitoring of cell electrical activity is of fundamental importance for pharmaceutical research and pre-clinical trials that impose to check the cardiotoxicity of all new drugs. Traditional methods for preclinical evaluation of drug cardiotoxicity exploit animal models, which tend to be expensive, low throughput, and exhibit species-specific differences in cardiac physiology (Mercola, Colas and Willems, 2013). Alternative approaches use heterologous expression of cardiac ion channels in non-cardiac cells transfected with genetic material. However, the use of these constructs and the inhibition of specific ionic currents alone is not predictive of cardiotoxicity. Drug toxicity evaluation based on the human ether-\ue0-go-go-related gene (hERG) channel, for example, leads to a high rate of false-positive cardiotoxic compounds, increasing drug attrition at the preclinical stage. Consequently, from 2013, the Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative focused on experimental methods that identify cardiotoxic drugs and to improve upon prior models that have largely used alterations in the hERG potassium ion channel. The most predictive models for drug cardiotoxicity must recapitulate the complex spatial distribution of the physiologically distinct myocytes of the intact adult human heart. However, intact human heart preparations are inherently too costly, difficult to maintain, and, hence, too low throughput to be implemented early in the drug development pipeline. For these reasons the optimization of methodologies to differentiate human induced Pluripotent Stem Cells (hiPSCs) into cardiomyocytes (CMs) enabled human CMs to be mass-produced in vitro for cardiovascular disease modeling and drug screening (Sharma, Wu and Wu, 2013). These hiPSC-CMs functionally express most of the ion channels and sarcomeric proteins found in adult human CMs and can spontaneously contract. Recent results from the CiPA initiative have confirmed that, if utilized appropriately, the hiPSC-CM platform can serve as a reliable alternative to existing hERG assays for evaluating arrhythmogenic compounds and can sensitively detect the action potential repolarization effects associated with ion channel\u2013blocking drugs (Millard et al., 2018). Data on drug-induced toxicity in hiPSC-CMs have already been successfully collected by using several functional readouts, such as field potential traces using multi-electrode array (MEA) technology (Clements, 2016), action potentials via voltage-sensitive dyes (VSD) (Blinova et al., 2017) and cellular impedance (Scott et al., 2014). Despite still under discussion, scientists reached a consensus on the value of using electrophysiological data from hiPSC-CM for predicting cardiotoxicity and how it\u2019s possible to further optimize hiPSC-CM-based in vitro assays for acute and chronic cardiotoxicity assessment. In line with CiPA, therefore, the use of hiPSC coupled with MEA technology has been selected as promising readout for these kind of experiments. These platforms are used as an experimental model for studying the cardiac Action Potentials (APs) dynamics and for understanding some fundamental principles about the APs propagation and synchronization in healthy heart tissue. MEA technology utilizes recordings from an array of electrodes embedded in the culture surface of a well. When cardiomyocytes are grown on these surfaces, spontaneous action potentials from a cluster of cardiomyocytes, the so called functional syncytium, can be detected as fluctuations in the extracellular field potential (FP). MEA measures the change in FP as the action potential propagates through the cell monolayer relative to the recording electrode, neverthless FP in the MEA do not allows to recapitualte properly the action potential features. It is clear, therefore, that a MEA technology itself is not enough to implement cardiotoxicity assays on hIPSCs-CMs. Under this issue, researchers spread in the world started to think about solutions to achieve a platform able to works both at the same time as a standard MEA and as a patch clamp, allowing the recording of extracellular signals as usual, with the opportunity to switch to intracellular-like signals from the cytosol. This strong interest stimulated the development of methods for intracellular recording of action potentials. Currently, the most promising results are represented by multi-electrode arrays (MEA) decorated with 3D nanostructures that were introduced in pioneering papers (Robinson et al., 2012; Xie et al., 2012), culminating with the recent work from the group of H. Park (Abbott et al., 2017) and of F. De Angelis (Dipalo et al., 2017). In these articles, they show intracellular recordings on electrodes refined with 3D nanopillars after electroporation and laser optoporation from different kind of cells. However, the requirement of 3D nanostructures set strong limitations to the practical spreading of these techniques. Thus, despite pioneering results have been obtained exploiting laser optoporation, these technologies neither been applied to practical cases nor reached the commercial phase. This PhD thesis introduces the concept of meta-electrodes coupled with laser optoporation for high quality intracellular signals from hiPSCs-CM. These signals can be recorded on high-density commercial CMOS-MEAs from 3Brain characterized by thousands of electrode covered by a thin film of porous Platinum without any rework of the devices, 3D nanostructures or circuitry for electroporation7. Subsequently, I attempted to translate these unique features of low invasiveness and reliability to other commercial MEA platforms, in order to develop a new tool for cardiac electrophysiological accurate recordings. The whole thesis is organized in three main sections: a first single chapters that will go deeper in the scientific and technological background, including an explanation of the cell biology of hiPSCs-CM followed by a full overview of MEA technology and devices. Then, I will move on state-of-the-art approaches of intracellular recording, discussing many works from the scientific literature. A second chapter will describe the main objectives of the whole work, and a last chapter with the main results of the activity. A final chapter will resume and recapitulate the conclusion of the work

