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Abstract 

This study considers vector autoregressive models that allow for endogenous and exogeneous 

regressors VARX using multivariate OLS regression. For the model selection, we follow bozdogan’s 

entropic or information-theoretic measure of complexity ICOMP criterion of the estimated inverse 

Fisher information matrix IFIM in choosing the best VARX lag parameter and we established that 

ICOMP outperform the conventional information criteria. As an empirical illustration, we reduced the 

dimension of the S&P500 multivariate time series using Sparse Principal Component Analysis (SPCA) 

and chose the best subset of 37 stocks belonging to six sectors. We then performed a portfolio of stocks 

based on the highest SPC loading weight matrix, plus the S&P500 index. Furthermore, we applied the 

proposed VARX model to predict the price movements in the constructed portfolio, where the S&P500 

index was treated as an exogeneous regressor of the VARX model. It has been deduced too that the 

buy-sell decision making in response to VARX (4,0) for a stock outperforms investing and holding the 

stock over the out-of-sample period. 

Keywords 

ICOMP, Sparse Principal Component Analysis (SPCA), S&P500, VARX 

 

1. Introduction 

Vector Autoregressive (VAR) model since its introduction by (Sims, 1980) almost 40 years ago has 

become a popular model for econometricians, economists, financial modelers to analyze multivariate 

time-series data. VAR model provides a convenient flexible model for model order determination, 

forecasting, and structural inference in many applications. VAR model is attractive because it can 

capture and estimate the covariance matrix of the innovations and the coefficient estimates which 
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achieves a more accurate prediction as compared to the traditional univariate AR(1) models that has 

been used conventionally in several data (Salim, 2017). 

Once VAR is incorporated with unmodeled or exogeneous variables, then VARX models are produced 

improving the Minimum Square Error (MSE) forecast. For example, oil price has been widely used as 

an exogeneous macroeconomic variable, and where the lag order may differ between modeled and 

unmodeled series. Thus, model selection should fit all subset models up to the predetermined maximal 

lag order for both the exogeneous and the endogenous series (Nicholson et al., 2017). 

In the literature of VARX modeling, there does not appear to be convincing study to establish the 

performance of the ICOMP criteria. Few progress has been made in the literature concerning model 

selection in VARX models, for example (Hoover, 1999), (Hendry, 1999), and (Hlawka, 2014) have 

analyzed different reduced rank vector autoregression VAR model selection and model reduction 

methods by Monte Carlo methods. 

In this paper, our aspiration is to fill the gap in the literature by first studying the efficacy of the 

information-theoretic model selection criteria in multivariate Gaussian vector autoregressive VARX 

models under a certain innovations covariance structure to choose the optimal true number of lags in 

the VARX model. We carry out one Monte Carlo Simulation to study the performance of Akaike’s 

information criterion to study the performance of Akaike’s Information Criterion (AIC) (Schwarz, 

1978), and Bozdogan’s entropic or information-theoretic measure of the complexity ICOMP criterion 

of the estimated Inverse-Fisher Information Matrix (IFIM) (1990, 2000, 2004) under a unique scenario 

with varying sample sizes. 

As is well known in the VARX model, each time series is interacted linearly with both its own lag 

variable values and those of every other series included (Nicholson et al., 2017), then large number of 

parameters needs to be estimated. Hence high dimensional time series require dimension reduction 

techniques as a preprocessing approach to estimate the parameters of the VARX model to avoid 

overparameterization. 

In the literature, L1-type space estimation procedures have been used to resolve the dimensionality 

issue. However, they are not well suited to solve lag selection problem and time series dependence. The 

resulting models are not easily interpretable. In fact, Nicholson et al., 2017 shows that the prediction 

performance of the L1-type estimators substantially deteriorates for VARs with large lag orders as they 

select high lag order coefficients. To simultaneously address the dimensionality and lag selection issues, 

in a series of papers, Bearse and Bozdogan (1998), Bearse and Bozdogan (2003), and Howe and 

Bozdogan (2010) introduced a novel Genetic Algorithm (GA) procedure along with Information 

Complexity (ICOMP) criterion to choose the optimal lag length and to reduce the dimension of the 

high-dimensional time series by subset selection of the best variables. 

In this paper, our novel approach is motivated and in the spirit of their approach. Instead of using the 

GA, for dimension reduction and selecting the best subset of features or variables, we have used the 
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Sparse Principle Component Analysis (SPCA), introduced by Zou et al. (2004) and hybridize it with 

the VARX model. SPCA works by writing the usual Principal Component Analysis (PCA) as a 

regression-type optimization problem and applies Least Absolute Shrinkage and Selection Operator 

(LASSO) of Tibshirani (1996), a penalization technique based on the L1-norm. We used SPCA as our 

pre-processing first to reduce the dimension and select the features, and not for lag length selection. 

