Multifunctional nanostructures for intracellular delivery and sensing in electrogenic cells

Abstract

In electrophysiology, multielectrode array devices (MEA) are the gold standard for the study of large ensambles of electrogenic cells. In the last decades, thanks to the adoption of nanotechnologies, the study of physiological and pathological conditions of electro-active cells in culture have becomes increasingly accurate. In parallel, studies exploited the integration of nanostructures with delivering capabilities with single-cell specificity and high throughput in biosensing platforms. Delivery and recording have independently led to great advances in neurobiology, however, their integration on a single chip would give complete insights into pathologies development and fundamental advancements in drug screening methods. In this work, we demonstrate how a microfluidic-MEA technology may be used to record both spontaneous and chemically induced activity in vitro. We propose a device that can deliver molecules to only a few chosen cells and detecting the response in cellular activity at multiple sites simultaneously. In addition, will be discussed how the adoption of nanoporous metamaterial in place of nanostructures might lower costs and speed up production. Furthermore, this same material, will be identified for the first time in this work as photoelectrical modulating material for eliciting electrogenic cells firing activity. Specifically, by converting NIR laser pulses into stimulatory currents, plasmonic metamaterials may be employed to induce action potentials. This method enables remote access to optical pacing with precise spatiotemporal control, allowing to be used as a valid alternative of the traditional genetic-based optical stimulation techniques. Therefore, in addition to pharmaceutical applications, these final characteristics may pave the way for a new generation of minimally invasive, cellular type-independent all-optical plasmonic pacemakers and muscle actuators

    Similar works

    Full text

    thumbnail-image

    Available Versions