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ABSTRACT 

 

Optimal allocation is one of the most active research areas in operation research 

using binary integer variables. The allocation of multi constrained projects among several 

options available along a given planning horizon is an especially significant problem in 

the general area of item classification. The main goal of this dissertation is to develop an 

analytical approach for selecting projects that would be most attractive from an economic 

point of view to be developed or allocated among several options, such as in-house 

engineers and private contractors (in transportation projects). A relevant limiting resource 

in addition to the availability of funds is the in-house manpower availability. 

In this thesis, the concept of Mahalanobis distance (MD) will be used as the 

classification criterion. This is a generalization of the Euclidean distance that takes into 

account the correlation of the characteristics defining the scope of a project. The 

desirability of a given project to be allocated to an option is defined in terms of its MD to 

that particular option.  Ideally, each project should be allocated to its closest option. This, 

however, may not be possible because of the available levels of each relevant resource.    

The allocation process is formulated mathematically using two Binary Integer 

Programming (BIP) models.  The first formulation maximizes the dollar value of benefits 

derived by the traveling public from those projects being implemented subject to a 

budget, total sum of MD, and in-house manpower constraints. The second formulation 

minimizes the total sum of MD subject to a budget and the in-house manpower 

constraints. 
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The proposed solution methodology for the BIP models is based on the branch-

and-bound method. In particular, one of the contributions of this dissertation is the 

development of a strategy for branching variables and node selection that is consistent 

with allocation priorities based on MD to improve the branch-and-bound performance 

level as well as handle a large scale application. The suggested allocation process 

includes: (a) multiple allocation groups; (b) multiple constraints; (c) different BIP 

models. Numerical experiments with different projects and options are considered to 

illustrate the application of the proposed approach. 
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CHAPTER I 

INTRODUCTION 

 

 
Undoubtedly, the most significant factor affecting research and development (R&D) 

project selection and resource allocation in any organization (such as a government 

agency or a company) is the approach to decision-making. In R&D research perspective, 

successful decisions depend on the selection methodology as well as allocation criterion 

for prioritizing projects [1]. Therefore, a variety of methods and techniques have been 

developed and documented in the relevant literature for the last 50 years [1, 2].  A lack of 

methodology for making an optimal decision among competitive choices can lead to 

large organizational obligations and other serious manifold risks in business 

environments. Hence, project selection can be related to competitive markets of 

governmental agencies and companies [3]. 

Due to the limitation or scarcity of significant resources, numerous organizations do not 

have the capability to construct all engineering activities or projects in a given planning 

horizon. As a result, many organizations outsource a percentage of projects to one of 

several contractors or agencies. In this case, the classical problem of a single project 

allocation is neither applicable nor appropriate and thus will be considered as a multi-

group project allocation decision making problem. Although this type of problem is very 

common in the real world, to the best of my knowledge, it has not been addressed in the 

research literature, resulting in our attention being focused on this critical issue.   

 The problem of developing an analytical approach for selecting and allocating the 

most suitable projects among a group of candidate projects, from an economic point of 
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view and subject to limited resources, is a challenge faced by every decision maker. 

Typically, a project that generates high levels of benefits without exceeding available 

resources are selected for funding. This dissertation is concerned with developing an 

effective analytical decision-support approach for selecting and allocating projects among 

a group of different options in such a way that a specified performance measure is 

optimized, subject to some relevant constraints. Experiments show that this methodology 

provides precise allocation and great scalability with respect to variations in the size of 

instances processed and the degree of resource constraints. 

Background 

Many industrialized countries spend more than 2% of their Gross Domestic Product 

(GDP) on R&D activities [4]. For example, in 2013, the United States spent 2.742% 

(432.583 billion dollars) of its GDP; in 2014, Japan spent 3.583% (159.220 billion 

dollars); and China spent 2.046 % (344.678 billion dollars) [5]. Thus, it can be inferred 

that R&D is vital in the business world and is a key to many organizations’ success [6].  

From a R&D perspective, project selection and resource allocation are defined in terms of 

constrained optimization problems [1, 3, 7, 8]. Given a set of project proposals among 

several available projects, the goal is to develop a project selection methodology to aid a 

decision maker in selecting a subset of these projects subject to relevant limiting 

resources, such as budgets, manpower, and construction equipment, and facilities.  

Project selection problems may consider a variety of objectives dependeing on the 

decision making’s purpose [3]. In most cases, the objective of this selection process’s 

objective is to maximize benefits and minimize costs of the project [7]. To address R&D 
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project selection and resource-allocation problems, various methods have been utilized, 

including benefit measurements, mathematical programming, decision and game theory, 

simulation models, heuristics, and cognitive emulation [9]. Fahrni and Spätig’s study [10] 

provides different approaches for determining the most applicable technique for a 

specific situation. 

 Mathematical programming has been widely used for selecting R&D projects. 

This method can be represented and solved by means of different programming models, 

such as Linear Programming (LP), Non-Linear Programming (NLP), Dynamic 

Programming (DP), Goal Programming (GP), and Stochastic Programming (SP) [9].  

These models have been used in many research studies involving single or multiple 

objective functions. Numerous integer programming (IP) applications are derived using 

LP where the divisibility assumption must be relaxed. Project selection decision problems 

involve numerous interrelated yes-or-no decisions, where the variables might be expected 

integer and considered binary (0 or 1). Therefore, these types of decision problems 

become BIP and are widely used to aid with project selection problems [11]. Some 

algorithms in the literature provide solutions to IP and to Mixed Linear Integer 

Programming (MLIP) models, such as cutting plane and B&B algorithms. According to 

Taha [12, pp. 370 and 384]: 

 “Although neither method is consistently effective computationally, experience 

 shows  that the B&B method is far more successful than the cutting-plane method, 

 …. To  date, and despite over 40 years of research, there does not exist a computer 

 code that can solve ILP consistently. Nevertheless…, B&B is more reliable. 
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 Cutting-plane  methods are generally difficult and uncertain, and the round off 

 error presents a serious problem.”  

B&B algorithms are coded by all ILP commercial solvers. The project-allocation problem 

considered in this dissertation is a Nondeterministic Polynomial (NP)-hard problem [13]. 

Therefore, the execution time required to solve the problem increases exponentially as 

the problem enlarges [14]. The critical rules affecting the B&B’s solution performances 

are the variable branching and node selection strategies, which can have a significant 

impact on the solution algorithms’ efficiency [15]. Many modern IP solvers (such as 

CPLEX, LINDO, MATLAB, and Xpress-MP) provide users the capability of changing 

these strategies. Although many R&D project selection and resource-allocation problems 

are discussed in the literature, no research literature has been devoted to the branching 

strategies, which indeed can help users achieve better solutions in terms of B&B quality 

and performance. This absence of research led to exploring novel branching and node-

selection strategies in this dissertation.  

 The process of allocating a project among several available options is not 

precisely presented the literature; however, it has been shown as a project-management 

decision problem of assigning several projects to project managers. The literature in this 

area focuses on two streams: project-assignment methodologies and criteria [16]. It can 

be inferred that the methodologies’ performance in terms of project assignment is mainly 

influenced by the assignment criteria, which contribute to the project’s success and 

effectiveness in allocating decisions. Although a potential correlation between project 

characteristics affects classifier’s performance and accuracy, no research in the literature 

has addressed this specific consideration in project-assignment and R&D problems. 
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Instead, some R&D studies have focused on the importance the interdependence and 

interaction between projects or resources [17, 18]. Subsequently, a reliable classification 

criterion or tool to deal with correlated variables is needed to handle this issue. For this 

reason, the concept of Mahalanobis Distance (MD) [19] was introduced for the 

classification scheme to deal with similarity of an observation to the other group. Many 

applications-based MDs have been widely proposed and studied in the field of decision 

and classification problems, such as manufacturing, business, healthcare, and ecology 

[20]. The concept of MD classification criterion has been compared with many classifiers 

in several studies for the purposes of classifying correlated multivariate data, classifier 

accuracy, and effectiveness improvements [21-24]. Chapter 2 examines various relevant 

studies in R&D project selection and classification, solution methodologies, B&B 

strategies, and MD and their applications. 

Problem Statement 

 
This study proposes an analytical constrained multi-allocation approach that allows 

project managers or decision makers to group several projects into predefined categories 

that represent most-appropriate options for developing the projects. Specifically, the 

proposed procedure identifies the projects to be developed and assign them to the best 

fitting option. Typically, these options may correspond to doing a project in-house or 

outsourcing it to one of a group of private contractors, as in transportation projects. It is 

assumed that a panel of experts provides joint expertise to identify ideal projects, from 

the projects' database, for each allocation option (in-house and private contractors). In 
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other words, the purpose of identifying these ideal projects for each corresponding option 

is to provide an index for each specific option.  

 In general, each project has a cost and a dollar value of benefits. The scope of 

each project is defined in terms of several factors or characteristics that may be correlated 

with one another.  In order to identify how each project best matches each allocation 

option, for allocating each project to one of the options, the statistical concept known as 

MD, which is a generalization of the Euclidean Distance (ED) taking into account the 

correlation between the project characteristics, will be used as the classification criterion. 

In brief, MD measures the statistical distance from each project to each allocation option 

that has been identified by the panel of experts. The reader is referred to Chapter 3 for 

MD overview and applications. 

 Because the project-allocation problems include determining or deciding whether 

or not a project is selected for developing, the allocation variables are represented by only 

two outcomes, (0 or 1), ; that is, the choices with decision variables restricted to two 

values: 1 for allocating and 0 for otherwise. Consequently, the allocation process in this 

dissertation is formulated as a binary integer programming (BIP) model that contains 

only binary variables. 

 Two different BIP formulations are proposed to aid in assigning projects to either 

in-house or private contractors. The first formulation maximizes the dollar value of 

benefits while ensuring that projects are allocated to the best option consistent with 

available funds and in-house manpower.  The second model allocates projects to the best 

options subject to available budget and in-house manpower. These BIP models' proposed 

solution methodology is based on the branch-and-bound (B&B) algorithm. In particular, 
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one of this dissertation’s contributions is in proposing novel strategies for branching 

variables and node selection consistent with allocation priorities among different projects 

to improve the solution performances’ efficiency in different measurements. For 

illustration purposes, the proposed project’s allocation methodology and the 

corresponding mathematical models are applied to the data of the State Department of 

Transportation (DOT) to aid project-management decision makers in optimizing project 

allocation (to either option: in-house or several private contractors). We run numerical 

experiments with several different combinations of projects and options to demonstrate 

our allocation approach and then analyze the solution results. The application study 

shows that efficiency of the solution performances using the proposed B&B branching 

variables and node selection strategies outperforms the best of the default strategies that 

MATLAB computational platform provides. Moreover, this approach can improve 

project-allocation decisions by using the two models that provide different conclusions. 

Contributions of this Study 

This dissertation is intended to add the following contributions: 

 Development of a MD project selection and multi-choice classification approach 

with multiple-resource constraints. Specifically, this new approach is proposed to 

improve the quality and accuracy of the best fitting allocation process. As we will 

show in the Literature Review, Chapter 2. 

 Improve the B&B methodology significantly by formulating a novel branching 

strategy based on a specific variables ranking according to MD values to enhance 

solution performances (i.e., absolute gap between the internally calculated upper 
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and lower bound on the objective function, relative gap in percentage, computer 

run time, and number of explored nodes in the B&B tree). As we will see in the 

Literature Review, Chapter 2 and in the Results and analysis, Chapter 5. 

Organization of the Dissertation 

This dissertation is divided into seven chapters. This first chapter has introduced this 

study’s general problem and challenges of this study. Chapter 2 contains a review of the 

literature pertaining to R&D project selections and resource allocations, as well as project 

assignments, MD classifications and applications, and branching strategies in the B&B 

algorithm. Chapter 3 presents the overall conceptual approach of the multi-project 

allocation-based on MD, including the definition of MD and current B&B variable and 

node selection methods. Chapter 4 discusses this study’s proposed methodology, 

including the mathematical model formulation and the proposed branching strategy. 

Chapter 5 describes the computational design and application of the developed models 

for selecting and allocating transportation projects among multiple options. Also included 

is an assessment of the solution procedure’s performance for the mathematical models 

using the B&B algorithm.  Results and analysis obtained from the methodology are 

presented in Chapter 6. Chapter 7 includes a summary and conclusions and suggests 

further related-research possibilities. References and appendices are available at the end 

of this thesis. 
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CHAPTER II 

LITERATURE REVIEW 
 
 
The intent of this chapter is to provide an understanding of the previous research and 

literature relevant to project selection and allocation problems and to discover 

methodologies, optimization means and criteria, modeling approaches, and solution 

procedures that have been considered in each related study. This chapter is divided into 

four major sections. The first section defines the problem of interest and describes the 

modeling approach and the solution methodology used. The second section discusses the 

classification approach using the concept of MD and its applications in different 

disciplines. The third section presents B&B strategies that have been used and their 

impact on the solution performance. The last section is the conclusion, which summarizes 

the chapter. 

Project Selection and Resource Allocation 

 
Since Mottley and Newton in 1959 [25] proposed the concept of project selection and 

resource allocation, an evolutionary process has resulted in developing and reporting 

numerous quantitative methods and models in the literature. Although several 

methodologies for R&D project selection exist, a vital way of formulating scientific 

decision-making problems is mathematical models [26]. Moreover, the majority of the 

resource-allocation problems have been widely studied using mathematical programming 

[13].  

Usually, much of a modeling technique focuses on how to effectively propose a 

methodological approach to selecting a set of projects from a project portfolio that meets 
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different resource requirements in order to arrive at an optimum portfolio of R&D 

projects. However, less attention has been devoted to how these models can provide the 

best-fitting allocation as well as perform in a sophisticated situation (i.e., when numerous 

variables and constraints increase a problem’s size). The survey study in this section 

shades the light on various modeling approaches with different applications in R&D 

project selection and resource allocation.   

 Loosely speaking, any project selection and allocation model depends on the type 

of problem. Researchers have proposed many efficient approaches. For example, Beaujon 

et al. [27] develop a mathematical model that is formulated by using mixed- integer 

programming and solving it using specific heuristic methodology to select projects to 

include in an R&D portfolio that provides the maximum expected benefits, subject to a 

several types of constraints, e.g., capital, headcount, strategic intent, etc. The paper 

addresses two important issues regarding the formulation of the project selection models: 

(1) allowing for partly funded projects in the portfolio (i.e., projects that proceed at an 

interval due to insufficient funding with the rest being held for future funding), resulting 

in solving the problem using linear programming; and (2) assigning a score to each 

project for the purpose of valuing projects and accounting for potential risk. This model’s 

distinguishing factor is the set of constraints; specifically, this model allows the 

possessed skills of the research staff to be considered, such as research background in 

various categories, number of skilled staff needed to be involved in developing particular 

projects, and category of skills required.  

 Yavuz and Captain [26] propose a BIP model to select projects that maximize 

total net present value subject to budget constraints and other secondary conditions in the 
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Turkish armed forces’ ten-year planning horizon. Different computational data sets were 

randomly created to simulate the real data and run the model for optimality and 

performance testing. Ten random problems were run; these problems varied from 908 

projects to 1,067 projects, approximately 10,000 variables, and 2,500 constraints.  