Next, we aim to forecast the directional movement of the constructed portfolio of the six S&P500 stock 

prices after employing a VARX model; for investors according to (Reboredo et al., 2012), the 

directional predictability ability of a model has practical implications for market timing and asset 

allocation management. We provide a real example to select the best subset of stocks for investment 

purposes and to predict the movement of a high dimensional portfolio which is constructed from 500 

constituents of stock prices related to eleven sectors. This is a high-frequency data measured in every 

minute for a couple of months totaling T=41266 minutes (time series observations). To reduce the 

dimension of the S&P500 stocks and construct the optimal portfolio weights, we propose to use Sparse 

Principal Component Analysis (SPCA). The chosen best subset of stocks are then classified belonging 

into six market sectors. Then a portfolio of stocks is formed from this list based on the highest SPCs 

loading weight matrix, plus the S&P500 index to carry out a multivariate time series, called VARX 

model. To set the stage, the remainder of this paper is organized as follows. In Section 2, we provide 

the brief background of the VARX modeling and estimation of the parameters of the Gaussian VARX 

models. Section 3 introduces the several model selection criteria and their analytical form in VARX(p,s) 

model lag order determination. In Section 4, we provide one Monte Carlo simulation result and 

investigate the performance of the model selection under a specific innovation covariance matrix as we 

vary the number of observations for a 3-dimensional endogenous and 1-dimensional exogenous VARX 

(2,0) model (denoted by 3 × 1 − D VARX (2,0). Then, we present the Sparse Principle Component 

Analysis (SPCA) to extract the best subset of features (stocks) which is an extension of the usual 

Principle Components Analysis (PCA) used as a dimension-reduction technique and later we provide 

our numerical results on a high-dimensional data set composed of 500 constituents of S$P500 stock 

prices. We then examine how a portfolio is constructed by the SPCA, and showing how ICOMP can 

substantially improve the out-of-sample forecasting performance using the VARX model as the data 

generating process. Section 5 concludes the paper. 

 

2. Method 

2.1 Vector Autoregressive Model with Exogeneous Variable 

A multivariate time series model that contains lagged endogenous and exogenous variables is called the 

VARX model which is an extended form of the VAR model. A VARX model can be affected by the 

presence of other observable variables that are determined outside the system of interest. Such 

variables are called exogeneous (independent) or unmodelled variables (Lutkepohl, 2005, p. 387). 
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Exogenous variables can be stochastic or non-stochastic. The model can also be affected by the lags of 

exogenous variables. In short hand notation, VARX model is denoted by VARX(p,s), where p is the 

number of lags of the endogenous variables, and s is the number of lags of the exogenous variables. 

A d-dimensional VARX(p, s) model can be written as: 

yt = c + 𝞢Φiyt−i + 𝞢Θixt−i + εt, (1) 

where yt = (y1t,y2t,...,ydt)0 is a (d×1) vector of time series variables with a sample size t=1,..,T 

observations for each of the d-variables, the Φi are fixed (d × d) coefficient matrices, c = (c1,c2,...,cd)0 is 

a fixed (d × 1) vector of intercept terms, where xt = (x1t,...,xrt)0 is a r-dimensional time series vector, Θ is 

a (d × r) coefficient matrix and εt = (ε1t,...,εdt) is a (d × 1) unobservable zero mean white noise vector 

process (serially uncorrelated or independent) with time invariant positive definite covariance matrix Σ. 

i.e., is, εt ∼ N(0,Σε), where E(εt) = 0. For example, a VARX(1,0) model with 3-dimensional endogenous 

with 2-dimensional exogenous variables denoted by 3 × 2 − D VARX(1,0) is yt = c + Φ1yt−1 + Θ0xt + 

εt, (2)  

where yt = (y1t,y2t,y3t)0 and xt = (x1t,x2t)0 Or, equivalently this can be written as  

 

We note that if xt contains just a constant and s = 0, then VARX model reduces to VAR model, 

assuming εt is white noise. Although a VARX model may be a simple model, but, it is highly 

overparameterized. For a d- dimensional VARX(p,s) model, there are d(d + 1)/2 free parameters in Σ, in 

total, there are m = d(dp + 1 + r(s + 1)) + d(d + 1)/2 parameters to estimate. In the absence of further 

restrictions on the parameter space, we refer to eq.(1) as a saturated VARX(p,s) model. 

2.2 Parameter Estimation of VARX Model 

This VARX model has the general multivariate regression-like linear structure: 

                                        Y = ZB + E (4) 

 (T×d) (T×q)(q×d) (T×d) 

where q ≡ dp + 1 + r(q + 1), Y , Z  

with the q-vector z  , and E = 

. The coefficient matrix is given by B 

. 

A VARX model can be expressed as the saturated VARX in eq. (4) subject to linear constraints on the 

coefficient matrix B. We adopt as notation for VAR model, and rewrite the saturated VARX in its 

vectorized form as, 
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vec(Y) = vec(ZB + E) = vec(ZB)+vec(E) 

 = (Id ⊗ Z)vec(B)+vec(E). (5) 

Then VARX(p,s) can be rewritten again in vectorized form as: 

y 

(dT×1) 

= (Id ⊗ Z) β 

(dT×dq) (dq×1) 
 (6) 

= Zsupβ + ε, ε ∼ N (0,Ω) 

where y = vec(Y), Zsup = (Id ⊗ Z), β = vec(B), ε = vec(E), Ω = Σ ⊗ IT , and ⊗ denotes the Kronecker 

product. 