    Monitoring single heart cell biology using lab-on-a- chip technologies

    Get PDF
    Abstract There has been considerable interest in developing microsensors integrated within lab-on-a-chip structures for the analysis of single cells; however, substantially less work has focused on developing "active" assays, where the cell‘s metabolic and physiological function is itself controlled on-chip. The heart attack is considered the largest cause of mortality and morbidity in the western world. Dynamic information during metabolism from a single heart cell is difficult to obtain. There is a demand for the development of a robust and sensitive analytical system that will enable us to study dynamic metabolism at single-cell level to provide intracellular information on a single-cell scale in different metabolic conditions (such as healthy or simulated unhealthy conditions). The system would also provide medics and clinicians with a better understanding of heart disease, and even help to find new therapeutic compounds. Towards this objective, we have developed a novel platform based on five individually addressable microelectrodes, fully integrated within a microfluidic system, where the cell is electrically stimulated at pre-determined rates and real-time ionic and metabolic fluxes from active, beating single heart cells are measured. The device is comprised of one pair of pacing microelectrodes, used for field-stimulation of the cell, and three other microelectrodes, configured as an enzyme-modified lactate microbiosensor, used to measure the amounts of lactate produced by the heart cell. The device also enables simultaneous in-situ microscopy, allowing optical measurements of single-cell contractility and fluorescence measurements of extracellular pH and cellular Ca2+ from the single beating heart cell at the same time, providing details of its electrical and metabolic state. Further, we have developed a robust microfluidic array, wherein a sensor array is integrated within an array of polydimethylsiloxane (PDMS) chambers, enabling the efficient manipulation of single heart cells and real-time analysis without the need to regenerate either working electrodes or reference electrodes fouled by any extracellular constituents. This sensor array also enables simultaneous electrochemical and optical measurements of single heart cells by integrating an enzyme-immobilized microsensor. Using this device, the fluorescence measurements of intracellular pH were obtained from a single beating heart cell whose electrical and metabolic states were controlled. The mechanism of released intracellular [H+] was investigated to examine extracellular pH change during contraction. In an attempt to measure lactate released from the electrically stimulated contracting cell, the cause of intracellular pH change is discussed. The preliminary investigation was made on the underlying relationship between intracellular pH and lactate from single heart cells in controlled metabolic states

    An Overview of Carbon Fiber Electrodes Used in Neurochemical Monitoring

    Get PDF
    Neurochemistry has always been a topic that many scientists are interested in researching because the brain is such a fascinating and complex organ. Electrochemical methods have proven to be a successful tool for scientists to use for their brain-researching endeavors. Many types of probes and analytical devices have been invented and used in conjunction with electrochemical methods over the past several decades to investigate the inner workings of the brain. In particular, the carbon fiber electrode has become a popular device among scientists due to its favorable qualities.The carbon fiber electrode has several unique characteristics to give it an advantage over other techniques. Carbon fiber electrodes have the ability to monitor in a subsecond time frame and record in real time. Because they are so small, carbon fiber electrodes are also able to sample very small environments, such as a single cell or vesicular volumes, where other devices cannot because they are too big. Evidence has shown that carbon fiber electrodes appear to cause less disruptive tissue damage when implanted into a brain than other devices, for instance a microdialysis probe. On top of that, carbon fiber electrodes are also excellent devices for those seeking greater sensitivity and selectivity by making electrode modifications tailored for the analyte of interest. In addition, carbon fiber electrodes provide a wider range of detectable species, again by simply making slight modifications. One can clearly see that the future for neurochemical monitoring lies heavily in the hands of the carbon fiber electrode. Its advantages over other devices make it superior in many aspects. Researchers will no doubt continue to use the carbon fiber electrode and keep improving it to make it suitable for countless more experiments

    A Novel Cell-Based Hybrid Acoustic Wave Biosensor with Impedimetric Sensing Capabilities

    Get PDF
    A novel multiparametric biosensor system based on living cells will be presented. The biosensor system includes two biosensing techniques on a single device: resonant frequency measurements and electric cell-substrate impedance sensing (ECIS). The multiparametric sensor system is based on the innovative use of the upper electrode of a quartz crystal microbalance (QCM) resonator as working electrode for the ECIS technique. The QCM acoustic wave sensor consists of a thin AT-cut quartz substrate with two gold electrodes on opposite sides. For integration of the QCM with the ECIS technique a semicircular counter electrode was fabricated near the upper electrode on the same side of the quartz crystal. Bovine aortic endothelial live cells (BAECs) were successfully cultured on this hybrid biosensor. Finite element modeling of the bulk acoustic wave resonator using COMSOL simulations was performed. Simultaneous gravimetric and impedimetric measurements performed over a period of time on the same cell culture were conducted to validate the device\u27s sensitivity. The time necessary for the BAEC cells to attach and form a compact monolayer on the biosensor was 35∼45 minutes for 1.5 × 104 cells/cm2 BAECs; 60 minutes for 2.0 × 104 cells/cm2 BAECs; 70 minutes for 3.0 × 104 cells/cm2 BAECs; and 100 minutes for 5.0 × 104 cells/cm2 BAECs. It was demonstrated that this time is the same for both gravimetric and impedimetric measurements. This hybrid biosensor will be employed in the future for water toxicity detection
    corecore