CPLEX 4.0.7 software ran the simulated data models.  CPLEX 6.5.3 software executed 

the actual data models. The average solution time for different model sizes is 140.26 

seconds with a maximum difference of 1.97% between the global optimum LP relaxation 

and the integer optimal solution reached.  

 Hall et al. [28] present another BIP model for making project-funding decisions. 

This model is used to select projects related to reducing smoking for funding at the 

United States’ National Cancer Institute. A federal targeted budget and private funds are 

allocated to some states in the U.S. over a seven-year period. In order to distinguish 

among the projects’ importance, each project is ranked based on scoring criterion. This 

model is chosen to maximize the rank-function score for the projects subject to important 

constraints of available budget and other smoking-prevalence criteria. Containing 23 

variables and 14 constraints, the model is solved in LINDO software version 5.0. The 

results provide lists of different solution based on various budgetary levels and 

preference-score ranges, thus enabling decision makers to choose the most appropriate 

solution. 

 Kozanidis and Melachrinoudis’ paper [13] is one of the most interesting in the 

field of multi-choice constraint problems. The proposed model is a single-resource 

allocation problem used as a decision-making tool to assist transportation management in 

assigning limited funds to highway-safety projects classified as continuous and discrete 
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improvements. This model is considered a generalization of the linear multiple-choice 

knapsack and the 0-1 knapsack problems. Numerous model properties are proposed to 

design a B&B solution algorithm. Specifically, the original B&B algorithm of solving the 

linear multiple-choice knapsack is adopted to fit with this specific problem, improve the 

solution efficiency, and lower the required memory space for the number of explored 

nodes in the tree. The algorithm solves the LP relaxation at each node in the B&B tree by 

changing the binary constraints for each variable with bound constraints; the bounding is 

between 0 and 1 and uses the relationship between the optimal solutions of parent and 

children nodes in branching order and node selection. These techniques for solving the 

B&B algorithm are used to reduce significantly the time required for branching and 

solving each node in the tree. 

 Liberatore [8] proposes an expert support system for industrial projects based on 

an analytical hierarchy process (AHP) designed to relate strategic planning, mission, and 

objectives to specific criteria for selecting R&D projects. To consider the tradeoffs 

between project benefits and costs, two methods are suggested for resource allocation. 

The first method is accounting for the ratio of the renormalized project priority, which 

represents the summation of the project's benefits, to the estimated cost of funding the 

project. The rated projects are ranked and then selected from high to low order based on 

their priority-cost ratio until the assigned R&D budget is consumed. The second method 

is formulating the resource allocation problem by using the BIP that maximizes the total 

project priority over all funded projects depending on a budget constraint. The author 

proposes other constraints that can be considered in the model to ensure certain factors, 
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such as a maximum or minimum number of selected projects to be funded and based on 

different budgetary levels for every proposed strategy.  

Technically speaking, the available methodologies for project selection and resource 

allocation can be applied to the majority of project types. However, relevant constraints, 

procedures, and requirements differ accordingly. For instance, Güney et al. [29] 

investigate various heuristic and algorithm solution quality and performance for selecting 

advertisements that influence social network members. BIP formulates the problem 

mathematically for the purpose of minimizing the total cost of selecting influences 

subject to lower bound on the probability of influencing the member number that can be 

assigned to a particular advertisement. The proposed model is BIP, which any 

commercial IP solver can solve. However, such a problem’s difficulty is known to be NP-

hard, and theoretical approximation’s complexity is present. Moreover, one of the 

parameter coefficients may take any value other than a binary; in this case, obtaining an 

exact solution becomes computationally difficult. Accordingly, two heuristic approaches 

are proposed in the solution. Lagrangean relaxation and greedy heuristics are used and 

are compared to several optimum solutions that are obtained from a commercial IP 

solver, random selection method, and highest-degree selection method. Each method is 

computed with different problem sizes and evaluated in terms of results, percent 

deviation, and CPU times. 

 As discussed above, the techniques and approaches of the concept of constrained 

project allocation are widely applied in many disciplines. Various studies have extended 

this approach by accommodating specific conditions under which it is applied in 

education and human resources (HR). For example, Anwar and Bahaj [30] address the 
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problem of allocating class projects to university students. In many university 

departments, a list of projects is offered to students from which they can select more than 

one project. Typically, each project is supervised by only one lecturer and assigned to 

only one student within a department. In addition, this paper considers another modeling 

approach of allocating a group project to students supervised by one or more lecturers. 

The paper shows two molding approaches and formulates them using BIP. The first 

model is formulated for individual project allocation to minimize the number of projects 

each lecturer supervises, subject to project-allocation restrictions. The second model is 

constructed for handling group projects that allocate a group of students to a project (i.e., 

a project may be allocated to more than one student). This model is intended to maximize 

the students' choice of project preferences subject to the number of project and lecturer 

constraints. The first model is solved by using dynamic programming and is implemented 

using LINGO 6.0.  

 Another well-known area of interest in HR is modeling a decision-support 

framework for project managers’ assignments. This problem investigates the 

development of different procedures and criteria for optimally allocating project 

managers to the best-matching projects, such as a project manager of developing new 

product projects in manufacturing companies. In addition to optimal allocation, studies 

provide significant information on performance and effects on projects, project managers 

in guiding projects to successfully accomplished, and organizations. Patanakul et al. [16] 

develop a decision support approach to assign new projects or reassign ongoing projects 

to project managers. The problem is formulated by BIP and considers project priorities, 

degrees of association between project managers and developing projects, and relevant 
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organizational and personal limitations. The objective function in this model takes into 

account project requirements, project managers’ effectiveness, and project contributions 

to the organizational mission. 

Classification Approach using MD 

 
Classification concept is defined as the process of separating or allocating various objects 

into several predefined classes, which can be defined by business rules, class restrictions, 

or several mathematical functions [31]. In general, two types of classification problems 

are considered in the research: (1) binary classification on one variable and (2) multiple 

classifications on more than one variable. In statistical analysis and data mining, many 

techniques are used for classification. However, lack of available implementation for 

many classifiers is a major drawback in any classification purpose [32]. In addition, the 

classification problem becomes very complex when numerous variables must be 

considered, especially when a correlation or dependency between variables may exist. 

Consequently, a more reliable criterion or measurement that handles correlated variables 

is necessary to address this issue. For this reason, in 1936, P. C. Mahalanobis introduced 

the concept of MD [19] for classifying a multivariate observation's similarity to the other 

group members' centroid or overall mean. The MD answers the question of how a 

multivariate observation is allocated to best matching groups or classes. 

 Since the MD concept originated, hundreds of studies have been conducted in 

many fields. For example, Huei-Chung Wang et al. [33] develop a classification method 

based on the Mahalanobis-Taguchi System (MTS) [34], initially proposed by Genichi 

Taguchi, who is well known for his extraordinary and controversial ideas and methods in 
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the field of design and experiment analysis. The MTS combines MD, orthogonal arrays 

(OAs), and the signal-to-noise (SN) ratio. The study demonstrates MTS’s effectiveness 

with two kinds of correlated multivariate datasets, Fisher iris and credit card, for the 

purpose of measuring the prediction accuracy in multi-dimensional data sets. By 

incorporating the MD, the results show that the MTS outperforms another well-known 

classifier by approximately 2.2 % in terms of classification accuracy rate for both 

datasets.   

 Bing Long et al. [35] present a novel approach for diagnosing initial faults in 

analog circuits using a classification algorithm of particle swarm optimization based on 

the MD. The MD is intended to categorize samples from two different fault predefined 

classes and to train and examine specific classifiers for any two fault classes of analog 

circuits. The near-optimal solution is achieved, by using MD in the classification 

algorithm, with a high recognition rate, and the time consumption is reduced by 98% 

compared to that of the optimal feature vector algorithm. The Euclidean distance (ED) is 

also compared to the MD in stability and optimality with an experimental study 

investigating MD’s advantage in selecting the near-optimal feature vectors. The results 

show that ED’s classification accuracy is 93.8%, whereas it increases in MD to 97.8%.  

 Cho et al. [36] propose a hybrid approach for predicting manufacturing firms’ 

bankruptcy based on the combination of variable selection methods and MD. The 

algorithm of case-based reasoning approach is presented; and different experiments apply 

this algorithm with MD, ED, logistic regression, neural network, and decision tree 

models. For illustration purposes, 1000 Korean manufacturing firms are classified as 

bankrupt or healthy (non-bankrupt). The classification process uses the distance matrix of 
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MD and ED to measure the distance between the reference data set and the evaluation 

data set. The results show that the classifier algorithm using MD effectively outperforms 

other models in the correct classification ratios with an average of 73.6% and with the 

lowest misclassification error rate.  

 Srinivasaraghavan and Allada [22] develop a contemporary methodology that aids 

in providing a quantitative leanness measure by comparing a company against exemplar 

industry standards to facilitate continuous improvement. A survey is conducted to assess 

an organization’s lean state by using several lean characteristics. The industries are 

classified into two groups: advanced lean (normal) and average/below (abnormal). 

Abnormality is considered to be due to either bad conditions or considerably perfect 

conditions. To distinguish between normal and abnormal categories with its abnormality 

conditions, the Mahalanobis Taguchi Gram-Schmidt System (MTGS) is used for this 

reason. The proposed MTGS measures the distance from a defined reference datum to 

each data point in each group and identifies those points that are out of Mahalanobis 

space, outliers. The study also presents an optimization approach to obtain the most 

effective information or variables needed in evaluating abnormal industries' level of lean 

implementation and then tests MD’s impact as well. 

 Arathi and Govardhan [37] compare the classification accuracy and performance 

of MD and ED by incorporating them into a discriminate algorithm in time series data. 

The suggested technique is intended to evaluate the similarity or dissimilarity between 

two time series sequences (i.e., unlabeled time series should be allocated to a predefined 

group). The major advantages and disadvantages of ED and MD are described. For 

example, ED is unsophisticated in computation and does not require many details. 
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However, it has some shortcomings. It requires the data to be standardized when 

variables are measured in different scales; both sequences have the same length; it does 

not consider the correlation between the data variables; and it is sensitive to noise. On the 

other hand, MD accounts for data correlation by occupying the covariance in its equation; 

it does not require the data to be standardized, even if the variables are determined or 

measured in different scales; and it provides the same ED measurement when variables 

are uncorrelated. The study conducts comparison experiments on various datasets to 

assess how the classification algorithm with MD and ED is able to differentiate between 

any two classes. The experimental results show the proposed methodology with MD 

increases the accuracy around 10%-15% more than in ED and decreases the time 

complexity by 15%-22%. 

MD Applications 

The initial inspiration for proposing the MD was to analyze and classify human skulls 

into predefined categories, based on different characteristics or factors. Since then, many 

distinguished applications based on MD have been developed in different areas, such as, 

engineering, manufacturing, chemical research, healthcare engineering, pattern 

recognitions, businesses, etc. We list few applications in the literature as follows:  

 Face Recognition [38] 

In the purpose of classification face images that include frontal views of faces with 

different properties, such as facial appearances, lighting conditions, and occlusion 

dimensions, the MD is used to enhance the classification accuracy and performance in 

face identification or recognition and to measure the similarity between the faces and to 

classify and recognize the samples. 
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 Composition of Pharmaceutical Products [20] 

Pharmaceutical companies produce drugs that consist of a number of active compounds 

developed for treating different diseases. These companies have historical data recorded 

on their database on the significant proper concentration amount of the different active 

ingredients based on patient records for each of the known diseases. With statistical 

analysis for these data, the pharmaceutical company can discover different MDs related 

to each different type of disease and classify the most appropriate ingredients to different 

diseases. Subsequently, the MDs are used in this application to categorize and optimize 

the drug products and finds which drugs are best for specific diseases.  

 Financial Applications in Forecasting [39] 

Information that can be used to asses forecasts can be provided by MD. In this 

application, a multivariate-observation forecast from a prediction model is to be assessed 

for its accuracy by comparing it with the known true observations. The suggested 

methodology chooses the mean squared error (MSE) that represents the loss function of 

the prediction model. The MSE-matrix determines the pattern or shape of the confidence 

region that denoted by the MD. Therefore, the lower the MD between observation and 

prediction points, the better the forecasting model and vise versa. The extreme points of 

the MD results might be considered such as an indication against the reliability of the 

forecasting model. 

 Product Manufacturing [20] 

Suppose a manufacturer produces a commercial product, for example, a car or computer 

that is described by a number of properties (cost, selling price, dimension, etc) with a 

verity of possible customers uses, for instance, work, family, etc. The manufacturer has 
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datasets from the market research on a number of items purchased with specific 

parameters by customers with the intended use. The MD will be used in the product 

designing phases, that is: it measures how much close each intended use of different 

product items to the product's parameters based on the customer preferences.  

 Breast Tumor classifications [40] 

In the diagnostic processes of breast tumors, the Mammography is widely used for 

identifying tissue types, benignant or malignant. Every image for each tissue has common 

shape factors for barest tissues that are recognized by specialists and medical software.   

The MD concept is integrated with another method to be used in biomedical computer 

software to assign each breast image from the Mammography to lesion categories.        

Branch-and-Bound Strategies and Their Impact on Solution 

Performance 

 
In 1960, Land and Doig developed the first B&B algorithm for general MILP and pure 

ILP. Soon after, in 1965, Balas suggested an effective algorithm that can solve ILP 

problems with BIP. The B&B algorithm solves these problems by dividing the search 

space and generating a sequence of sub-problems. The branching strategy is the heart of 

the B&B algorithm and is considered one of the most significant factors affecting 

solution performances [41]. Therefore, we focus on two critical questions about the B&B 

algorithm that many research studies have explored but remain unanswered [12]: 

1. Which specific variable in branching should be branched first?  

2. In selecting the next branching node or sub-problem, which node should 

we begin to solve? 
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Because both questions are unanswered, the research in this area is still ongoing. 

However, ensuring computations could differ dramatically with different branching 

strategies. Consequently, the result in the B&B trees differs greatly in size and in 

computer time required to find an optimal solution [42]. The main reason we use the 

B&B algorithm is that its technique provides a flexible structure in which we can design 

any problem type, such as BIP. Moreover, many options are available in B&B that can be 

used in designing an efficient algorithm and that can substantially affect the solution 

performance. 

 Many studies and books cover B&B’s concepts, applications, and techniques and 

address how this algorithm is flexible to accommodate different integer programming, 

such as pure IP, MIP, nonlinear MIP and IP, and BIP [41, 43]. In order to narrow down 

our study specifically in B&B branching strategies, the literature review in this section is 

restricted to B&B strategies that can improve the algorithm’s solution performance in 

various ways. For example, Borchers [43] investigates how branching strategies with a 

proposed heuristic can effectively improve the B&B algorithm’s speed in finding the 

optimal solution and reduce the memory storage the experimental codes use. Two 

branching strategies are used in the study: (1) a depth-first strategy, which is intended to 

choose the next sub-problem or node that was most recently created for obtaining a quick 

fathoming; and (2) a fixed-order strategy, which aims to rank branching variables in 

specific order before solving any nodes, thus reducing the constraints’ size. The 

suggested techniques are coded in IBM's Optimization Subroutine Library for different 

examples of capacitated facility-allocation problems and other problems. Computational 

results show that the branching strategies for some problems enhance the CPU time by 
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approximately 20% less than the algorithm without suggested strategies or default 

strategies.  