2.2.1 The loglihood function and maximum likelihood estimation 

Assuming that the distribution of the model is Gaussian, to estimate the parameters of the VARX model, 

we have written the loglihood function given by: 

 

ZB)  ZB) 

 

After some work, the maximum likelihood (ML) estimator of β becomes 

                           (8) 
where Ωˆ

ε=Id ⊗ Σˆ
ε. Hence 

  (9) 

Now reshaping βˆ , in matrix form ,  

Bˆ = (Z0Z)−1)Z0Y 

Further since 

(10) 

εˆ= vec(Eˆ) = y − Zβˆ = y − yˆ (11) 

and reshaping ˆε into Eˆ, then the estimated covariance matrix of the innovations E is given by , 

  (12) 

We note that Σˆ
ε is a biased estimate of Σε . Adjusting for the degrees of freedom an unbiased estimate of 

the covariance matrix is 
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  (13) 

Therefore the estimated covariance matrix of the coefficient matrix B is given by 

 Covˆ (Bˆ) = Σˆ
ε ⊗ (Z0Z)−1. (14) 

It has been shown (Hamilton, 1994) that the multivariate OLS estimators and the maximum likelihood 

ML-estimtors are identical since they acquire both similar asymptotic distribution under the assumption 

of Gaussianity. 

In the next section, for us to opertionalize the Information Complexity (ICOMP) criterion and its other 

forms, we need to obtain the estimated Fisher Information Matrix (FIM) and its inverse (IFIM) for the 

d-dimensional VARX(p,s) model. Following Bearse and Bozdogan (1998) and Bearse and Bozdogan 

(2002)[8], the estimated inverse fisher information matrix (IFIM) is given by 

 , 

where  is the Moore-Penrose inverse of the duplication matrix, Dd;Dd is a 

unique + 1) duplication matrix, such that vec(Σˆ) = Ddvech(Σˆ). In other words, Dd
+vec(Σˆ) 

= vech(Σˆ). 

For more on duplication matrices, we refer the readers for Magnus (1988), Magnus and Neudecker 

(1988), and Lutkepohl (2005, p. 387). 

 

3. Information Criteria and Complexity under Specified VARX Models 

Model Selection criteria are used to fit models under a specified parametric probability distribution by 

minimizing the overall risk that results from modeling and estimating the model under the maximum 

likelihood. For VARX models, model specification is to select optimally the lag order of the 

endogenous and exogenous variables. In other words, for a d-dimensional VARX(p,s), what is the 

optimal order (p,s) ? 

In order to be able to answer this question, in this section, we introduce and save the information 

theoretic model selection criteria to choose the best VARX(p,s) to fit the time series data. The use of the 

conventional F and t tests are no longer valid when the significance of the OLS coefficient estimates is 

distorted. 

AIC is inconsistent (in fact, it overestimates the true order with positive probability) while ICOMP 

(IFIM) is consistent and when n > 1 , strongly consistent (i.e., they will choose the correct model 

almost surely). Intuitively, AIC is inconsistent because the penalty function used does not 

simultaneously goes to infinity as T ∞ and to zero when scaled by T. Although, consistent methods may 

have poor small sample properties. All of them are based on the maximal value of the likelihood 

function with an additional penalizing factor related to the number of estimated parameters. The 
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suggested criteria differ regarding the strength of the penalty associated with the increase in model 

parameters as a result of adding more lags. The idea is to calculate the test criterion for different values 

of p and then choose the value of p that corresponds to the smallest value. When using these criteria for 

the choice of lag length, it is important to remember that they are valid under the assumption of a 

correctly specified model. 

As we infered before, penalizing complexity by adding the term of twice the number of estimated 

parameters is not sufficient to overcome over-parametrization and unnecessary complexity within the 

chosen model. So, in contrast to AIC, and all the above mentioned different variants of AIC, Bozdogan 

developed a new Information complexity criterion based on the generalization of the information or 

entropic covariance complexity index of (van Emden,1971). 

3.1 Conventional Model Selection Criteria, AIC, SBC, CAIC 

Akaike’s (1973) AIC reinforces the tradeoff between the maximized log likelihood (the lack of fit ) 

which is an asymptotic estimate of the KullbackLiebler distance (KL) and the number of parameters 

estimated in the model (the penalty term measuring the complexity). Akaike’s (1973) abounded the 

principle of parsimony by extending the entropic derivation of the method of maximum likelihood. The 

entropic derivation or interpretation is based on the maximization of the entropy or on the minimzation 

of the KullbackLeibler (KL) distance or information quantity. 

