101 research outputs found

    Sparse Model Selection using Information Complexity

    Get PDF
    This dissertation studies and uses the application of information complexity to statistical model selection through three different projects. Specifically, we design statistical models that incorporate sparsity features to make the models more explanatory and computationally efficient. In the first project, we propose a Sparse Bridge Regression model for variable selection when the number of variables is much greater than the number of observations if model misspecification occurs. The model is demonstrated to have excellent explanatory power in high-dimensional data analysis through numerical simulations and real-world data analysis. The second project proposes a novel hybrid modeling method that utilizes a mixture of sparse principal component regression (MIX-SPCR) to segment high-dimensional time series data. Using the MIX-SPCR model, we empirically analyze the S\&P 500 index data (from 1999 to 2019) and identify two key change points. The third project investigates the use of nonlinear features in the Sparse Kernel Factor Analysis (SKFA) method to derive the information criterion. Using a variety of wide datasets, we demonstrate the benefits of SKFA in the nonlinear representation and classification of data. The results obtained show the flexibility and the utility of information complexity in such data modeling problems

    A Novel Approach to Forecasting High Dimensional S&P500 Portfolio Using VARX Model with Information Complexity

    Get PDF
    This study considers vector autoregressive models that allow for endogenous and exogeneous regressors VARX using multivariate OLS regression. For the model selection, we follow bozdogan’s entropic or information-theoretic measure of complexity ICOMP criterion of the estimated inverse Fisher information matrix IFIM in choosing the best VARX lag parameter and we established that ICOMP outperform the conventional information criteria. As an empirical illustration, we reduced the dimension of the S&P500 multivariate time series using Sparse Principal Component Analysis (SPCA) and chose the best subset of 37 stocks belonging to six sectors. We then performed a portfolio of stocks based on the highest SPC loading weight matrix, plus the S&P500 index. Furthermore, we applied the proposed VARX model to predict the price movements in the constructed portfolio, where the S&P500 index was treated as an exogeneous regressor of the VARX model. It has been deduced too that the buy-sell decision making in response to VARX (4,0) for a stock outperforms investing and holding the stock over the out-of-sample period

    Variable selection via penalized regression and the genetic algorithm using information complexity, with applications for high-dimensional -omics data

    Get PDF
    This dissertation is a collection of examples, algorithms, and techniques for researchers interested in selecting influential variables from statistical regression models. Chapters 1, 2, and 3 provide background information that will be used throughout the remaining chapters, on topics including but not limited to information complexity, model selection, covariance estimation, stepwise variable selection, penalized regression, and especially the genetic algorithm (GA) approach to variable subsetting. In chapter 4, we fully develop the framework for performing GA subset selection in logistic regression models. We present advantages of this approach against stepwise and elastic net regularized regression in selecting variables from a classical set of ICU data. We further compare these results to an entirely new procedure for variable selection developed explicitly for this dissertation, called the post hoc adjustment of measured effects (PHAME). In chapter 5, we reproduce many of the same results from chapter 4 for the first time in a multinomial logistic regression setting. The utility and convenience of the PHAME procedure is demonstrated on a set of cancer genomic data. Chapter 6 marks a departure from supervised learning problems as we shift our focus to unsupervised problems involving mixture distributions of count data from epidemiologic fields. We start off by reintroducing Minimum Hellinger Distance estimation alongside model selection techniques as a worthy alternative to the EM algorithm for generating mixtures of Poisson distributions. We also create for the first time a GA that derives mixtures of negative binomial distributions. The work from chapter 6 is incorporated into chapters 7 and 8, where we conclude the dissertation with a novel analysis of mixtures of count data regression models. We provide algorithms based on single and multi-target genetic algorithms which solve the mixture of penalized count data regression models problem, and demonstrate the usefulness of this technique on HIV count data that were used in a previous study published by Gray, Massaro, et al. (2015) as well as on time-to-event data taken from the cancer genomic data sets from earlier

    Data Mining

    Get PDF
    Data mining is a branch of computer science that is used to automatically extract meaningful, useful knowledge and previously unknown, hidden, interesting patterns from a large amount of data to support the decision-making process. This book presents recent theoretical and practical advances in the field of data mining. It discusses a number of data mining methods, including classification, clustering, and association rule mining. This book brings together many different successful data mining studies in various areas such as health, banking, education, software engineering, animal science, and the environment