   Koch et al. [44] survey a comprehensive description of 87 real-world instances 

available in the Mixed Integer Problem Library (MIPLIB) (2010) and run those problems 

on different solvers to assess performance. All of the instances in the MIPLIB are 

combined into a large group of IP problems in academia and industries. The paper 

emphasizes that the most important contribution to the CPU time needed to solve the IP 

problems considered is attributed to the B&B tree’s size. Many factors may significantly 

influence the solver behavior, such as input format, constraint orders, differences in 

model formulation, problem size of adding or removing redundant variables or 

constraints, and bounds. Consequently, all the relevant research effort is done to propose 

an effective methodology or code that aims to reduce the number of nodes in B&B that 

must be evaluated. The paper also notes that the effective branching strategy can be 

implemented by determining the order in which candidate variables are considered to be 

branched.  

 Wang et al. [45] propose two B&B approaches, among different methods, to 

model and solve the well-known supply chain problem of supplier selection and order 

quantity allocation. The MIP model formulation for this model is intended to minimize 

the expected total costs associated with order placement, order quantity, and penalties 

subject to order quantity upper- and lower-bound restrictions. The first B&B aims to 

branch on the binary decision variables of supplier selection choices. The second B&B is 

proposed to branch on the order quantity from the supplier. Both models are coded and 

solved in MATLAB R2011a with different problem sizes for modeling evaluation and 
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performance testing. Computational studies show that the second B&B method is better 

than the first for various performance measures, such as the number of searched nodes 

and the computation time by performing approximately less than the first B&B method 

by 84% and 40%, respectively.     

  Achterberg et al. [41] present a new branching strategy that combines well-known 

branching rules. The new strategy’s branching technique, reliability branching, aims to 

assign a score to un-branched variables that have not been used in the branching process 

a certain number of times.  This technique’s purpose is assessing the impact on the 

quality of the gap between sub-problem and parent. This gap ultimately affects the B&B 

tree’s size and the solution time. The study compares this strategy with different 

branching rules, such as most infeasible branching, pseudo-cost branching, strong 

branching, hybrid strong/pseudo-cost branching, and pseudo-cost branching with strong 

branch initialization. A numerical experiment is conducted on instances from MIPLIB 

2003 and Mittelmann and run on CEPLEX and SIP. The branching strategies’ 

performance is evaluated in CPU time and B&B nodes and shows that these strategies 

provide different measures. The research concludes that the new branching rule 

remarkably improves the performance of the solution. 

            In one of the most significant application studies on branching rules and their 

considerable impact on solution performance, Murkute [14] investigates the capacitated 

multi-commodity fixed-charge network flow (MCFCNF) MIP problem. This research 

links a new branching strategy to the amount of information branching variables provide 

in the B&B tree’s initial levels and determines if there is a relationship between the 

variables and a problem characteristic of arc utilization. The new rule of selecting next 
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branching variables involves the following steps: (1) combining all feasible solutions, (2) 

selecting a group of candidate variables, (3) calculating each candidate’s percentage of 

contribution to the feasible solution, (4) assigning scores based on the contributions’ 

impact, and (5) branching according to the variables' scores. A comparison study was 

conducted on 20 instances and applied on two IP mathematical solvers, SCIP and GLPK, 

to evaluate the proposed approach compared to other branching strategies, using different 

measures, such as CPU time, searched nodes, and optimal solution gap. Computational 

results show substantial variations in the solution performance among different branching 

strategies. 

 Atamtürk and Savelsbergh [15] emphasize in their research study that the core of 

any efficient IP solver is the LP-based B&B method. This study provides various 

important options in the B&B algorithm that are available to the users and describes how 

its settings can significantly affect the B&B method’s behavior. These options include the 

choices of node selection, branching rules, cut generation, preprocessing, and heuristics. 

Furthermore, the research compares the following options in different IP solvers: 

CPLEX; LINDO; and Xpress-MP. Computational experiments are conducted on different 

instances from MIPLIP 2003 to compare and measure the B&B solution performance 

among the options provided in the solver’s default settings and the user’s options settings. 

For comparison purposes, various performance measures are considered to assess each 

solver’s capability, such as CPU time, number of searched nodes in the B&B tree, and 

solution gap between global optimal and best reached bound in the B&B tree. Each 

solver’s performance shows different results. Therefore, these results imply that the user 

control in the B&B options can significantly affect the algorithm performance. Users may 
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improve the B&B method by selecting specific settings that best fit their problem types. 

The paper also addresses major challenges that might be encountered in the B&B 

algorithm and discusses possible features that may improve the solution quality. 

Additional references for relevant literature are provided in this paper. 

There are many other branching strategies presented in the literature and commonly used, 

such as, fixed order, early, maximal pseudo-cost, most-fractional, most-infeasible, 

maximal-objective, and strong branching. Table 1 shows a list of references of widely 

used and proposed branching strategies. 

Table 1: List of Branching Strategies 

 

Branching Rule Modeling type Reference 

Most infeasible, least infeasible Pseudo 

cost, strong branching, Hybrid, and 

Reliability branching 

MIP [15, 48] 

Entropic Branching and Entropic Look-

Ahead Branching 
MIP [67] 

Early and Ordered branching MIP [43] 

Partial sequence MIP/ BIP [13] 

Problem-Oriented BIP [68] 

 

Summary 

 
This chapter provided a review of relevant literature in R&D project selection and 

resource allocation, MD classification criterion and its performance, and B&B strategies 

and their effects on the algorithm performance. As displayed in Figure 1, the relevant  
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Figure 1: Number of Relevant Articles in Different Areas from the Year of 1930 to    

      2015 

 
areas in our problem have remarkably increased over the last 25 years with total of 2458 

articles were published in project selection and resource allocation, 3458 in the area of 

MD, and 21865 research studies in B&B from 1991 to 2015. 

 The literature review investigated the concept of selecting the most attractive 

projects; however, allocating them among different options subject to scarce resources 

was not addressed in the literature. Moreover, integrating classification criteria to be used 

in an optimization model for allocating projects to the best-fitting options is not applied 

or studied in the relevant works. Although many methods for solving IP are discussed in 

the literature, no one of them is computationally operative. In practice, the B&B 

method’s capability and reliability have been proven more than that of other IP methods 

or algorithms [12]. 
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 The key findings in the literature regarding the methods and models for R&D 

project selection and resource allocation involve two areas: (1) the methodologies that 

provide decision managers optimal project selection and allocation criteria and (2) the 

effective means of solving these methods [1]. Unfortunately, the majority, if not all, of 

the available proposed models have several gaps [3, 8, 9, 46]. First, they do not support 

the project allocation on more than one option with specific classification criteria; thus, 

no model is available for optimal project allocation to the best-fitting options. Second, 

many models do not explicitly incorporate the supporting staff’s expertise and data from 

previously completed projects; hence, these kinds of  models’ decision tools do not 

realistically provide R&D managers the required flexibility to structure a relationship 

between  allocation criteria and options. Finally, the models are ineffective for solving 

problems with both decision variables and constraints of appreciable size. That is, they 

are unable to handle large problems.   

 The literature review reveals that the majority of the research in the transportation 

project classification deals with binary choices. The constrained project classification 

problem in this dissertation is a typical combinatorial optimization problem, so it 

becomes a Nondeterministic Polynomial (NP)-hard problem. However, new 

technological improvements and developments in IP solvers and hardware processors 

provide the best ways to improve any IP algorithm’s performance. 

 Based on this dissertation’s literature review, the following gaps and findings 

exist:  

 Despite the significant R&D project selection and resource allocation 

mathematical models and approaches available in the literature, no study has been 
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developed or reported in the literature based on the MD minimization with 

multiple resource constraints in the R&D project selection area. 

 All research in B&B strategy has focused on general MIP problems and has 

shown that these strategies can significantly affect solution times [15]. To the best 

of our knowledge, these strategies have not been computationally analyzed or 

compared in relation to pure BIP problems. Hence, we are among the first who 

propose and apply new B&B branching strategies in BIP and evaluate the 

algorithm performances with a comparison study.   

 This dissertation adds to the literature of project management, B&B strategies, 

and MD applications by presenting a novel project selection and resource-

allocation approach that not only finds the best-fitting project allocation among 

multiple options but also proposes another remarkable improvement in B&B 

algorithm performance based on specific branching variables with the minimum 

of MD measures.       
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CHAPTER III 

OVERALL CONCEPTUAL APPROACH 
 
 
As discussed in Chapter 2, all the methods that have been widely studied and applied to 

model the process of project selections and resource allocations totally depend on the 

type of the problem. We have also noted that these models can be applied with relevant 

adjustments in any kind of project and organization. In order to understand the 

procedures of assigning projects to multiple options based the MD concept, the process 

involved in our model must be described. The solution procedure for the constrained 

project selection and allocation in this dissertation involves major assumptions. 

 First, each project is represented by several properties or measurements, 

multivariate, which may be interdependent. Second, data bases containing recent project 

details that have been developed by either allocation option (in-house or private 

contractors) is available. Third, a panel of experts is intended to form or index each 

allocation option by a selected project sample, from the data bases, that is considered to 

be highly representative of the projects propose to be funded. The process of this 

assumption is outlined in Figure 2. 

 

 

 

 

 

Figure 2: Process of Determining Allocation Options 
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More specifically, the panel of experts, in the third assumption, consists of a group of 

people from different departments, such as purchasing, engineering, planning, etc.  This 

panel uses the information available from the suggested projects for funding (inputs) with 

the information in the database containing similar projects most recently involving each 

option (in-house and contractors) to produce reference project samples for each option 

(output). These samples are used in the MD computation. Specifically, MD measures 

how each input project best matches every option (output) to be allocated.      

Fourth, a percentage of project funding or completion is not allowed (i.e., a selected 

project is fully funded and completed by the available resources). 

Fifth, the degree of risk and the possibility of failure in project completion are omitted in 

our study. 

 Finally, the interdependent chronological relationship, of project or resource 

between each other is not considered (i.e., starting and finishing any project is not 

necessarily reliant or depended the status of other projects or activities). 

 The department of project management handles projects in any business 

environment or governmental sector.  Regardless of variations in project types, each 

project in R&D usually progresses in three primary phases [4] as follows: 

1. Project proposal submittal 

2. Project proposal and scope evaluation 

3. Decision-making regarding project funding and relevant resources 

This process is illustrated in Figure 3, which provides a clear picture of the step we 

concentrate on in this dissertation.  
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Figure 3: R&D Project’s Primary Phases 

 
As shown in Figure 3, our contributions focus on providing decision makers and 

managers systematic methodology for selecting optimal projects to be funded subject to 

availability of resource and budget constraints, as well as identifying projects most 

suitable for either in-house development or private contractors’ use.  

 This chapter will discuss the proposed tools (i.e., MD definition and equations) 

involved in the project-funding decision-making phase. Moreover, a compendium of the 

B&B algorithm is provided as a solution methodology for our proposed project-selection 

and resource- allocation models. 

Mahalanobis Distance 

 
The concept of the MD has been widely used in different statistical areas that consider 

multivariate observations, such as classification, cluster, and outlier detection techniques. 

MD is considered a more powerful distance measure than other methods, such as ED, 
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because it considers different scales in multivariate observation variables or 

characteristics and the potential correlation among them. 

Definition 

 
The MD is a measurement of statistical distance between an n-dimensional point 

(multivariate) with coordinates, variables, given by a p-variant vector 𝐱 =

[𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑝]  and a space's center (overall mean) represented by a reference mean 

vector 𝛍 = [𝜇1, 𝜇2, 𝜇3, … , 𝜇𝑝] of the data matrix X. The reference data matrix X consists 

of n observations, in rows, measured for p variables (characteristics), in the columns. The 

MD is defined in the following equation: 

TMD )()( 1
)( μxSμxx                                                     (1) 

 

where  S  is the sample covariance matrix of a reference sample X, which is given by:  

𝐒 =
1

𝑛−1
(𝐗𝐜

𝑇𝐗𝐜)                                                              (2)  

where Xc is the centered data matrix μx  . For p=2, the sample covariance matrix S  is 

represented in (3):  

𝐒 = [
𝑠1

2 𝑟12𝑠1𝑠2

𝑟12𝑠1𝑠2 𝑠2
2 ]                                                 (3)  

where 𝑠1
2 and 𝑠2

2 are the variances of the values of the two vector variables, 1x and 2x , 

respectively; 𝑟12 is the correlation's coefficient between them; and 𝑟12𝑠1𝑠2 is the 

covariance between the two variables (i.e., the covariance measures the level of 

relationship between two variables). The covariance matrix is a p-by-p square matrix that 

contains variables' variances in the diagonal elements of the 𝐒 and the covariance 
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between any two variables in the off-diagonal elements. The inverse of the covariance 

1
S  matrix is given in the following equation: 

𝐒 = [
𝑠2

2/det (𝐒) −𝑟12𝑠1𝑠2/det (𝐒)

−𝑟12𝑠1𝑠2/det (𝐒) 𝑠1
2/det (𝐒)

]                               (4) 

where det(𝐒)=𝑠1
2𝑠2

2(1 − 𝑟12
2 ) is the determinant of the S . 

Note when 1x and 2x in Eq. (4) have no correlation (i.e., (𝑟12 = 0) or 𝑠1
2 = 𝑠2

2)), the 

Eq.(1) is shorten to the formula for the ED as in Eq. (5)  and the covariance matrix S  

becomes the identity matrix. Thus the MD reduces to ED 

TED )()()(   xxx .                                      (5) 

Consequently, the ED does not consider the correlation between the random variable's 

components. As a result, the MD is commonly used in statistics and data mining fields 

because it is significantly better than the ED, especially when sample is not regularly 

distributed around the mean, in other words it is correlated. 

Graphical Representation 

 
In order to illustrate the concept of MD and provide better understanding of its function 

in project classification, the concepts of MD and ED are graphically displayed in Figure 

4. Specifically, Figure 4 shows the major differences between these two distances 

regarding the correlation between the variables of an observation (multi-dimensional 

point). In general, each circle on the left and its typical circle shapes on the right 

represent a multivariate or multi-dimensional point (in our case, projects). More 

specifically, the colored small points inside these circles denote to the characteristics 

(variables) that identify each project scope.  
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Figure 4: MD and ED Graphical Representations

2-1 MD representation 

 

2-2 ED representation 
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The biggest two circles on the right represent a multivariate space (reference samples in 

our scope). The circles in the center of the two biggest circles on right represent a special 

multivariate point, which is the overall mean or centroid of the multivariate space.  

The colored small points inside the circles, in MD, are interconnected, representing a 

correlation between variables that is accounted for in this specific distance measure. On 

the other hand, the connections between variables in ED graph are not considered (i.e., 

the relationship between project's variables is not accounted for in this distance). 

Therefore, we can clearly describe the MD as a distance between a multivariate point and 

a multivariate space’s centroid accounting for a correlation with a multivariate point 

characteristic.    

Computation Example 

 
For illustration purpose, suppose we have two groups of datasets: A and B. A represents 

the dataset for multivariate observations and B the reference sample. The two groups can 

be represented in matrix form as AX for group A, and BX  for group B. The data matrices 

of AX and BX   is n-by-p, where n is the number of observations and p is the dimension of 

the data (variables or factors). The MD computation requires both matrices to have the 

same number of column dimension p (variables); nevertheless, they may have different 

numbers of rows n (observations). Furthermore, matrix BX  must contain more rows than 

columns. 