The lack or bad of fit and the lack-of parsimony are penalized by negative twice the maximum 

loglikelihood and by twice the number of estimated parameters consecutively, and that is given by the 

following equation, 

Akaike’s information criterion (AIC): Let {Lm,m = 1,2,...,M} be a set of competing models indexed by 

m = 1,2,...,M. Then, 

 AIC = −2logL(θˆ
m) + 2m. (15) 

where logL(θˆ) is the maximized log-likelihood function and θˆ
mis the maximum likelihood estimate of 

the parameter vector θs in the model m = 1,2,...,M 

For multivariate Gaussian errors in VARX(p,s) model, with m being the number of the fitted 

unrestricted VARX estimates in the model, we have, 

  (16) 

Hence, 

(17) 

Where                                                     (18) 
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Other information criteria in the literature are introduced but they are similar to AIC by using the lack 

of fit penalty term whereas they differ in penalizing the model complexity term through adding the 

second term. Schwarz (1978) proposed the criterion SBC given by, 

SBC = −2logL(θˆ
m) + mlog(T), (19) 

 , (20) 

where log(T) is the natural logarithm of the sample size T. 

Choosing the minimal value of AIC that corresponds to the best model does not lead to an assympotic 

consistent estimate of the model order (Bozdogan, 2000), since the penalty term remains constant even 

if the first term of AIC increases as the sample size increase. So, Bozdogan (1987) extended AIC 

through different approaches to make AIC consistent . Consistent AIC or (CAIC ) is defined as 

 CAIC = −2logL(θˆ
m) + m[log(T) + 1] (21) 

 , (22) 

3.2 Information Complexity Criteria 

To determine the lag length p of the VARX model, the usual standard statistical procedures such as the 

likelihood ratio type procedure or sequential likelihood ratio procedure cannot be used to analyze 

high-dimensional time series data. This is due to the fact that overall level of significance is not known 

a priori as we fit p = 1,2,...,pmax VARX model. Moreover, it is difficult to decide on appropriate level of 

siginifcance to carry out the likelihood ratio and type test procedures. 

Therefore, we introduce in this subsection the Bozdogan information complexity ICOMP criteria. 

Consider a multivariate linear or non-linear structural model defined by 

StatisticalModel = Signal + Noise 

Then ICOMP [25] is structured to estimate the loss function as follows, Loss = Lackoffit + 

Lackofparsimony + ProfusionOfComplexity (23) 

This loss estimate is achieved by the additive property of information theory and the entropic 

developments in (Rissanen, 1976) in his final estimation criterion for estimation and model 

identification problems, as well as Akaike’s and its analytic extensions in (Bozdogan,1987). 

ICOMP (IFIM) can explicitly regulate for the number of estimated parameters, the sample size, and 

adjust the risks of redundant unnecessary overparametrized models since model complexity depends 

intrinsically on other factors other than the dimension of variables, it takes into account for example 

parameter redundancy, parameter consistency, random error structure of the model, and linearity and 

non-linearity of the parameter estimates of the model. 

Complexity is defined as the degree of interdependence among the components of the model, so the 

objective of Bozdogan was to incorporate a more judicious penalty term that prevents this complexity, 

therefore instead of counting and penalizing the number of parameters in a certain model, Bozdogan 
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added an adaptively adjusted entropic complexity of the estimated inverse-fisher information matrix 

IFIM (known as Cramer-Rao lower bound matrix). 

Profusion of complexity attributes into the interdependencies or the correlations among the parameter 

estimates and among the random error terms of the underlying model. So, this IFIM is a trade-off 

between the accuracy of the estimated model parameters and the interdependency of the innovations 

adhering a simpler model with minimum covariance matrix of the parameter estimates and minimum 

covariance matrix of the innovations too. A simple Model is always preferred to a more complex one as 

it was mentioned before. ICOMP is a more refined criteria that aim to balance the overfitting and 

underfitting risks withstanding in that given model. 

Instead of penalizing the free parameters directly, ICOMP penalizes the covariance complexity of the 

model. Its complexity term of any random vector is a measure of the interaction or the dependency 

between its components. Hence ICOMP is given in (Bozdogan,1990)[6] as 

ICOMP = −2logL(θˆ
m) + 2C(Σˆ); (24) 

ICOMP = −2logL(θˆ
m) + 2C(Σˆ); (25) 

where logL(θˆ
m) is the natural logarithm of the maximized likelihood function, θˆ

m is the maximum 

likelihood estimate of the parameter vector θ. C(.) represents a real-valued complexity measure and 

covˆ (θˆ
m) = Σˆ represents the estimated covariance matrix of the parameter vector of the model. Two 

forms of C(.) are defined in Bozdogan’s paper (Bozdogan,1990)[6]. 

ICOMP (IFIM) is defined as: 

 ICOMP(Fˆ−1) = −2logL(θˆ
m) + 2C1(Fˆ−1). (26) 

where C1(Fˆ−1) is the entropic complexity defined by : 

  (27) 

For the d-dimensional VARX (p,s) model, ICOMP(IFIM) is given by 

! 