    CONSTRAINED MULTI-GROUP PROJECT ALLOCATION USING MAHALANOBIS DISTANCE

    Get PDF
    Optimal allocation is one of the most active research areas in operation research using binary integer variables. The allocation of multi constrained projects among several options available along a given planning horizon is an especially significant problem in the general area of item classification. The main goal of this dissertation is to develop an analytical approach for selecting projects that would be most attractive from an economic point of view to be developed or allocated among several options, such as in-house engineers and private contractors (in transportation projects). A relevant limiting resource in addition to the availability of funds is the in-house manpower availability. In this thesis, the concept of Mahalanobis distance (MD) will be used as the classification criterion. This is a generalization of the Euclidean distance that takes into account the correlation of the characteristics defining the scope of a project. The desirability of a given project to be allocated to an option is defined in terms of its MD to that particular option. Ideally, each project should be allocated to its closest option. This, however, may not be possible because of the available levels of each relevant resource. The allocation process is formulated mathematically using two Binary Integer Programming (BIP) models. The first formulation maximizes the dollar value of benefits derived by the traveling public from those projects being implemented subject to a budget, total sum of MD, and in-house manpower constraints. The second formulation minimizes the total sum of MD subject to a budget and the in-house manpower constraints. The proposed solution methodology for the BIP models is based on the branchand- bound method. In particular, one of the contributions of this dissertation is the development of a strategy for branching variables and node selection that is consistent with allocation priorities based on MD to improve the branch-and-bound performance level as well as handle a large scale application. The suggested allocation process includes: (a) multiple allocation groups; (b) multiple constraints; (c) different BIP models. Numerical experiments with different projects and options are considered to illustrate the application of the proposed approach

    Evolving machine learning and deep learning models using evolutionary algorithms

    Get PDF
    Despite the great success in data mining, machine learning and deep learning models are yet subject to material obstacles when tackling real-life challenges, such as feature selection, initialization sensitivity, as well as hyperparameter optimization. The prevalence of these obstacles has severely constrained conventional machine learning and deep learning methods from fulfilling their potentials. In this research, three evolving machine learning and one evolving deep learning models are proposed to eliminate above bottlenecks, i.e. improving model initialization, enhancing feature representation, as well as optimizing model configuration, respectively, through hybridization between the advanced evolutionary algorithms and the conventional ML and DL methods. Specifically, two Firefly Algorithm based evolutionary clustering models are proposed to optimize cluster centroids in K-means and overcome initialization sensitivity as well as local stagnation. Secondly, a Particle Swarm Optimization based evolving feature selection model is developed for automatic identification of the most effective feature subset and reduction of feature dimensionality for tackling classification problems. Lastly, a Grey Wolf Optimizer based evolving Convolutional Neural Network-Long Short-Term Memory method is devised for automatic generation of the optimal topological and learning configurations for Convolutional Neural Network-Long Short-Term Memory networks to undertake multivariate time series prediction problems. Moreover, a variety of tailored search strategies are proposed to eliminate the intrinsic limitations embedded in the search mechanisms of the three employed evolutionary algorithms, i.e. the dictation of the global best signal in Particle Swarm Optimization, the constraint of the diagonal movement in Firefly Algorithm, as well as the acute contraction of search territory in Grey Wolf Optimizer, respectively. The remedy strategies include the diversification of guiding signals, the adaptive nonlinear search parameters, the hybrid position updating mechanisms, as well as the enhancement of population leaders. As such, the enhanced Particle Swarm Optimization, Firefly Algorithm, and Grey Wolf Optimizer variants are more likely to attain global optimality on complex search landscapes embedded in data mining problems, owing to the elevated search diversity as well as the achievement of advanced trade-offs between exploration and exploitation

    Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 1

    Get PDF
    Papers from the technical sessions of the Technology 2001 Conference and Exposition are presented. The technical sessions featured discussions of advanced manufacturing, artificial intelligence, biotechnology, computer graphics and simulation, communications, data and information management, electronics, electro-optics, environmental technology, life sciences, materials science, medical advances, robotics, software engineering, and test and measurement

    A comparison of the CAR and DAGAR spatial random effects models with an application to diabetics rate estimation in Belgium

    Get PDF
    When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directly estimated when the effect is modelled using a DAGAR rather than a CAR structure. As an application, we model the diabetics rate in Belgium in 2014 and show the adequacy of these models in predicting the response variable when no covariates are available
    corecore