The MD measures the distance between each observation n in AX and the reference 

sample BX , which results in MD n-by-1 vector. 
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Computational steps 

 
Let �̅�𝐵be the vectors of means for group B, which contains the same number of elements 

and variables. The simulated data in Table 1 are be used in illustrating the steps in 

computing the MD.    

Table 2: Simulated and Standardized Data for MD Illustration 

 

Observation 

No. 
Dataset Centered Data 

AX  
BX  

AcX  

1Ax  2Ax  
1Bx  2Bx  

1cAx  2cAx  

1 1 1 0.53 -0.11 0.38 0.13 

2 1 -1 1.83 2.98 0.38 -1.87 

3 -1 1 -2.25 -1.72 -1.62 0.13 

4 -1 -1 0.86 0.75 -1.62 -1.87 

5  0.31 0.59  

6 -1.31 -1.26 

7 -0.43 -0.44  

8 0.34 0.95   

9  3.57 3.83 

10  2.76 3.11 

Mean  �̅�𝐵1= 
0.6248 

�̅�𝐵2= 

0.8691 

 

 

Group A has 𝑛𝐴= 5 observations and group B has 𝑛𝐵 = 10 observations. Each observation 

in either group has two values (two variables or factors are possibly correlated).  In Table 

2, bold-faced symbols represent vectors or matrices:  
21 AAA xxX  ,  

21 BBB xxX 

, �̅�𝐵 = [�̅�𝐵1 �̅�𝐵2]. 

The raw data in Table 1 have been transformed into centered data matrix Xc and will be 

used in MD computation by subtracting from each value in AX  the mean of its 
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corresponding column in �̅�𝐵 (i.e., for observation in group A,  
21 cAcAcA xxX  ,  𝐱𝑐𝐴𝑖 =

𝐱𝐴𝑖 − �̅�𝐵𝑖, ∀ i = 1, 2). 

The MD's computational steps are outlined below: 

Step 1 

The covariance matrix for the reference sample, group B, is computed as in Eq. (2) 

From the data given in Table 1, 









3.58    3.24

3.24    3.11
S  

Step 2 

The inverse of the covariance matrix 1
S  is calculated as given in Eq. (4)  











4.4615    4.6319-

4.6319-   5.1297  1
S  

Step3 

The MD between each observation in A and the reference sample in B are ready to be 

computed from Eq. (1). For example, we pick the first observation ,row, in  11)1( AX                    

For the given data point, 

  









13.0

38.0 
)1(,0.130.38)1(

T

AA cc XX ,   and  









4.4615    4.6319-

4.6319-   5.1297  1
S  

Therefore, using Eq. (1), 

𝑀𝐷𝐗𝐴(1) = √(𝐱 − �̅�)𝐒−1(𝐱 − �̅�)𝑇 = 0.5926 

In order to understand the difference between the concepts of MD and ED, we display 

both measures in a graphical representation, as shown in Figure 5, and address how 

considering the correlation between variables affects on the distance measurements as 

well [47]. The results for MD and ED calculations are summarized in Table 3. 
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Table 3: Comparing between MD and ED 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: MD and ED Illustrations 

 

Observation Data 

AX  

 

MD 

 

ED 

 [ 1    1 ] 0.5926 0.4013 

 [ 1   -1 ] 4.7816 1.9061 

 [ -1   1 ] 3.9419 1.6264 

 [ -1  -1 ] 0.9979 2.4733 
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In this example, all the MDs and EDs are calculated for 
AX  described in Table 2.  

The results of MD and ED in Table 3 show that the observations in 
AX  with identical 

values in their variables have the minimum distances to the reference sample BX  in MD 

compared to the observations with different values in their variables. In contrast, the ED 

results with similar and opposite values in the observations' variables do not indicate any 

distance interpretation to the reference sample BX  in ED space. The MD results have 

more meanings in distance interpretation than ED because the MD accounts for the 

correlation and the scales between the reference's variables. As a result, the observations 

with identical or opposite values are clearly more distinguished and meaningful than the 

all results in ED regardless its observations' coordinates, similar or different. Moreover, 

Figure 5 further interprets the distances between every observation and the reference 

sample in MD and ED spaces. Consequently, MD has successfully shown how close each 

observation in 
AX  is to the reference sample BX ; thus, it is very efficient and reliable 

classification criterion. 

 The overall conceptual approach of measuring the MD between each project and 

multiple allocation options in this dissertation is illustrated in Figure 6. The steps in 

measuring the MD between a given project and allocation options are summarized below: 

1. Given a set of project characteristics or variables, define the scope of a project n 

in set n= 1, 2,…, N 

2.  Identify a group of typical projects m or reference samples (selected by a panel 

of experts) for each allocated option in set m= 1, 2, …, M 

3. Compute the mean and the covariance matrix for each option in set m 
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4. Calculate the MD between each project n and the mean or centroid of the 

multivariate space in each option m. 

 

    

 

 

 

 

 

 

 

 

 

 

Figure 6: Illustration of Project Allocation Using MD Classification Criterion 

 
Typically, each project allocation option in this dissertation has different MD space (i.e., 

inverse covariance matrix, standard deviations, and overall mean in set m). Therefore, 

every project has an equivalent m numbers of MD, with a total of (𝑛 × 𝑚) total number 

of MDs for all projects. Generally speaking, the desirability of a given project n to be 

allocated to an option in set m is defined in terms of its MD to that option.  In an ideal 

world, each project should be allocated to its closest option (minimum MD). This 

scenario, however, may not be possible depending on the available levels of each relevant 
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resource that should be considered in the MD project-allocation process. The availability 

levels represent the MD as a constrained distance that should satisfy other conditions. 

Accordingly, the constrained MD is what we study in this dissertation. 

Branch-and-Bound Overview  

 

The B&B algorithm is used in this dissertation as the methodology for solving our 

problem of interests. Specifically, B&B method solves the suggested mathematical 

models of allocating projects to either in-house or private contractors subject to relevant 

constraints as stated in Chapter 1. This section will present an overview of the major 

steps in B&B and show our concentration's position in this method. Comprehensive 

descriptions of B&B technique are available in various resources, including [11, 12, 48, 

49].  

 Briefly, the B&B algorithm handles not only the problems of solution 

infeasibility, which the integrality constraint causes in an IP problem, but also the 

extremely large feasible points in the feasible region through splitting (branching) the 

solution region into two or more divisions (sub-problems or nodes). 

Such branching reduces the whole region, for optimizing, into smaller ones; thus, the 

solutions in these sub-problems are much easier and efficient in CPU time and effort than 

solving the entire region at once. The further growth in the branching process by dividing 

the whole feasible region into smaller regions creates a B&B solution tree, which consists 

of the main root representing the original or initial problem and the nodes corresponding 

to the sub-problems. Each node is solved consecutively in a similar manner: by dividing 

the feasible region in each sub-problem (parent) into other sub-problems (child nodes) 
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until the best integer solution is obtained. Figure 7 depicts the general BIP B&B search 

tree.  

   

 

 

 

 

 

 

 

 

 

 

Figure 7: B&B Search Tree for BIP Problem in Two-Branching Case 

 
To comprehend the B&B tree's construction for the BIP model, we represent the 

mathematical model form in Eq. (6) as follows: 

                              

 1,0                     

                     

Subject to

z     Maximize                     







x

bAx

xc
T

                            (6) 

where z is the objective function (it could be in a minimization form), c  is the column 

vector of the variables' coefficients, x  represents the column vector of the decision 

variables (binary), the matrix A  is the constraint's coefficients, and the column vector b
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is the quantity of the resources available. The last constraint   1,0x  declares that all the 

variables must be binary. 

 The B&B method’s first step is solving the original BIP problem’s LP relaxation, 

which the main root node portrays in the tree. The LP relaxation solution involves 

deleting one set of constraints (BI) that makes the problem difficult to solve and 

substituting the decision variables x  with other constraint that has an upper bound of 1 

and lower bound of 0. Specifically, the optimal LP relaxation solution, for the main root 

node or the whole problem, provides the global upper bound (UB) for all feasible 

solutions, including the original BIP feasible solution (i.e., the optimal solution of the 

BIP original problem ≤ optimal solution for LP relaxation). 

 The next step is splitting (branch) the LP relaxation feasible region into two sub-

problems by fixing one of the decision variables x  at a value of (xi=0) for one sub-

problem and at a value of (xi=1) for the other sub-problem and then solving each sub-

problem using LP relaxation. Typically, continuing this process will generate parents that 

represent sub-problems and child nodes, which are also sub-problems derived from their 

parents in every branching iteration level as shown in Figure 7.  

 One of the most efficient and important steps in the B&B algorithm is called 

fathoming or pruning a sub-problem, (i.e., abandoning particular sub-problems from 

further exploration or branching). This step avoids solving every sub-problem in the 

B&B search tree; otherwise, an exponential number of sub-problems can result. There are 

three conditions for pruning a node: 

1. If a sub-problem’s alternative best known optimal BI solution is found at a 

specific iteration level, the bound that the LP relaxation finds for a sub-problem is 
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less than or equal to the best BI objective value. That is, a node should be pruned 

if its LP relaxation is found in the search tree, whether its solution is BI or 

continues feasible ≤ best- known BI optimal solution. 

2. The LP relaxation for a sub-problem has no feasible solution. 

3. The optimal solution of a sub-problem’s LP relaxation satisfies the BI constraint 

and its relaxed and non-relaxed objective solutions are equal. 

As discussed in the aforementioned chapters, BIP mathematically models the project 

selection and resource allocation; namely, each variable in x  or project takes only a 

binary value (1=allocate and 0=otherwise) also corresponding to the two branching. This 

scenario, however, may not be the case in this dissertation because we have multi-group 

project allocation (in-house and contractors) and each project should be allocated at most 

to only one classification option. In other words, the traditional B&B tree shown in 

Figure 7 is different in our allocation problem because every project is enumerated for 

each possible allocation among the available options. Therefore, the total number of 

branching in the B&B search tree equals (M+1+(M+1)N), where M represents the total 

number of options, more than one, and N is the number total number of projects. To 

explain the B&B search tree's structure for the project allocation on multi-group 

problems, Figure 8 provides a snapshot of the tree with an example of allocating the total 

number of N projects on at most one of the three options (A, B, or C). In this Figure that 

each node has four branches corresponding to the possible allocation solution; not 

allocate at all; or allocated on option A, B, or C. The dramatic expansion and the search 

tree's complexity are clearly depicted as the problem's size increases (i.e., the number of 

projects and allocation options increases). 
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Figure 8: B&B Search Tree with more than Two Branches for BIP Problem in Multi-Group Project Allocation
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The effects on CPU time, memory storage, and the solution gap's quality in the B&B 

method are obviously linked to the size of the tree. Undoubtedly, the branching strategies 

play a key factor in the B&B algorithm by significantly improving the solution 

performance and also speeding up the process of finding an optimal solution and node 

fathoming. No specific strategies work best for all problem types; otherwise no new 

strategies are required in this area. Therefore, creating new branching strategies on 

variables and choosing branching nodes to be explored during the next iteration greatly 

enhance the B&B algorithm’s quality and bring our attention to contribute in proposing 

new branching strategy in this study. 

Summary 

 
This chapter has discussed MD, the classification criterion’s cornerstone used to allocate 

projects among multiple options, and has introduced the structure of the algorithm 

applied in solving the models, B&B. The modeling approach for the constrained multi-

group project allocation based on MD ensures assigning projects to their best option 

while maintains relevant resources. The core contributions of our solution approach in 

this dissertation are as follows: 

1. Proposing models for selecting and allocating projects  

2. Enhancing the optimal solution’s quality by proposing clever branching strategies 

with node selections that can work efficiently with large problems. 

3. Improving the B&B algorithm’s solution performance 

We will show in the following chapters our proposed branching strategy and its effect on 

the B&B solution performances.           
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CHAPTER IV 

MATHEMATICAL MODEL AND PROPOSED METHODOLOGY 
 
 
The analytical decision-support approach of selecting and allocating projects to either in-

house or private contractors (multi-group) are subject to relevant resources or constraints. 

This approach is formulated mathematically using two different BIP models, which can 

be conceptualized as optimization procedures for constrained project selection and 

allocation problems. Each model, however, provides different types of performance 

measures or optimization criteria that will be discussed in this chapter. The B&B method 

is used to solve the mathematical models with a proposed branching strategy that can 

improve the algorithm performance's efficiency as well as handle a large size problem. 

This chapter is divided in three sections. The first section describes the mathematical 

model formulation. The second section discusses the proposed methodology for 

branching strategy. The last section is this chapter's summary.  

Model Formulation 

 

Any decision-making problem concerning project selection and allocation involves only 

two choices corresponding to yes (allocate) or no (not to allocate) decisions. In this 

dissertation, these two choices involve whether or not to have available options develop 

individual projects. The two choices' corresponding mathematical description can be 

represented by decision variables that take binary or Boolean (0 and 1) values. Thus, our 

problem's mathematical formulation in this dissertation is BIP.  



 

 48 

Modeling Assumptions  

The required modeling assumptions for the problem of constrained project selections and 

allocations are as follows: 

 Each project in set n (containing all projects for selection and allocation) has an 

implementation cost that is the same for in in-house and private contractors. 

 Each project's cost includes the cost of labors (direct and indirect costs). 

 Each project n has a dollar value of benefit, which is derived from the projects 

being developed that is the same for in in-house and private contractors. 

 The in-house manpower cannot accomplish all projects n.  Two levels of in-

house manpower (man-hours) are assumed and varied when projects in set n are 

assigned to in-house or private contractors. This manpower can be used to either 

develop projects internally (in-house) or to supervise outsourced projects 

(private contractors). 

 When project n is assigned to one of the private contractors, the in-house 

manpower becomes a supervision time and is assumed to be equal in all private 

contractor options. 

 The budget available is not sufficient to fund all projects in set n. 

 The number of projects to be allocated in any option is unlimited. However, 

each project n is allowed to be assigned to at most one of the option ( in-house 

or private contractors). 

Optimization Criteria 

In this dissertation, the specified measure of performance drives the project selection for 

funding. We consider two types of performance measures to be optimized: 
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a) The total dollar value of benefits from those projects selected for funding. 

b) The allocated projects' total value of MDs. 

The first choice determines a subset of the projects to be funded that generates optimum 

benefits, while the second choice will result in a project classification that intending to 

allocate each project to its closest option.  

As we mentioned in Chapter 1, this study proposes two BIP models for the project 

selection and allocation. The first mathematical formulation (Model 1) maximizes the 

dollar value of benefits the public derives from projects (transportation projects) being 

executed subject to a budget, total sum of MDs, and in-house manpower constraints. The 

second mathematical formulation (Model 2) minimizes the total sum of MDs subject to a 

budget and the in-house manpower constraints. 