(28) 

where (σjj
2 )2 indicates the square of the jth diagonal element of Σˆ, and where q = dp+rs is the 

dimension of the matrix of lagged covariates Z . To compute ICOMP(Fˆ−1)PEU, one must simply add m 

to the above equation. 
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ICOMP(Fˆ−1)PEU = ICOMP(Fˆ−1) + m 

 = −2logL(θˆ
m) + 2C1(Fˆ−1) + m, (29) 

and 

 

(30) 

CICOMP is defined by 

 

 

4. Numerical Examples 

4.1 Monte Carlo Simulation Study 

In this section, through a large monte Carlo Simulation, for space considerations, under one covariance 

pattern structure of the we show the practical utility and the empirical performance of model selection 

criteria. In what follows, we show the design of the protocol of the Monte Carlo simulation and our 

results of the percent relative frequency of the choice of the true lag order p of the VARX model where 

the lags coefficients of the regressors are ignored or in other words, we are simulating VARX(p,0) to 

study the performance of each criteria in terms of their hit ratios and overfitting and underfitting 

percentages. Our computations are carried out using MATLAB modules that we have developed for 

this study as our computational platform. 

4.2 Simulation: 3×1-D VARX(2,0) Model 

In this simulation example, we consider a stationary 3× 1-dimensional VARX(2,0) model with a known 

homogeneous and correlated innovation covariance. The simulation protocol is given by 

 yt = c + Φ1yt−1 + Φ2yt−2 + Θ0xt + εt (32) 

The multivariate time series innovation is generated from a multivariate Gaussian distribution with zero 

mean vector and structured covariance matrix Σ. That is, εt ∼ N(0,Σ), t = 1,2,...,T. We repeat our 

simulation 1000 times. To our knowledge such a study has not been done before in the literature to 

study the efficacy of the model selection criteria of VARX process. 

where  . 

Based on the results in tables 1 and 2, the best performing information criteria are: SBC, CAIC, 

ICOMP(IFIM), ICOMPPEU,ICOMPPEUMiss, and CICOMP at sample size T = 600. Their underfitting or 

overfitting reach 0.0%. As we note there is a slight overfitting in AIC (4.1%). However, this overfitting 
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diminish as we increase the number of time series observations 

T.

 

And it is not so surprising since AIC has the tendency of overfitting. What this means is that just 

counting and penalizing the number of parameters may not be sufficient to capture the correlated 

stucture in the innovations. The average of underfitting and overfitting of ICOMP reach 0.0% and 0.0% 

respectively. As a result, a common consensus reveals that the ICOMP is the most efficient Information 

criteria capable of capturing or identifying the correct true parsimonious lag structure for larger 

dimensional VARX models and of being consistent with the increase in the sample size. Therefore, we 

can declare that SBC, CAIC, ICOMP(IFIM), ICOMPPEU, ICOMPPEUMiss, and CICOMP are consistent 

criteria of VARX order estimation. For more consistency of model selection criteria, we refer the 

readers to Bozdogan (1987). 

4.3 Real Data Example: Model Selection and Forecasting of S&P500 stock portfolio 

We consider an application based on predicting the movement of the U.S. S&P’s 500 stock prices 

minute by minute. We use updated data from the STATWORX team 

(https://medium.com/mlreview/a-simple-deep-learning-\model-for-stock-price-prediction-using-tensorf

low-30505541d877) members who scraped minute by minute the data from the Google Finance API 

spanning 2017: 04-03: 09.01. The data consisted of index as well as the stock prices of the S& P 500 

constituents. Thus our goal is to select the best VARX lag parameter using ICOMP model selection 

criteria and thus predict the direction of the flow of holding on or selling the portfolio constructed of 

the S&P 500 stocks based on the 500 constituents prices one minute ago and compare the 

out-of-sample forecast. 

4.3.1. Dimension Reduction via SPCA 

VARX model estimation on a high dimensional data set will definitely lead to an increase in the size of 

the model which consecutively makes OLS estimation impossible. Thus variable selection is one of the 

techniques used to reduce the dimension of the model. For example, to produce an efficient portfolio 

constructed from large number of stocks, financial or risk managers have to estimate the covariance 

matrix of the portfolio assets and which would be impossible unless dimension reduction techniques 

are adopted. 

Referring to (Zou et al.,2006),Principle Component Analysis has been widely used since PCs explain 

the maximum variance among the variables enhancing the minimal information loss and all the PCs are 

uncorrelated where each principle component is a linear combination of all the variables presented in 

https://medium.com/mlreview/a-simple-deep-learning-%20/%20model-for-stock-price-prediction-using-tensorflow-30505541d877
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the model. 

Thus (Zou et al.,2006) introduced the Sparse principle Components (SPCA) where they imposed an 

elastic net (lasso) L1 Norm penalty on the regression optimization and will eventually emit a new 

interpretable loading factor matrix B with possible zero loadings and a new variance structure 

explained by the SPCs. While the Elastic-net optimization allows including all the highly correlated 

variables, the Lasso (Tibshirani, 1996) chooses one variable from a highly correlated set of variables 

since those highly correlated variables produce same information on the response. 

The steps of the procedure of SPCA algorithm can be summarized as follows (Zou et al., 2006), 

1) PCA is computed either using the covariance decomposition or thethrough the 

Singular-Value-Decomposition (SVD) of the data represented as a centred matrix X. 

