73,290 research outputs found

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Hierarchical video surveillance architecture: a chassis for video big data analytics and exploration

    Get PDF
    There is increasing reliance on video surveillance systems for systematic derivation, analysis and interpretation of the data needed for predicting, planning, evaluating and implementing public safety. This is evident from the massive number of surveillance cameras deployed across public locations. For example, in July 2013, the British Security Industry Association (BSIA) reported that over 4 million CCTV cameras had been installed in Britain alone. The BSIA also reveal that only 1.5% of these are state owned. In this paper, we propose a framework that allows access to data from privately owned cameras, with the aim of increasing the efficiency and accuracy of public safety planning, security activities, and decision support systems that are based on video integrated surveillance systems. The accuracy of results obtained from government-owned public safety infrastructure would improve greatly if privately owned surveillance systems ‘expose’ relevant video-generated metadata events, such as triggered alerts and also permit query of a metadata repository. Subsequently, a police officer, for example, with an appropriate level of system permission can query unified video systems across a large geographical area such as a city or a country to predict the location of an interesting entity, such as a pedestrian or a vehicle. This becomes possible with our proposed novel hierarchical architecture, the Fused Video Surveillance Architecture (FVSA). At the high level, FVSA comprises of a hardware framework that is supported by a multi-layer abstraction software interface. It presents video surveillance systems as an adapted computational grid of intelligent services, which is integration-enabled to communicate with other compatible systems in the Internet of Things (IoT)

    Integrating identity-based cryptography in IMS service authentication

    Full text link
    Nowadays, the IP Multimedia Subsystem (IMS) is a promising research field. Many ongoing works related to the security and the performances of its employment are presented to the research community. Although, the security and data privacy aspects are very important in the IMS global objectives, they observe little attention so far. Secure access to multimedia services is based on SIP and HTTP digest on top of IMS architecture. The standard deploys AKA-MD5 for the terminal authentication. The third Generation Partnership Project (3GPP) provided Generic Bootstrapping Architecture (GBA) to authenticate the subscriber before accessing multimedia services over HTTP. In this paper, we propose a new IMS Service Authentication scheme using Identity Based cryptography (IBC). This new scheme will lead to better performances when there are simultaneous authentication requests using Identity-based Batch Verification. We analyzed the security of our new protocol and we presented a performance evaluation of its cryptographic operationsComment: 13Page

    Deploying Virtual Machines on Shared Platforms

    Get PDF
    In this report, we describe mechanisms for secure deployment of virtual machines on shared platforms looking into a telecommunication cloud use case, which is also presented in this report. The architecture we present focuses on the security requirements of the major stakeholders’ part of the scenario we present. This report comprehensively covers all major security aspects including different security mechanisms and protocols, leveraging existing standards and state-of-the art wherever applicable. In particular, our architecture uses TCG technologies for trust establishment in the deployment of operator virtual machines on shared resource platforms. We also propose a novel procedure for securely launching and cryptographically binding a virtual machine to a target platform thereby protecting the operator virtual machine and its related credentials

    Efficient security for IPv6 multihoming

    Get PDF
    In this note, we propose a security mechanism for protecting IPv6 networks from possible abuses caused by the malicious usage of a multihoming protocol. In the presented approach, each multihomed node is assigned multiple prefixes from its upstream providers, and it creates the interface identifier part of its addresses by incorporating a cryptographic one-way hash of the available prefix set. The result is that the addresses of each multihomed node form an unalterable set of intrinsically bound IPv6 addresses. This allows any node that is communicating with the multihomed node to securely verify that all the alternative addresses proposed through the multihoming protocol are associated to the address used for establishing the communication. The verification process is extremely efficient because it only involves hash operationsPublicad
    • 

    corecore