Notation and Definitions 

The mathematical modeling for project selection and allocation in this dissertation is 

formulated using the following notation:  

N number of projects 

M  number of private contractors 

B  available budget 

c1n  cost of project n when completed in-house 

cin  cost of project n when completed by private contractor i 

bn   economic benefit from project n when completed in-house 

bin   economic benefit from project n when completed by private contractor i 






otherwise0

house-in  toallocated is project  if1
1

n
x n  






otherwise0

 contractor private  toallocated is project  if1 in
xin  
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d1n MD of project n to in-house option 

din  MD of project n to private contractor i option 

W upper bound on total sum of MDs 

T total manpower (man-hours) available  

t1n  man-hours for finishing project n allocated to in-house option  

tin  man-hours for supervising of project n  allocated to private contractor i 

 

Figure 9 displays the procedure in the proposed models' project allocation. 

    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Representation of Constrained Multi-Group Project Allocation Using MD 

 

In Figure 9, each project has the following characteristics: 

 A binary decision variable that is represented by ( nx1 =1 or nx1 =0) for in-house 

allocation and ( nx1 =1 or inx =0) for private contractor allocations. 
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 Total number of M +1 MDs that measure the MDs between each project n and 

allocation options (in-house d1n and private contractors din). These MDs are 

minimized as an objective in model 2. The summation d1n and din for all N 

projects and M +1 options represents the MDs upper bound W. 

 Dollar value of project benefits bn  that is intended to be maximized in model 1. 

 The summation of all project cost cn for all N projects > the available budget 

represented by B.  

 In-house man-hours required to finish project n when allocated to in-house option 

represented by t1n and the amount of time needed to supervise project n when 

outsourced to private contractors denoted by tin. The total sum of t1n is > the 

available man-hours T in a transportation agency to complete all N projects. 

Model 1 
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                    ) , . . . 3, 2,  and , . . . 2, 1,  (1,0,1 MiNnxx inn               (12) 

 

In the model 1 formulation, the objective function (7) gives the total benefit derived from 

the projects selected for funding to be maximized. Constraint (8) formulates upper-bound 

conditions for the total value associated with MDs for those projects selected for funding. 

The budget constraint (9) specifies the maximum level of funds available. Equation (10) 

enforces an amount of in-house manpower available to be used in in-house projects when 

the optimal solution allocates project n to in-house option, or supervising projects when 

the most attractive project n is assigned to any one of private contractors i. The restriction 

on assigning each project n to at most one allocation option is given in equation (11). 

Constraint (12) declares the binary decision variables. 

To reach the most attractive optimal solution that ensures best project allocations, the 

model could be solved using an estimated initial value of W, for which a solution is 

feasible, and then continues solving the model by reducing W gradually until the solution 

becomes infeasible. W's last value that makes the solution feasible is considered to be the 

best upper bound of MDs summation that provides best optimal solution concentrating 

more on project allocations. Furthermore, this methodology can also involve a more 

complicated technique, such as Fibonacci search, search algorithm, and golden section 

search.  

Model 2 
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 Subject to: 
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The objective function (13) minimizes the all MDs total sum for allocated projects.  This 

objective function cannot be minimized to zero because of the constraint structures in 

budget (14) and time (15). Equation (15) ensures that all selected projects in the optimal 

solution will be less than or equal the upper bound total time T available for the in-house 

manpower. Otherwise, the solution will be infeasible for both formulations.  To be tight 

in an optimal binary integer solution, available budget B in constraint (14) must be less 

than or equal the total cost of all projects selected for funding. Otherwise, the actual 

budget spent will exceed the specified lower bound B. 

In practical applications, various strategies of project selections and allocations are 

required over a specified range of B. The model for these strategies determines how a 

change B's budgetary level can provide transportation departments with several project 

selection and allocation strategies for in-house versus private contractors. This strategic 

approach can also be considered when using model 1 formulation. Additionally, model 2 

formulation can also include an upper bound on money that will be spent as in: 
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where 1B represents the budget amount available to sufficiently fund all projects. 

Table 4 compares models 1 and 2, which are described above, to show what each model 

can provide. 

Table 4: Comparison between model Formulations 1 and 2 

 

Model Properties and Outputs Model 1 Model 2 

Focus on determining project subset that has 

optimal fitting allocation 
No Yes 

Ensure best allocation Yes Yes 

Select projects that produce maximum benefits Yes No 

Used to select and allocate projects with limited 

budgets 
Yes Yes 

Select and allocate projects for options that in-

house manpower can accomplish 
Yes Yes 

 

Proposed Branch-and-Bound Strategy 

 
In our description of the B&B in Chapter 3, we highlighted two important questions 

regarding the branching strategy that considers the choice of the branching variable and 

node to solve. To the best of our knowledge, there is no specific or common branching 

rule can work best for any pure IP, MIP, and BIP problems. Subsequently, each state-of-

art solver provides its own default or proposing setting that can decide which most 



 

 55 

suitable branching strategy works best based on the problem's structure and progress. 

Moreover, many state-of-arts solvers, such as CPLEX, LINDO, and MATLAB offer their 

users different choices to set up a specific strategy in variable and node selection. Many 

effective branching strategies have been studied and compared to others based on their 

performances and significant improvement on the search tree. For comprehensive 

descriptions of B&B strategies, we refer the reader to [15, 50-52], and the references their 

in. The proposed branching strategy for choosing the specific candidate variable (variable 

selection strategy) to split from each node and the particular node to explore (node 

selection strategy) in the B&B algorithm are described in the following details: 

Branching Variable Strategy 

To better understand the proposed strategy, the related assumptions and notations that 

will be used repeatedly when describing the proposed strategy on the B&B search tree 

must be identified. The assumptions and notations are as follows: 

 Each node or sub-problem will be solved by its corresponding LP relaxation. 

 Let k=1,2,…,K be the index of number of nodes. The feasible solution from each 

node k is maintained in a list L, which contains only the disbranched or 

unexplored feasible nodes and is updated automatically at each search-tree level. 

 The feasible solution from k provides a lower bound (LB) on the global UB and is 

represented by 𝑧𝑘
𝐿𝐵. 

 A specific node k found so far in L that provides a feasible solution 𝑧𝑘
𝐿𝐵 satisfying 

BI constraint is called the incumbent solution (best solution) and denoted as

*
}1,0{, inn xxz . 
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 The B&B algorithm keeps solving each k and update best z* based on maximum 

value, that is best z*=max { L: 𝑧∗
𝑥,𝑥𝑖𝑛∈{0,1}  } 

 The algorithm will terminate when the gap between UB and LB equals 0 (UB-LB 

=0) or L= ∅. Also it can terminate when a certain value specifies the gap.  

The conceptual structure of the proposed branching strategy in our problem is derived 

from the project allocation MD values as a classification criterion, which is highly 

important for project allocation, and the general guideline that suggests to branch initially 

on the most important variable [15, 53]. Therefore, we use the knowledge of this 

allocation problem based on MD to assign a branching priority to each candidate variable 

based on its minimum MDs and its corresponding project that also has minimum MD 

average. More formally, sort d1n and din for each project n=1, 2, …, N  in ascending order 

in set r=1,2,…,R as represented bellow: 

d(i-1)11, d((i-2)21,…, d(M)R1, d(i-1)12, d(i-2)22,…, d(M)R2,…, d(M)RN 

where the first subscript (i-1) represents the allocation option for either in-house or privet 

contractors, the second subscript (r) indicates the order position number of d(i-1), and the 

last subscript refers to the project number n. The next steps are to compute the arithmetic 

mean for each project n based on the sorted MD d(i-1)rn, and then sort these averages in 

ascending order in set o=1,2,…,O. A representation of sorting the projects' MD averages 

is: 

Avg(MD) 1, Avg(MD)2, Avg(MD)3,…, Avg(MD)O 

To clarify the variable branching system's determination in the B&B tree, a pseudo code 

illustrating this strategy is shown below: 
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Variable Priority Selection Strategy Algorithm 

For n=1,2,…,N     % the projects repeatedly execute 

 For i=1,2,…,M    % the options repeatedly execute 

sort(d(m+1)n, ascend)                % sort each d1n and din for each individual 

project 

sort(Avg(MD)n, ascend)  % sort each project MD's average in ascending            

order 

 Branch on sorted  inx  

 Return to n 

Return to i 

 

The proposed variable branching strategy based on the sorted d(i-1)ro is depicted in Figure 

10. In this figure, the priority in branching starts with the candidate variable x(i-1)11 

corresponding to the least d(i-1)ro in both sets of r and o . Branching continues for the 

candidate variable x(i-1)ro that has the least d(i-1)r value in every sorted project in set o; the 

B&B search tree is directed to the most promising BI solution *
}1,0{, inn xxz  that maximizes 

the LB ( in a maximization problem). Therefore, the specific ordering in the proposed 

branching can significantly affect the speed of achieving good solutions in less time and 

with less searching. The B&B algorithm will solve the LP relaxation in every node k in 

each sorted project o  and record the solution 𝑧𝑘
𝐿𝐵 from each node k in the list L and then 

moves to the next sorted project o+1. 

Node Selection Strategy 

Before going to the next sorted project (o+1), the B&B algorithm has to be guided to 

choose a node k from the list L to branch. Several node-selection strategies are available 

in many solvers to be set up. These node-selection strategies can considerably affect to  
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Figure 10: Proposed Variable Branching Scheme 

 
the algorithm's performances and provide different improvements to the solution quality 

in reducing the gap between UB and LB. Once again, no specific strategy works best for 

all type of problems, and each IP solver provides various results. 

The suggested node-selection strategy chooses a node k from the list L that has the most 

(or least if the problem is a minimization) 𝑧𝑘
𝐿𝐵 value that is close to the root node's UB. 

This method is called best-bound search and focuses on the most promising node k that 

leads the search tree to obtaining the best
*

}1,0{, inn xxz  for the whole problem. This 
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strategy is preferred to work efficiently with large problems [11, 53]. To better 

understand this strategy's representation, we show the selection process: 

                 }max{|1
LB
kjj zkk                                                (19) 

where jk  represents the branching node at sequence j. 

This strategy was selected carefully based on its remarkable performance after being 

compared with various node selection strategies that MATLAB (e.g., minimum infeasible 

and best projection) provides in numerical experiments with different problem sizes. This 

strategy is illustrated in Figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Illustration of Best-Bound Node Selection Strategy 
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The B&B pseudo code for selecting nodes based on the best-bound strategy can be stated 

as follows: 

Best-Bound Node selection strategy Algorithm 

Input: BIP             %the BIP problem (Maximization for instance). 

r=1,2,…,R  % the list of sorted d1n and din for each project n. 

o=1,2,…,O  % the list of sorted Avg(MD)O each project n. 

      0. Initialize: set L={BIP}, z*= -∞ . 

1. Check: if L=∅, if so STOP and return to best z*. 

2. Branch on sorted variable in set r and Select k from L that has max 𝒛𝒌
𝑳𝑩 and 

remove k from L (L: =L\{k}). 

3. Solve LP relaxation for k , and check the solution feasibility of 𝒛𝒌
𝑳𝑩 , if 

infeasible go to step 1, otherwise set 𝒛𝒌
𝑳𝑩 as optimal solution for k . 

4. Apply the fathoming steps for step 3: if 𝒛𝒌
𝑳𝑩 ≤ 

*
}1,0{, inn xxz , go to step 1; if 

𝒛𝒌
𝑳𝑩 is not BI go to the step 2, else set 𝒛𝒌

𝑳𝑩 as new best 
*

}1,0{, inn xxz  and go to 

step 1. 

 

Summary 

 
The mathematical models discussed in this chapter are intended to provide the project 

manages or decision makers with different conclusions regarding the objective function. 

These models, however, are consistent in providing optimal set of selected and allocated 

projects among different options based on the given constraints of the available resources' 

constraints. The proposed B&B strategy in selecting candidate variables for branching 

and nodes for exploration aims to effectively enhance the B&B algorithm within the 

search tree in the following ways:     
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 Reduce the gap between the UB and LB by increasing the LB and decreasing the 

UP. 

 Speed up the convergence between the UB and LB. 

 Concentrate on the nodes that reduce the gap between the UB and LB. 

 Decrease the search tree's size, thus shortening CPU time. 

 Expend less effort in finding the best incumbent solution in a shorter way and a 

smaller tree size. 

 Reduce the dimension of the decision variables by avoiding their aggregate use 

through focusing on variables with the most important allocation options. 

 Enhance the performance of nodes' fathoming speed. 

 Avoid exploring superfluous nodes. 

 Guide the algorithm for consistent search behavior by using the proposed 

combination of the branching variable and node-selection strategies. 

In later chapters, we will numerically explain how the proposed B&B strategy improves 

the solution performances in both models. 
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CHAPTER V 

COMPUTATIONAL DESIGN AND APPLICATION 
 
 
This chapter discusses the application of the models and the B&B branching strategy to a 

state's Department of Transportation projects. The application purpose is to provide 

decision makers or project managers with the best sets of allocated projects among 

several options. An experimental design is discussed to compare the B&B strategy's 

solution performance with of the MTALB default strategy. This experimental design will 

be run with various combinations of several project numbers and allocation options. 

To evaluate the B&B algorithm, we use various performance-assessment tools for 

measuring CPU solution time, absolute gap between the UB and LB on the objective 

function, percentage of relative gap, and number of explored nodes in model 2’s B&B 

search tree. 

The MD calculations, model formulation 1, and model formulation 2 are coded and 

solved using the MATLAB© language R2014a and are run on a PC with the following 

features: Intel Core i5 processor, 6.00GB RAM, and 64-bit Windows 7 operating system. 

This chapter is divided into four sections.  Section one describes the application's 

problem. Section two discusses the experimental design. Section three presents the 

application's solution procedures. Section four is the chapter’s summary. 

Problem Description 

 
The US Department of Transportation (DOT) is sixth in the federal budget’s top-ranking 

estimated total outlay with an average of 97.8 billion dollars in 2015 (out of 289.1 billion 

dollars spent by federal, state, and local governments combined) and with an estimated 
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increase of 3% each fiscal year [54]. Moreover, the federal government's investments in 

improvements of highways, mass transit systems, airports, railroads, and water systems 

was approximately 65.85 billion dollars in fiscal year 2013 [55]. Figure 12 depicts the 

total combined spending in billion dollars on the US DOT for the last ten years [54].  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Total Spending Amount on US Department of Transportation   

        from 2006 through 2015 

 
As shown in Figure 12, the total spending on the US DOT has increased over the last ten 

years, with a slight dropping in 2011.  Thus, to address budgetary concerns, optimal 

methodology should be used for allocating projects.   
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Application Study 

In this dissertation, an application involving seal coat projects has been developed to aid  

states’  DOT project managers in selecting transportation projects and allocating them to 

either in-house or private contractors. 

 Each year state DOTs are involved in such projects as construction, 

reconstruction, rehabilitation, preventive maintenance for roadways, safety enhancement, 

passenger and freight railroads, transit and commuter services, bikeways, aviation 

systems, waterways and canals, port districts, and inter-modal facilities. Considerations 

for common types of projects in State DOTs are as follows:  

 Structure-replacement projects 

Replacement projects completely rework existing transportation systems (e.g., 

highways, bridges, railroads, and tunnels) that are considered functionally 

obsolete or structurally deficient. 

 Safety and Improving Projects  

Safety and improving projects involve enhancing and maintaining quality in all 

areas for which State DOTs are responsible. For example, improve safety routes 

for school projects, install automatic railroad warning equipment at railroad 

crossings, replace existing grade crossings with new interchanges to improve 

safety and provide efficient traffic movement, and reduce traffic noise affecting 

communities living beside highways by installing noise-absorptive ceiling panels. 