X is an n × p matrix where n is the number of observations and p is the dimension or number of 

variables. If X is centred, or in other words, all the columns of X have mean zero and if the SV D of X 

is given by X = UDV T where U is an (n × n) unitary matrix and D is an (n × p) diagonal matrix of 

singular values Dii, then PC = UD. The loadings of the principal components is the column vectors of V 

and the sample variance of the each PCA is  (Zou et al., 2006). 

2) Let A start at V [,1 : k], the loadings of the first k ordinary principle components. 

3) Given a fixed A = [α1,...αk], solve the following elastic net problem for j = 1,..k βj = argmin(αi − β)T 

XT X(αi − β) + λkβk2 + λ1,j kβk
1 (33) 

4) For a fixed B = [β1,...βk], compute the SVD of XT XB = UDV T , then update A = UV T . 

5) Repeat Steps 2-3 until convergence or in other words untill we get thedesired number of non-zero 

loadings. 

6) Normalization: . 

The best tuning parameter λ1,j is chosen by the above algorithm that approximates the sparse of each 

PCA promoting the best trade-off between variance and sparsity. 

The entire regularization path of the parameters (λ in eq. (28)) varies from zero active variables (a high 

value of λ)to the point where λ1,j criterion is met. 

We chose λ equal to infinity and λ1,j equal to [100,150,200] as the number of non-zero coefficients 

chosen for the corresponding three SPCs in the data application part below. 

First, The data is centred by subtracting the mean of each column of the corresponding 500 S&P500 

stocks and then Sparse Principle Component Analysis (SPCA) is applied to reduce the dimension of the 

500 stocks into 3 sparse components SPCs. Then the sample data was partitioned at 90:10 that is 90% 

for training (used for VARX model building) and 10% for validation or testing out-of sample. 

These components are nothing but the linear combination of the existing 500 variables (companies 

stocks) arranged in decreasing order of their variances. In other words, the first SPC explains the 
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maximum amount of the variance in the data. SPCA converts the inputs which is the highly correlated 

data and outputs SPC’s that explain the variance in the data to make the data uncorrelated with each 

other. Table 1 shows the percentage explained variances by the first three SPC’s which is 56.11%. 

We note that after the third SPC, the percent explained variances decreases monotonically, showing that 

the first three SPCs are sufficient to explain the original data without much loss of information. 

 

3. Result 

Results of the VARX Simulation: 

Table 1. Percent Relative Frequency of Choosing True 3 × 1 − D VARX(2,0) Model, T=200 

T = 200  Lag Length  Percent 

Criteria\V AR Order 1 2∗ 3 4 5 Overfitting Underfitting 

AIC 0.0 94.3 4.7 0.8 0.2 5.7 0.0 

SBC 0.0 100.0 0.0 0.0 0.0 0.0 0.0 

CAIC 0.0 100.0 0.0 0.0 0.0 0.0 0.0 

ICOMP(IFIM) 0.0 100.0 0.0 0.0 0.0 0.0 0.0 

ICOMPPEU 0.0 100.0 0.0 0.0 0.0 0.0 0.0 

ICOMPPEUMiss 0.3 99.7 0.0 0.0 0.3 0.0 0.3 

CICOMP 9.4 90.6 0.0 0.0 0.0 0.0 9.4 

 

Table 2. Percent Relative Frequency of Choosing True 3 × 1 − D VARX(2,0) Model, T=600 

T = 600  Lag Length  Percent 

Criteria\V AR Order 1 2∗ 3 4 5 Overfitting Underfitting 

AIC 0.0 95.9 3.6 0.4 0.1 4.1 0.0 

SBC 0 100.0 0.0 0.0 0.0 0.0 0.0 

CAIC 0.0 100.0 0.0 0.0 0.0 0.0 0.0 

ICOMP(IFIM) 0.0 100.0 0.0 0.0 0.0 0.0 0.0 

ICOMPPEU 0.0 100.0 0.0 0.0 0.0 0.0 0.0 

ICOMPPEUMiss 0.0 100.0 0.0 0.0 0.0 0.0 0.0 

CICOMP 0.0 100.0 0.0 0.0 0.0 0.0 0.0 

 

Table 3. Explained Variances of SPCs 

 Percentage Explained Variances 

SPC1 31.36 

SPC2 14.74 
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SPC3 10.01 

 

SPCA outperforms the conventional Principal Component Analysis (PCA), since the loading matrix 

gives the most significant stocks among the whole S&P500 stocks. In Table 2 we show the 

classification of the most 37 significant S&P500 stocks corresponding to six different sectors which 

have nonzero rows of the loading factor matrix B. 

Based on the SPCA, it can be concluded that the Health Care Sector, followed by the Consumer 

Discretionary, Industrial and Technology sectors compose the highly significant number of stocks 

among the 37 chosen. We  

 

Table 4. Classification of the Relevant Stocks Extracted from the three SPC’s 

Discretionary Health Industrials Staples Financials Energy Technology Materials 

ORLY ALXN MMM COST AMG BHI/BHGE GOOG  

BKNG AMGN COL  AMP CXO GOOGL  

DISCA BIIB GWW   PXD INTU PX 

ULTA CELG BA    LRCX SHW 

AZO REGN       

 VRTX     ADS  

BDX EW       

CMG HUM       

FL LH 

TMO 

UHS 

WAT 

      

 

can interpret the loadings after estimating the loading matrix B through SPCA. The stem plot of the 

loading matrix B shows graphically in Figure 1 (a), the non-zero loadings related to the highly 

significant contributing stocks in the SPC’s. Thus, it can deduced that several portfolios can be 

created to mimic the factor loadings. 