 Rehabilitation Projects 

Rehabilitation projects restore existing transportation facilities (e.g., pavements, 

bridges, and rest areas) to their original condition. 
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 Maintenance Projects 

Maintenance projects are either routine (e.g., sealing cracks and filling pot 

holes,) or preventive, working to preserve (e.g., asphalt concrete pavement 

covering roads 2-inch thick to resist pavement deterioration from accumulated 

traffic loads and environmental effects). 

 Several coordinates or factors measure each project n in states’ DOTs. The 

following factors are significant in identifying ideal or most appropriate seal coat projects 

for either in-house or private-contractor options [56]:   

 Average daily traffic (ADT) 

 Gallons of asphalt used (GOFA) 

 Number of cubic yards of aggregate (CYA) 

 Length of project (in miles) (MIL) 

 Total area sealed (in square yards) (TYS) 

 Total direct cost of the project (TCOS). 

These factors are essentially considered in constructing any seal coat project regardless of 

its locations. This dissertation is not limited for specific transportation project type. In 

other words, it can be applied on other project type of transportation project.  In other 

words, it can be applied to other project types.  

Models' Resources Estimation  

Project's benefits 

Each transportation-project category has benefits affecting public users, society, and 

economic productivity. These benefits are often defined and measured in terms of cost 
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reduction resulting from their development (e.g., transportation accidents, air pollution, 

travel time, vehicle cost saving) [57]. Table 5 lists different project types’ benefits [58-

60].   

Several models and software tools are available to estimate and calculate the 

transportation projects' benefits. These tools include Sketch Planning Analysis 

Spreadsheet Model (SPASM), Surface Transportation Efficiency Analysis Model 

(STEAM), and Life-Cycle Benefit-Cost Analysis Model. For more descriptions of and 

discussions about these models, refer to [58, 61] and references therein. 

In this dissertation, we refrain from using a complicated model to evaluate the projects' 

benefits. Nevertheless, to estimate the project's benefits considered in the study's 

application, we approximate each project benefit bn using a certain percentage of its cost, 

25%, as a net profit. Specifically, each project n's benefit bn is estimated from the 

derivation of its corresponding cost cn by the following equation: 

                                  𝑏𝑛 = 0.25 × 𝑐𝑛          ∀(𝑛 = 1,2, ⋯ , 𝑁)                              (19) 

The project cost cn equals to the direct project cost (TCOS). We would like to emphasize 

that this percentage is arbitrarily suggested for the purpose of computing the application. 

Available Budget 

In all DOTs, the available budget for developing any type of projects is insufficient to 

fund all of them at once. In this application, the budget is assumed to be 80% of the total 

project costs as in the following equation: 

                                



N

n

ncB
1

8.0                                                 (20) 
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Table 5: List of Transportation System Benefits 

 

Targeted 

Beneficiaries 

Project type Derived Benefit 

P
u

b
li

c 
u

se
rs

 

 a
n

d
 s

o
ci

et
y

 

Roadway expansion Reduce travel time, vehicle 

costs, and traffic congestion 

Roadway safety improvement Reduce vehicle crashes, injures, 

and fatalities 

Construction of new routes 

providing increased 

transportation network 

connectivity 

Reduce industrial transportation 

or logistic costs which affect 

economic productivity. 

New construction and 

transportation system 

improvements 

Reduced air pollution from 

vehicle or transportation 

emissions and improved air 

quality by reduced time in 

congestion. 

E
co

n
o
m

y
 a

n
d

 

g
o
v
er

n
m

en
t 

New construction in reducing 

automobile using 

Reduce parking problems and 

related costs, roadway 

maintenance and facility costs, 

and energy costs. 

All project types Increase jobs and reduce 

unemployment and increase tax 

revenue 

 

As mentioned in Chapter 4’s discussion of modeling formulation, different budgetary 

levels can be used to estimate different scenarios for project selection subsets. 

Available man-hours 

The required man-hours (hrs) to accomplish seal coat projects is estimated based on 

several real case studies and specialized contractors’ websites [62-65]. To realistically 

estimate man-hours per sealed area in square yard (sy2), we take the average of man-hour 

needed to complete 50 sy2 in these studies, which approximately equals to 1 hr/50 sy2. 
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Therefore, the unit man-hours required for in-house engineers to complete each project n 

in our application is determined by dividing each project n's TYS by 1 hr/50 sy2: 

            ),,2,1(                         
  sy 50hr/  1

sy 
2

2

Nn
TYS

tn                           (21) 

The supervision time tin is estimated as 10% of tn. As it has been mentioned, that the time 

available T for DOT to develop all projects N is not enough; therefore, we estimate this 

resource as 60% of the aggregate time needed to complete all projects N: 

                                              



N

n

ntT
1

6.0                                                                  (22) 

This percentage is assumed subjectively, and can be treated as different time levels or 

percentages providing different scenarios in project selection and allocation sets.   

Experimental Design 

 
The application in this study is coded in the MATLAB coding language and applied in 

the MATLAB computing environment. MATLAB provides one of the fastest and most 

efficient optimization toolboxes (e.g., IP, MIP, nonlinear programming, stochastic 

programming, etc.) for solving various optimization problems. Additionally, MATLAB 

solves IP or MIP optimization problems with several stages to ensure achieving high 

reliable and efficient optimal solution. These stages test the optimization model 

structure's capability and solve the IP problems by several techniques before immediately 

solving the IP problems using the B&B algorithm. These stages are as follows:   

1. LP processing which reduces or eliminates redundant decision variables and 

constraints 
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2. Solve the IP problem by LP relaxation 

3. IP processing 

4. Cutting generation or valid inequality constraints to be added to the IP problem 

5. Using various significant heuristics to improve the UB 

6. Using B&B algorithm. 

For comprehensive discussion see [14, 15, 66]. 

MATLAB provides default settings on the B&B algorithm as shown in Table 6. 

Table 6: List of Branching Rule Settings in the B&B Algorithm Provided in 

MATLAB 

 

Setting Description Default setting 

Variable 

Branching 

Rule 

Maximal pseudo-cost: choose a 

branching variable with maximal 

pseudo-cost variable 

Maximal pseudo-

cost 

Most fractional:  choose a branching 

variable furthest from being integral or 

its fractional part closest to 0.5 

Maximal corresponding objective 

value: choose a branching variable that 

corresponds to a maximal objective 

component in the objective function 

Node 

Selection Rule 

Best or simple projection criterion: 

select the node to explore next that may 

lead to good or most promising feasible 

solution  

Simple projection 

Best-bound: select the node that has the 

most( least if the problem is 

minimization) objective value 

Minimum sum of infeasibilities: choose 

the node with minimum sum of its 

integer infeasibilities ( maximum when 

the problem is a maximization) 
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For complete available settings and options in MATLAB regarding the stages discussed 

for solving the IP problems, please see Appendix 1. 

Two-Factor Factorial Experiments 

To examine the best selected and allocated project sets’ solution results and to compare 

the performance behavior of the proposed B&B strategy with that of the MATLAB's 

B&B default branching strategy in the suggested BIP models, we run factorial 

experiments involving two factors: (1) the number of projects (N); (2) the number of 

options (M), where the in-house option is included. There are five levels (groups) n of 

factor N  and three levels m for factor M . Each 

combination of nm has n×m BIP decision variables and is replicated three times. 

In order to eliminate any error occurring because of computer processing or other related 

noises and enhancing the resulting quality, the computed results are based on each nm 

replication's averages. 

In each replication we compute the following responses: 

 Number of projects allocated in the best set (B.set) (i.e., number of projects 

allocated on in-house, number of projects allocated on private contractors, and 

number of non-funding projects) 

 Computer computation time (CPU) in seconds 

  The absolute gab (abgp) and relative gap (%abgp) measure the difference 

between the best LB and UB obtained in the B&B search. 

 Number of explored nodes (nds) in the B&B (in model 2). 

This two-factor factorial design is depicted in Table 7. 
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Table 7: Two-Factor Factorial Design for the DOT Application 

 

Factor M 

 Levels 5 10 15 

    

 

 

 

 

 

 

 

Factor N 

20 

B.set CPU B.set CPU B.set CPU 

abgp abgp% abgp abgp% abgp abgp% 

nds   nds   nds   

40 

B.set CPU B.set CPU B.set CPU 

abgp abgp% abgp abgp% abgp abgp% 

nds   nds   nds   

60 

B.set CPU B.set CPU B.set CPU 

abgp abgp% abgp abgp% abgp abgp% 

nds   nds   nds   

80 

B.set CPU B.set CPU B.set CPU 

abgp abgp% abgp abgp% abgp abgp% 

nds   nds   nds   

100 

B.set CPU B.set CPU B.set CPU 

abgp abgp% abgp abgp% abgp abgp% 

nds   nds   nds   

 

 

We run this experiment with each nm combination on both proposed models that 

containing the proposed branching strategy and MATLAB's default branching strategy. 

Therefore, the number of runs for each model is 90, with a total of 180 runs in the 

experiments. 

Data Set Generation 

One of the most importation components in this application is the data set since the 

specific project type described in this dissertation and other related modeling applications 

require a realistic data set to obtain reasonable results. Consequently, the data for this 

application is generated based on various descriptive statistics of real data set from a 

previous study. The data-generation process is one of the major difficulties in conducting 

this application because the linear relationships between the data's variables are found 
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significantly correlated. Furthermore, it is important to ensure that the generated data set 

simulates the real data in terms of statistical parameters (e.g., mean vector, covariance 

matrix, and correlation coefficient). It is also essential to generate different data sets or 

samples for all allocation options (historical, reference, data for MD computation 

purposes) that have unequal covariance matrices (heterogeneous) for these samples to 

have accurate results. 

Steps in Data Set Generation 

The data set is generated by using the Statistics and Machine Learning Toolbox in 

MATLAB. The mathematical and statistical details for generating the data set are out of 

this dissertation's scope. Instead, the simulation procedures can be summarized as 

follows: 

1. Hypothetically test the multivariate correlation between the variables to determine 

if linear relationships exist between each pair of variables. 

2. Compute several descriptive statistics: the mean vectorμ , the correlation 

coefficient matrixρ , and the covariance matrix S for the real data set. 

3. Simulate the data set based on its mean vector and covariance matrix. 

4. Ensure that the linear relationships between the variable in the simulated data set 

are significantly correlated and analogous to the correlation strength or coefficient 

of the original data set. 

5. Ensure that the mean vectors across all selected samples of level m are not equals 

or significantly different, i.e., Mμμμ  21 . The equality of means from 

different level m can be tested by using one of the mean victors’ homogeneity 
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tests in the Multivariate Analysis of Variance (MANOVA), such as Wilks' and 

Lawley-Hotelling's tests.   

6. Ensure that the covariance parameters across all selected samples of level m have 

different covariance matrices (heterogeneous) (i.e., MSSS  21 ). This 

testing can involve one of the covariance homogeneity tests, such as Box’s M and 

Levene's tests.   

The linear correlation between the variables is tested through the Pearson correlation test 

at level of significance α=0.05 and found significantly correlated. Consequently, the data 

set are simulated randomly by using MATLAB from the correlated multivariate normal 

distribution with a specific mean vectorμ , and a covariance matrix S . 

Application Solution Procedures 

 

Solving the application's problem in models 1 and 2 involve the following procedures: 

1. Select a random sample (observations) for each level n of factor N from the 

generated data set. 

2. Select a random sample for each option in level m of factor M from the generated 

dataset. 

3. Compute the MDs between each project in level n for factor N and all options in 

level m for factor M. 

4. Compute the MD average for each level n. 
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5. For each combination of nm, compute project benefits by using Eq. (19), 

available budget by using Eq.(20) , man-hour time (in-house and supervision) by 

using Eq.(21), and total manpower (man-hours) available by using Eq.(22). 

6. For each project in level n, sort all options in level m in ascending order based on 

the MD values. 

7. Sort all projects in each level n in ascending order based on the computed MD 

average from step 3. 

8. Reorder the models’ parameters and decision variables that steps 7 and 8 affect. 

9. Solve the models for every combination nm. 

Figure 13 illustrate the process of selecting random samples for factor N's levels n (step 

1) and the generated data set for factor M's levels m (step 2). 

Figure 14 depicts the sorting process for four projects and three options and shows the 

resulting changes in models’ parameters. 

To facilitate sorting project n, a specific color for each project number is assigned to 

distinguish and trace the changing position.  

As illustrated in Figure 14, each project's cost and benefit is not affected by option m 

sorting (step 7), which identify particular affected changes in the sorting process. 
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Figure 13: The Process of Selecting Levels in Factor N and M 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Illustration of Sorting Steps in the Solving Process 
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Summary 

 
In this chapter, the application's problem was discussed, and the application's 

experimental design and the application solution procedures were described. The seal 

coat projects’data was obtained from an evaluation study for Texas Transportation 

Institute and simulated in MATLAB R2014b.  We used several statistical solvers 

(including JMP 11.1, SAS Enterprise Guide 6.1, SPSS 22, and MINITAB 16) based on 

their statistical tools to examine the variables correlation, underlying destitution families, 

and covariance homogeneity. 
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CHAPTER VI 

COMPUTATIONAL RESULTS AND ANALYSIS 
 

 

This chapter presents the computational experiments’ results for the solution to the 

purposed project allocation models used with the application presented in the previous 

chapter. The experiments’ goal was to compare the models' performance measures in 

terms of CPU time, absolute gap, relative gap, and number of explored nodes. In 

addition, showing different allocation sets from the solution of the default and the 

purposed branching strategies. 

The computational time limit for solving the models was not set to a specific amount 

time; however, the maximum number of explored nodes in the B&B search tree was set 

to 3 million nodes in model 1. All other performance measures (e.g., absolute, relative 

gaps, and other solvers’ options) were unchanged.  

Data Input and Model Parameters 

 
The generated data set for the experimental computation were used similarly in both 

formulations; that is, the multivariate observations in each level n for factor N and the 

random sample that represents each option in level m for factor M were identical in 

computations for formulation 1 and 2. Consequently, the available number of resources in 

budget B and the total manpower T were equal in both models for each nm combination. 

The applications' model parameters or resources (W, B, and T) with the total number of 

variables ( nx1  and inx ) for each combination in formulations 1 and 2 are shown in Tables 

8 and 9, respectively. 
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Table 8: Quantity of Available Resources and Number of Variables in Formulation1 

 

N M W B T No. Variables 

20 

5 180 

809,300 22,700 

100 

10 430 200 

15 720 300 

40 

5 290 

2,211,404 55,274 

200 

10 1,200 400 

15 2,000 600 

60 

5 930 

3,531,000 85,830 

300 

10 2,000 600 

15 3,300 900 

80 

5 1,060 

4,007,813 102,024 

400 

10 2,300 800 

15 3,780 1,200 

100 

5 1,190 

4,640,340 116,930 

500 

10 2,550 1,000 

15 4,160 1,500 

 

Table 9: Quantity of Available Resources and Number of Variables in Formulation2 

 

N M B T No. Variables 

20 

5 

809,300 22,700 

100 

10 200 

15 300 

40 

5 

2,211,404 55,274 

200 

10 400 

15 600 

60 

5 

3,531,000 85,830 

300 

10 600 

15 900 

80 

5 

4,007,813 102,024 

400 

10 800 

15 1200 

100 

5 

4,640,340 116,930 

500 

10 1000 

15 1500 
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As shown in Tables 8 and 9, the data set for the level combinations nm in formulation 1 

equals to its corresponding combination nm in formulation 2. Furthermore, when 

changing the factor M levels at each level n, the resources B and T remain unchanged 

because these resources are derived only from the number of projects (level n). On the 

other hand, changing in factor M levels at each level n changes the amount of resource W 

in formulation 1 because that resource increases as the number of options or contractors 

increases. All the data sets for the projects needing to be allocated are provided in 

Appendix 2. 