We note that matrix B laodings range is in the range [|0.0006|,|0.8221|]. But for space considerations, 

we have chosen one portfolio which constitutes of the highest loading negative or positive weights in 

matrix B that falls in the interval [|0.1|,|0.8|], as follows, 
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(a) Stem plot of the loading matrix B of the SPCA. (b) Correlation plot of the portfolio constructed.  

Figure 1. Stem Plot of the Selected 5 Stocks and Correlation Plot 

 

0.1736 

0.1719 

B=0.3453 

0.2578 

 

−0.3075 

0.3536 

0.3831 

0.3876 

0.1487 

0.5070 

0.2013 

0.2026 

−0.8221 

0.1368 

0.1336 

 

This set of portfolio is formed from the following stocks, [GOOG, GOOGL, BKNG, REGN, CMG], 

plus the S&P500 index itself. Figure 1 (b) shows the correlation plot. It can be inferred that this 

portfolio sample is noisy. All the recorded T = 41,266 successive trading minutes (i.e., observations) of 

the above constructed portfolio up to the end of August 31, 2017 are displayed in Figure 2 (a). 

 

a. Testing the Stationarity 

Some statistical diagnostics are investigated to assess the validity of the stationarity of the 

5-dimensional VARX model for the chosen portfolio using autocorrelation (ACF) and partial 

autocorrelations functions (PACF). ACF is shown in Figure 3. As discussed in (Granger & Newbold, 

1976) differencing the time series of the portfolio is one kind of transformation that can be used to 

address non-stationarity and remove the spurious regression. 
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(a) The Portfolio plot before percent differ-(b) The portfolio plot after percent differencing. encing. 

Figure 2. The Portfolio Plot before and after Percentage 

 

Differencing of the multivariate time series. effects caused by cointegration, thus reliable forecasts are 

obtained. Let 

and consider Yt = 100(Pt − Pt−1) 

Yt,1 

Yt,2 

Yt =Yt,3 
  ,t=1,...4,1266 

 

Yt,4 

Yt,5 

(34) 

Looking at Figure 2(b), we see that the transformed 5-dimensional multivariate time series appear to be 

stationary. However observations appear serially correlated. In other words, the lagged regressors are 

not predetermined. Thus an exogeneous or an instrument variable should be used. 

b. Lag Order Selection of VARX for S&P500 Stocks 

Next, we estimate a multivariate time series V ARX model that contains lagged endogenous and 

exogenous variables. The response series is the percentage change in Stock prices minute by minute, 

while the exogenous time series is the percentage change in the S&P500 index. 

The best choice among the competing models is determined by some of the well-known information 

criteria mentioned above, especially producing ICOMP (IFIM) as an efficient consistent criteria. 
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(a) ACF before % Differencing.                         (b) ACF after % Differencing. 

Figure 3. Autocorrelation ACF before and after Percent Differencing 

 

Looking at Table 5, ICOMP N(IFIM) is minimized at VARX(4,0) model showing that VARX(4,0) is the 

best parsimonious model. The estimated covariance matrix of the innovations is given below.  

 

2840.7435 

2656.8020 Σ =ˆ
 

1683.0826 

 

416.5625 

69.3029 

2656.8020 

3126.9337 

1793.1231 

437.5604 

55.8588 

1683.0826 

1793.1231 

17127.7013 

584.2448 

162.8382 

416.5625 

437.5604 

584.2448 

2589.7513 

27.8892 

69.3029 

55.8588 

162.8382 

27.8892 

1378.0130 

 

Whereas, CAIC and SBC select lag 6. AIC overfits the model and chooses lag 8 as the best VARX lag 

parameter which is not so surprising result since AIC imposes a weaker penalty for higher lag orders 

and consequently overfits the model. 

d. Out-of-Sample Forecasting 

Using the best VARX lag parameter, we construct the MSE out-of- sample forecasts for the 

corresponding 5-dimesnsional time series and detect its minute by minute movement direction. 

The out-of-sample calculations are used in predicting the conditional mean time series. We estimated 

the approximate 95% forecast intervals for the best VARX(4,0) fitting model and calculated the mean 

squared errors (MSE) forecasts. 

 

 

 

 



www.scholink.org/ojs/index.php/jetr              Journal of Economics and Technology Research             Vol. 3, No. 2, 2022 

 
18 

Published by SCHOLINK INC. 

Table 5. Model selection results from fitting VARX(4,0) model 

 AIC CAIC ICOMPIFIM SBC ICOMPPEUMiss 

Lag1 1986264.817 1986598.101 1987342.062 1986563.101 1987447.132 

Lag2 1983359.652 1983930.994 1985035.297 1983870.994 1985215.498 

Lag3 1982124.905 1982934.304 1984390.584 1982849.304 1984645.983 

Lag4 1981285.299 1982332.753 1984134.959 1982222.753 1984465.625 

Lag5 1980818.996 1982104.505 1984247.490 1981969.505 1984653.490 

Lag6 1980547.914 1982071.476 1984551.098 1981911.476 1985032.501 

Lag7 1980344.031 1982105.645 1984918.189 1981920.645 1985475.061 

Lag8 1980270.113 1982269.777 Inf 1982059.777 Inf 

 

Figure 4 shows the Mean Squared Erros (MSE) forecast predictions of the out-of sample and the 

1-trading day prediction. 

Figure 4(a) shows the 95% forecast interval of the fitted VARX(4,0) model of the percent differenced 

data set. While Figure 4(b), displays the 1-trading day non-transformed prices prediction in comparison 

to the prices of the last day in the original non-transformed data set, the gap in the figure refers to the 

non-trading hours at night when the stock market is closed. 

The accuracy of the forecasts of the fitted VARX(4,0) is calculated by using the root Mean Squared 

Error (RMSE). MSE and RMSE are given by 

(35) 

(36) 

Table 6 illustrates the basic performance test by comparing the root mean square error (RMSE) of the 

out-of-sample forecasts to the RMSE of a simple, baseline forecast that holds the last in-sample value 

of the response constant. If the model forecast does not significantly improve on the baseline forecast, 

then it is reasonable to suspect that the model has not captured the relevant variables in the VARX 

model (Diebold, 2007). However in our case, Table 6 shows that RMSE baseline forecast RMSE Base 

is larger than the RMSE of the model RMSE Pred, therefore the fitted model has captured the best 
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(a) Out-Of-Sampling Forecast of the % Differenced 5-dimensional Times Series. 

 
(b) The 1-Trading day Prediction of the Pricesof the 5-dimensional Time Series. 

Figure 4: Out-of-sampling forecast and the 1-trading day prediction contributing variables of the 

corresponding 5-dimensional fitted VARX(4,0). It can be noted too that the RMSEPred and RMSEBase 

of VARX(4,0) are smaller than those of VARX(6,0). This can assert that ICOMP performs well in 

choosing the correct best lag parameter. 

 

Table 6. The Prediction Accuracy of the Portfolio with Stationary Return Time Series 

Multivariate Gaussian Innovations RMSEPred RMSEBase 

Multivariate OLS Estimation of VARX(4,0), selected by ICOMP 1.3009257 3.8486868 

Multivariate OLS Estimation of VARX(6,0), selected by SBC 1.300932 3.8487068 

 

d. Directional Movement of the Portfolio 

To determine the directional movement of the portfolio constructed from the five stocks, we have to 

construct the one-step-out-of-sample forecasts of the prices minute by minute. According to Akbilgic 

and Bozdogan (2014), each forecast is translated into a directional sign +1 and −1. The +1 sign refers to 

an increase in the price value by the next minute, while −1 indicates a drop in value. Consequently, 

increase and decrease in value can be interpreted too as buy-sell signal decision. 

Table 11 shows how to manage an investment according to the out-of-sample forecasts for the original 

time series prices for GOOGL stock only for the first 10 minute-period by simply using our best fitted 

VARX(4,0) model. It can be discovered from Table 7 that the Buy-Sell decision making in response to 

VARX(4,0) for GOOGL outperforms investing and holding the position over the out-of-sample period. 

Out of all the 4,126 periods of minutes’ forecasts (out-of-sample periods), 2,071 periods recognized 
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correctly the direction of the portfolio price movement. 

 

Table 7. Direction Prediction of the Portfolio Stock Movement 

Out-of-sample forecast periods GOOGL Forecast Buy-Sell decision by forecast 

Period 1 + − Sell 

Period 2 − + Buy 

Period 3 + + Keep 

Period 4 − + Keep 

Period 5 + − Sell 

Period 6 − + Buy 

Period 7 − − Sell 

Period 8 + + Buy 

Period 9 − − Sell 

Period 10 − − Keep 

 

4. Discussion 

The paper presents a hybrid novel approach of VARX-SPCA with emphasis of Bozdogan’s Information 

Complexity Criterion efficacy under OLS estimation and one real application data set, having VARX as 

the vector autoregressive model that allows for endogenous and exogenous variables and SPCA as the 

sparse principal component analysis employed to reduce the dimension of the S&P500 multivariate 

time series. First, it has been inferred that Bozdogan ICOMP outperforms all the other information 

criteria in selecting the simulated true 3 × 1 − D VARX(2,0) since ICOMP penalizes the covariance 

complexity of the model instead of penalizing the free parameters directly. Second, the application data 

set indicates that the Buy-Sell decision making in response to VARX(4,0) for GOOGL outperforms 

investing and holding the position over the out-of-sample period. However, Further studies aim to 

highlight the effect of Feasible Generalized Least Squares Estimation (FGLS) on VARX simulated 

model selection under misspecification where the Gaussianity assumption of the innovations is relaxed 

and other distributions are considered. 
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