Because a one-to-one mapping exists between model and formulation, we use these terms 

interchangeably. 

Model Results and Analysis 

 

For each problem formulation’s result, we initially present the best project allocation 

subsets that are obtained from every experimental combination nm by solving or applying 

the default branching strategy, which the MATLAB solver provided, and the proposed 

branching strategy. Secondly, we show the solution performance comparison studies 

between the MATLAB default branching strategy and the proposed branching strategy. 

Best Project Allocation Results with Model 1 

 
The results of the best project allocation subsets for each nm combination are shown in 

Table 10, a result from merging two tables to facilitate the comparisons. The first table 

displayed the default branching strategy’s best project allocation outcomes; the second 

table presented the proposed branching strategy’s best allocation results. The first and 

second columns in Table 10 indicate the factors N and M levels, respectively, which 
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jointly indicate the project and option combinations nm. The number of the best projects 

allocated to the in-house option, private contractors, and non-allocated projects 

(infeasible to be funded) is represented in the third, fourth, and fifth columns, 

respectively.  

Table 10: Results of the Best Allocated Project by Solving Formulation 1 

 

N M 

Default Branching Strategy Proposed Branching Strategy 

In-house 
P. 

Contractors 
None In-house P. Contractors None 

20 

5 5 11 4 3 13 4 

10 0 14 6 0 13 7 

15 0 15 5 0 13 7 

40 

5 9 23 8 4 24 12 

10 0 32 8 1 29 10 

15 0 24 16 0 29 11 

60 

5 12 37 11 10 35 15 

10 0 39 21 0 38 22 

15 0 36 24 0 38 22 

80 

5 14 53 13 23 45 12 

10 2 59 19 1 62 17 

15 4 56 20 0 57 23 

100 

5 21 52 27 13 55 32 

10 1 67 32 1 62 37 

15 0 65 35 1 61 38 

 

As shown in Table 10, the allocation subset in each nm combination of the default 

branching strategy is slightly different from its corresponding combination in the 

proposed branching strategy. The inconsistency of obtaining different allocation sets with 

different branching strategy for the same nm combination is regarded as a phenomenon of 

our combinatorial problem.   

To clarify the differences between the best allocations from both strategies for each 

combination, these allocations are depicted in Figures 15-19. 
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Figure 15: A Comparison between the Project Allocation for the Combination of      

       n=20 and each Level in Factor M in Formulation 1 
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Figure 16: A Comparison between the Project Allocation for the Combination of      

       n=40 and Each Level in Factor M in Formulation 1 
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Figure 17: A Comparison between the Project Allocation for the Combination of      

       n=60 and Each Level in Factor M in Formulation 1 
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Figure 18: A Comparison between the Project Allocation for the Combination of      

       n=80 and Each Level in Factor M in Formulation 1 
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Figure 19: A Comparison between the Project Allocation for the Combination of      

       n=100 and Each Level in Factor M in Formulation 1 
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These figures clearly depict how changing the number of allocation options (m-level) 

affects the allocation subsets (i.e., for each n-level the more the options are increased, the 

less likely projects are to be allocated in-house option). This scenario simulates real-life 

application in any constrained project allocation problem in order to receive more offers 

from different options, private contractors, thus increasing the competition among them 

and reducing the chance of allocating several projects to a specific option (in-house). 

Branching Performance Results on Model 1 

 
This section demonstrates the branching strategies’ effect on the B&B’s solution 

performance. The results of comparing the computational performance of the MATLAB's 

default branching strategy and the proposed branching strategy are summarized in Table 

11. These results are an average based on running each nm combination three times 

(number of replications) as discussed in the previous chapter. Column one and two of 

Table 11 represent factor N and M levels, respectively. The computational measures 

evaluating the solution performance for MATLAB's default strategy and the proposed 

strategy are presented in Table 11 as follows: the third column indicates the 

computational time in seconds; the absolute gap is located in the fourth column; the fifth 

column shows the solution's relative gap. To assist in understanding the results of this 

experiment, it is helpful to create a graph of the average responses at each nm 

combination.  These graphs are presented for each performance measure (average 

response) in Figure 20-22. 

The complete results of each experimental run (replication) are in Appendix 2.
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Table 11: The Effects of the MATLAB's Default and the Proposed Branching Strategies on the Performance   

      Measurements for Solving Model 1 

 

N M 
MATLAB Default Branching Strategy   Proposed Branching Strategy 

Time (sec.) Abs. Gap Relative Gap (%) 

 

Time (sec.) Abs. Gap Relative Gap (%) 

20 
5 271.675 8 0.0035 

 

206.051 2 0.0004 

10 520.324 75 0.0367 

 

411.512 12 0.0054 

15 471.709 69 0.0334   458.744 12 0.0054 

40 
5 425.83 46 0.0081   392.11 11 0.0017 

10 1244.537 23 0.0039 

 

822.808 3 0.0003 

15 899.772 25 0.0044   33.614 2 0.0001 

60 
5 687.111 10 0.001   614.578 6 0.0005 

10 1330.217 138 0.0155 

 

955.652 20 0.0021 

15 1413.858 4790 0.5454   539.062 21 0.0023 

80 
5 691.298 30 0.0032   562.437 0 0 

10 1673.504 20 0.0019 

 

743.541 30 0.0033 

15 1748.609 20 0.0024   524.445 0 0 

100 
5 1512.149 0 0.0003 

 

26.152 0 0 

10 1286.83 180 0.0151 

 

738.107 0 0 

15 1591.461 60 0.0058   1152.914 0 0 
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Based on the results in Table 11, both strategies’ CPU run time ("Time (sec.)") exhibit 

asymmetrical pattern as the problem size increases, excluding a positive trend in the 

combinations of (20 and 100)/m and (60 and 80)/m in the proposed and MATLAB default 

branching strategies, respectively. In contrast, the absolute gap ("Abs. Gap") and the 

relative gap ("Relative Gap (%)") do not show development in the majority of nm 

combinations, except a gradually drop in the proposed strategy of the combination of 

40/m. Specifically, the absolute and relative gaps in factor N levels of 20, and 60 increase 

as changing from the low to the high levels of M, regardless of strategy type. However, 

the remaining N levels of 80 (proposed) and 100 with each m level show a fluctuated 

change in the absolute and relative gaps.  

The overall comparison of the strategies’ performance measurements show that the 

proposed branching strategy is clearly superior and outperforms the MATLAB default 

branching strategy, expect the 80/10 (nm) combination in the absolutes and relative gaps 

only.  

The maximum performance improvement, reduction in the average CPU time, 

dramatically decreased in the combination 100/5 from 1512.149 seconds in the default 

strategy to 26.152 in the proposed strategy, representing a 98% time reduction. 

Furthermore, the proposed strategy has reached the optimal solution when the gaps 

equaled zero in seven combinations compared to only one combination of 100/5 in the 

default strategy. The worst performance in all measurements was in the default strategy 

for the combination 80/15 within 3 million nodes. 

Figure 20 provides a clear picture of the average CPU time pattern in the default and the 

proposed strategies. 
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Figure 20: The Effect of the MATLAB Default and the Proposed Branching 

Strategies on the Average CPU Time in Model 1 

 
In general, the average CPU time shows a fluctuated pattern from low to high levels for 

M and N' factors in both strategies, except an exponential increasing from low to high 

level in the proposed strategy in the last combination of 100/m. The fluttered behavior of 

the CPU time could be regarded to the irregular incremental increasing of the recourses. 

Interestingly, the most significance improvement in reduced CPU time happened in the 

proposed strategy in the combinations of 40/ (10, 15), 60/15, and 80 and 100/ (10, 15). 

These combinations’ CPU time improvement is summarized below: 

 Improved CPU Time (%) 

N            M 5 10 15 

40  33.89 96.26 

60   61.87 

80  55.57 70.01 

100 98.27 42.64  
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Figure 21: The Effect of the MATLAB Default and the Proposed Branching 

Strategies on the Absolute Gap in Model 1 

 

 

Figure 22: The Effect of the MATLAB Default and the Proposed Branching 

Strategies on the Relative Gap in Model 1 
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Figures 21 and 22 present the absolute and relative gaps, respectively. In general, these 

two figures are analogous and show similar patterns. More specifically, the proposed 

strategy displays a noticeable reduction in the gaps compared to the default strategy. 

Moreover, the gaps in the major experimental combinations are slightly increased in each 

level n as the level m moves to the higher level, which can be regarded to the computer 

exhausting and complexity from large problems. On the other hand, the gaps in the 

proposed strategy show a stabilized pattern across all the combinations. Thus, the 

proposed strategy is unaffected by the problems’ sizes and can obtain optimal solutions 

for such problems regardless of their variables’ and constraints’ sizes and resource 

variations. 

The most significant improvement in the gaps occurred in the proposed strategy for the 

following nm combinations: 

 

 
Improved Abs. Gap (%) Improved Relative Gap (%) 

 
M M 

N 5 10 15 5 10 15 

20 75 84 82.61 88.57 85.29 83.83 

40 76.1 86.96 92 79 92.31 97.73 

60 40 85.51 99.56 50 86.45 99.58 

80 100 
 

100 100 
 

100 

100 
 

100 100 
 

100 100 
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Best Project Allocation Results with Model 2 

 
The best project allocation subset results by solving formulation 2 for each nm 

combination are shown in Table 12. This table's structure and description is analogous to 

Table 10’s in formulation 1. 

Table 12: Results of the Best Allocated Project by Solving Formulation 2 

 

N M 
Default Branching Strategy Proposed Branching Strategy 

In-house P. Contractors None In-house P. Contractors None 

20 

5 0 14 6 0 14 6 

10 0 13 7 0 14 6 

15 0 13 7 0 13 7 

40 

5 2 22 16 2 23 15 

10 2 22 16 2 23 15 

15 0 24 16 0 24 16 

60 

5 2 33 25 2 33 25 

10 2 33 25 2 33 25 

15 0 40 20 0 40 20 

80 

5 3 43 34 2 44 34 

10 2 44 34 1 45 34 

15 0 45 35 0 46 34 

100 

5 5 53 42 5 53 42 

10 3 56 41 3 56 41 

15 1 64 35 1 64 35 

 

The project allocation sets in Table 12 are different from the best allocations in model 1 

because each formulation has different function and constraints. In addition, both models 

are proposed to offer different project allocation sets and schemes based on the project 

managers or the decision makers' project allocation objectives or strategies. 

The project allocation results in both branching strategies for every combination are 

shown in Figures 23-27. 
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Figure 23: A Comparison between the Project Allocation for the Combination of      

       n=20 and Each Level in Factor M in Formulation 2 
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Figure 24: A Comparison between the Project Allocation for the Combination of      

       n=40 and Each Level in Factor M in Formulation 2 
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Figure 25: A Comparison between the Project Allocation for the Combination of      

       n=60 and Each Level in Factor M in Formulation 2 
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Figure 26: A Comparison between the Project Allocation for the Combination of      

       n=80 and Each Level in Factor M in Formulation 2 

 



 

 97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: A Comparison between the Project Allocation for the Combination of      

       n=100 and Each Level in Factor M in Formulation 2 



 

 98 

As it can be inferred from Figures 23-27, the best allocation sets in the default strategy 

are identical to allocation sets in the proposed strategy across all the nm combinations. In 

addition, increasing the number of allocation options (level m) reduces the opportunity 

for projects to be allocated in-house, representing the same situation as in model 1’s 

project allocation sets. 

Branching Performance Results on Model 2 

 

The effects of the default and the proposed branching strategies on the solution 

performances are summarized in Table 13. Each performance measure in this table shows 

the average CPU time, absolute gap, relative gap, and number of nodes ("No. Nodes") 

needed to reach the optimal solution for every experimental combination nm. Because of 

the low degree of complexity level in this formulation, the number of explored nodes is 

included in assessing the strategies’ performance. In another words, this formulation has 

less constraints than formulation 1. Consequently, MATLAB solves the BIP problem for 

this formulation to the optimality, where the absolute and relative gaps are trivial 

numbers. Moreover, the performance comparisons in this situation ideally focus on how 

the default and proposed branching strategies reach the optimal solution with fewer 

efforts and which strategy works better in large problem sizes.  

Figure 28-31 presents each performance measure’s representation behavior. 

The complete results of each experimental run (replication) are in Appendix 2. 
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Table 13: The Effects of the MATLAB's Default and the Proposed Branching Strategies on the Performance   

      Measurements for Solving Model 2 

 

N M 

MATLAB Default Branching Strategy   Proposed Branching Strategy 

Time (sec.) Abs. Gap 

Relative 

Gap (%) No. Nodes 

 

Time (sec.) 

Abs. 

Gap 

Relative 

Gap (%) No. Nodes 

20 
5 0.065 0.000 0.000 N.A.* 

 

0.064 0.000 0.000 N.A.* 

10 0.305 0.000 0.000 N.A.* 

 

0.311 0.000 0.000 N.A.* 

15 0.144 0.000 0.000 N.A.*   0.133 0.000 0.000 N.A.* 

40 
5 0.817 0.021 0.010 4790   0.594 0.021 0.010 3720 

10 1.223 0.000 0.000 7042 

 

0.339 0.021 0.010 1486 

15 0.432 0.021 0.010 1894   0.305 0.021 0.010 906 

60 
5 2.757 0.033 0.009 18388   1.503 0.000 0.000 11229 

10 11.400 0.000 0.000 59836 

 

6.523 0.028 0.006 31783 

15 68.077 0.034 0.010 149490   93.920 0.000 0.000 265424 

80 
5 47.906 0.037 0.010 332890   25.470 0.031 0.007 159182 

10 188.138 0.026 0.004 799582 

 

71.253 0.037 0.010 291458 

15 15.611 0.036 0.010 59394   8.651 0.028 0.005 34346 

100 
5 2.133 0.044 0.010 12150 

 

0.865 0.044 0.010 4542 

10 1.687 0.000 0.000 3508 

 

1.741 0.000 0.000 3469 

15 1354.747 0.1594 0.0613 >2000000   497.833 0.000 0.000 711288 
 

*: Solved by the Cutting Generation Algorithm (The 4th stage in MATLAB IP solver), the number of nodes is not available in this case. 
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The average CPU time results for each nm combination in both strategies show flutter 

performance throughout changing M levels across all factor's N levels. At the first glance, 

it can be observed that both strategies work effectively in the high level of M, specifically 

with N levels of 20, 40, and 80 than other nm combinations. 

As expected, both strategies’ absolute gaps are relatively close to each other and very 

small, except the largest absolute and relative gaps in the default strategy occur with the 

combination of 100 projects and 15 options.  

The experimental results for the level 20 in factor N with all M levels are solved by the 

cut generation methodology which is the fourth stage for solving the IP in the MATLAB, 

(i.e., the MATLAB did not solve this specific nm combination with the B&B algorithm 

because of the small problem), see the experimental design section in Chapter 5 for more 

information regarding the MATLAB IP solution stages. Therefore, the number of 

explored nodes in the search tree, in both strategies, for the combination of 20/m is not 

available in this formulation and experimental combination. 

The number of explored nodes in all other combinations shows inconsistent pattern as 

going from low to high levels of factor N and M, in the default and proposed strategies. 

In general, the proposed strategy surpasses the default strategy in all performance 

measurements and solves with remarkable quality the constrained project allocation 

problem in various experimental combinations. 
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Figure 28: The Effect of the MATLAB Default and the Proposed Branching 

Strategies on the Average CPU Time in Model 2 

 

Figure 28 shows a comprehensive overview of the average CPU run time for both 

strategies across all the nm combinations. The average CPU time in both strategies ran 

stably in a short time in levels N of 20 and 40 with all M levels and with the combination 

of 60/5 and 10. Then it started suddenly going up and down in the reaming nm 

combinations. This phenomenon is expected to occur as a result of increasing the 

problem size or moving to higher levels in factor N and M. Generally speaking, both 

strategies for this model indicate that B&B algorithm might suffer or run longer in a large 

problem of more than 1500 variables. The proposed strategy, however, works better with 

large problems compared to the default strategy. The most significance time reduction 

occurred in the proposed strategy for the combinations of 80/10 and 100/15 by 62.13% 

and 63.25%, respectively.  
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Figure 29: The Effect of the MATLAB Default and the Proposed Branching 

Strategies on the Absolute Gap in Model 2  

 

 

 

Figure 30: The Effect of the MATLAB Default and the Proposed Branching 

Strategies on the Relative Gap in Model 2 
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Figure 29 and 30 compare the performance measures of the absolute and relative gaps, 

respectively, between the default and proposed strategies. These performances are 

identical in both strategies.  Excluding the 100/15, the absolute gaps in Figure 29 did not 

exceed the limit of 0.05 and 0.01 % in Figure 30 of the relative gaps, indicating that the 

B&B performs well. The most notable absolute and relative gaps happened in the 

combination 100/15 with 0.159 and 0.061%, respectively. Despite obtaining the largest 

amount of gaps in the 100/15 combination, the solution is still considered optimal, since 

this number of gaps is very small compared to the gaps in model 1.  

 

 

Figure 31: The Effect of the MATLAB Default and the Proposed Branching 

Strategies on the Number of Explored Nodes in Model 2 

 

The number of the explored nodes or the B&B tree sizes, to reach the optimal solutions 

for each nm combination in both strategies is depicted in Figure 31. Furthermore, this 

figure shows the branching strategies’ effect on the number of nodes needed to reach the 
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optimal solution. Since the MATLAB solved the combination of 20/m using the cutting 

generation methodology instead of B&B algorithm, this figure exhibits the explored 

nodes from N levels of 40 to 100. The difference between both strategies can be clearly 

observed from the combination 60/5 through 100/15. During this interval, the number of 

nodes in both strategies displays a fluctuated pattern. By contrast, the default and the 

proposed strategies increase sharply in the combination 100/15 from 3508 to more than 2 

million nodes and from 3469 to 711,288 nodes, respectively. Generally, the proposed 

branching strategy outperforms the default strategy outstandingly in the experiments, 

except for the combinations of 100/10 and 60/15.  

The following results present significant improvement in the number of nodes reduced, 

by using the proposed strategy versus the default strategy. 

N M 
Improved No. of Explored 

 Nodes.(%) 

40 
10 78.90 

15 52.16 

60 
5 38.93 

10 46.88 

80 

5 52.18 

10 63.55 

15 42.17 

100 
5 62.62 
15 64.44 

 

Summary 

 

In this Chapter the data illustrating this study’s application and drawing conclusions from 

the experiments were generated from a real case study based on descriptive statistics 

found to be more efficient and reliable in generating a data matching the real data. Each 
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formulation with this study’s branching strategies was examined separately by the 

suggested two-factor factorial design experiment. There were multivariate responses from 

the experiment conducted on each model (i.e., four responses for each nm combination on 

model 1 and five responses on model 2).These responses were averages of replicating 

each nm combinations three times for the purpose of obtaining accurate results. It is 

important to mention that all of the computed responses, when replicated, for each 

combination are identical, except the CPU run time. Best project allocation subsets from 

each model with the branching strategies were reported. In fact, going from a low to a 

high level of factor M for each level in factor N provides different allocation subsets. 

From this point of view, the results of the performed experiments with the generated data 

set can be considered to have a realistic credibility level. The B&B branching strategies’ 

performance measures for the MATLAB default and the proposed strategy were 

examined and compared on both models. In general, the proposed branching 

outperformed the MATLAB default branching in both models. Finally one of the validate 

conclusions discovered while the experimental results were examination is the one that 

Atamtürk and Savelsbergh discussed [14, pp.73]:  

 “It is important to observe that certain parameter settings can exhibit quite 

 different computational behavior on instances from different sources. However, it 

 is generally true to [sic] that certain parameter settings exhibit fairly consistent 

 behavior on instances from the same source. Therefore, in practice tuning 

 branching parameters can be extremely important. Even though a combination of 

 parameters may not work well on a wide variety of instances, it may work 

 extremely well on the class of problems that need to be solved.” 
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CHAPTER VII 

SUMMARY, CONLUSIONS, AND RECOMMENDATIONS 
 

 

In this chapter, this study is summarized, conclusions are discussed, and 

recommendations for future research are made. 

Summary 

 
This dissertation proposed a novel decision-support framework based on an analytical 

approach aiming to select the most desirable number of projects, from an economic 

prospective, to be allocated to several options. The proposed approach included multiple 

groups, multiple constraints, two model formulations, and a B&B strategy for solving the 

models. The concept of MD, which accounts for the correlation between the project's 

characteristics, was used to allocate projects to the most fitting options. In developing this 

decision-support framework, a review of relevant literature focused on project selection 

and resource allocation, a classification approach using MD, and B&B strategies 

affecting the solution performances. Various numbers of considerable gaps in modeling 

project selection and B&B solution performances were identified and this dissertation's 

contributions to the literature have been addressed. Furthermore, light was shed on the 

MD and B&B and on how they can be used. Two novel BIP models providing different 

conclusions regarding best project-allocation sets were introduced. The first model 

maximizes the benefit s’ dollar value while ensuring that projects are allocated to the 

best-fitting option consistent with available budget and in-house man-hour levels.  The 

second model focuses on allocating projects to the best-fitting options subject to available 

budget and in-house man-hour levels.  The solution methodology is based on a novel 
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B&B strategy for variables and node selections that aims to improve the solution 

procedure’s efficiency. 

To illustrate the proposed BIP models and to assess the suggested B&B branching 

strategy’s solution performances compared to those of the MATLAB's default strategy, 

computational experiments were designed and run on various number of project and 

option combinations in terms of multiple responses. Each model with the proposed and 

MATLAB default branching strategies was run on a designed experiment with a total of 

90 runs for both strategies. The computational experiments’ results for each model were 

analyzed, and the branching strategies were compared. These computational experiments 

were coded and solved in the MATLAB R2014b on a PC with of an Intel Core i5 

processor, 6.00GB RAM, and a 64-bit Windows 7 operating system.  

Conclusions 

 
A decision-making approach to project selections in organizations intending to use their 

resources efficiently and economically has been widely studied. Numerous researchers 

have proposed a variety of models or methodologies to obtain optimal project portfolios 

or sets that maintain organizations' limited resources. These methodologies have been 

mathematically modeled based on such factors as different objectives, competing 

constraints, budgetary observances, and available manpower. This dissertation focused on 

proposing an analytical approach that selects multiple constrained transportation projects 

and allocates them to the best fitting options, such as in-house engineers and private 

contractors. 



 

 108 

This study's application results, for both models, provide different allocation scenarios or 

sets corresponding to various experimental combinations. Since the correlation or 

dependency between variables, in a multivariate observation (project), can affect the 

allocation accuracy, the proposed models suggest more reliable allocation sets than others 

in terms of accounting for the correlation between project's characteristics through the 

MD concept. In addition, since the scope of each project is defined with respect to several 

factors or characteristics, these models provide several explanations of the association or 

matching between projects and options. 

In comparing two models’ best project-allocation sets, we observed that model 2 was 

more restricted than model 1 in assigning projects to the in-house and private contractors. 

This observation provides a distinguished conclusion regarding each model's objective. In 

other words, model 2 is emphasized more on allocating projects to the most matching 

options than model 1. Therefore, decision makers or the project managers will have the 

choice to choose one of the proposed models that accommodate their project allocation 

goal. These two models, however, can be used as optimization methodology for project 

allocation when a budget is insufficient to fund all projects.  

 Various significant performance measures were used to compare the proposed 

branching strategy’s solution quality with that of the MATLAB default branching 

strategy. In both models, the proposed strategy outperformed the best MATLAB default 

strategy. The CPU run time’s maximum performance improvement for models 1 and 2 

(by 98.27% and 63.25%, respectively) was achieved by using the proposed strategy 

instead of the MATLAB default strategy. Absolute and relative gaps were approximately 

similar across all the combinations in model 2 for both strategies. On the other hand, the 
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most improvement in these gaps was obtained in different combinations by using the 

proposed strategy in model 1. In comparing to the gaps obtained by MATLAB default 

strategy, the proposed strategy improved these gaps by 100% or reduced them to zero. 

One of the most effective performance measurements used in many studies is the number 

of explored nodes in the B&B search tree because this measurement has a positive 

relationship with the CPU run time (i.e., the number of nodes is explored more as the 

CPU run time increase). The proposed branching strategy in model 2 outperformed the 

MATLAB default strategy in the majority of combinations. The maximum improvement 

in this performance measure was approximately 80% in the number of nodes reduced 

compared to the MATLAB default strategy. It is important to mention that many, if not 

all, IP state-of-art solvers have designed the default branching strategy and other B&B 

settings to work best and accommodate a verity of instances in practice.    

Finally, unlike most of the traditional studies discussed in the literature for the field of 

project selection and resource allocation, this dissertation not only offers a significant a 

quantitative tool that supports decision-making, but also provides an improved solution 

strategy that can work with large problems.  

Recommendations and Future Research 

 
To the best of our knowledge, the constrained multi-group project allocation using the 

MD and the proposed branching strategy in B&B algorithm has not been studied or 

considered in the literature. Consequently, any future research regarding the proposed 

models and solution methodology will contribute to the literature. 

Further research efforts can be summarized as follows: 
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 Construct same project-allocation models based on ED, instead of MD, and 

compare the computational results based on both statistical distances. Comparison 

results will reveal several considerable observations in terms of optimal solutions, 

allocation sets, and performance measures. 

 To improve the allocation results’ reliability, add more constraints to the models, 

such as availability of project construction equipment, project completion date or 

scheduling, project interactions, and project completion risks or uncertainty.  

 Determine which of the experimental factors or resources has the most significant 

effect on the multivariate responses of CPU run time, absolute gap, relative gap, 

and number of explored nodes. MANOVA is suggested for this purpose. 

 Compare the proposed branching strategy with other branching strategy and 

branching settings. 

 Propose decision-making software (instead of a panel of experts) for selecting the 

most matching projects for each allocation option to form each option's reference 

dataset. This software can be linked to the contracting database and can create the 

reference data set for each option based on specific selection criterion. Integrating 

this software with the proposed solution methodology could considerably improve 

the process of project selection. 

 Suggest different resource levels for each experimental combination that offers 

several scenarios of best allocation subsets.  

 Compare the solution performances between the proposed sorted and unsorted 

variables in the MATLAB B&B default strategy.  
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 Develop model selection techniques to choose the subset of factors that can best 

describe the projects from a pool of variables. The models can be selected 

according to several criteria, such AIC, BIC, and ICOMP [69, 70]. 

The proposed models can also be solved using dynamic programming. The general 

systematic procedures for solving our models is briefly stated as follows [12]: 

1. Stage sim is represented by the number of projects n=1, 2, ..., N 

2. The alternatives at stage sin are represented by 1
1




M

i

inx  defining that each 

project n is allowed to be assigned to at most one of the option i 

3. Each state at stage sin is represented by the amount of din, cin, and tin assigned 

to stages (projects) n, n+1, ..., N. This step states that the resource levels of W, 

B, and T are the only resections that relates all sin stages or projects together. 

Define  

𝑓𝑛(𝑠𝑛)= maximum benefit or minimum MD for stages, 𝑠𝑛+1, 𝑠𝑛+2,..., 

N given state 𝑠𝑖𝑛. 

The backtrack procedure denotes the recursive equation that can be represented 

by two steps: 

1. Write 𝑓𝑛(𝑠𝑖𝑛) as a function of 𝑓𝑛(𝑠𝑛+1) by: 

𝑓𝑛(𝑠𝑖𝑛)= max
𝑥𝑖𝑛=0,1   ∀𝑖={1,2,…,𝑀}

1
1




M

i

inx

{𝑏𝑛𝑥𝑖𝑛 + 𝑓𝑛+1(𝑠𝑖𝑛+1)}   

𝑓𝑛+1(𝑠𝑖𝑛+1) is identical to zero in this step 
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2. Express 𝑠𝑛+1 as a function of  𝑠𝑛 to warrant the left side of the 

previous equation is a function of 𝑠𝑛 only.  

By definition of the following equations: 

𝑠𝑖𝑛 − 𝑠𝑖𝑛+1 = 𝑑𝑖𝑛𝑥𝑖𝑛 

𝑠𝑖𝑛 − 𝑠𝑖𝑛+1 = 𝑐𝑖𝑛𝑥𝑖𝑛 

𝑠𝑖𝑛 − 𝑠𝑖𝑛+1 = 𝑡𝑖𝑛𝑥𝑖𝑛 

 Represent the max MD, budget, and manpower time used at each stage sn 

Thus  

𝑠𝑖𝑛+1 = 𝑠𝑖𝑛 − 𝑑𝑖𝑛𝑥𝑖𝑛 

𝑠𝑖𝑛+1 = 𝑠𝑖𝑛 − 𝑐𝑖𝑛𝑥𝑖𝑛 

𝑠𝑖𝑛+1 = 𝑠𝑖𝑛 − 𝑡𝑖𝑛𝑥𝑖𝑛 

The recursive relationship for each constraint is written as: 

𝑓𝑛(𝑠𝑖𝑛)= max
𝑥𝑖𝑛=0,1   ∀𝑖={1,2,…,𝑀}

1
1




M

i

inx

{𝑏𝑛𝑥𝑖𝑛 + 𝑓𝑛+1(𝑠𝑖𝑛 − 𝑑𝑖𝑛𝑥𝑖𝑛)} 

𝑓𝑛(𝑠𝑖𝑛)= max
𝑥𝑖𝑛=0,1   ∀𝑖={1,2,…,𝑀}

1
1




M

i

inx

{𝑏𝑛𝑥𝑖𝑛 + 𝑓𝑛+1(𝑠𝑖𝑛 − 𝑐𝑖𝑛𝑥𝑖𝑛)} 

𝑓𝑛(𝑠𝑖𝑛)= max
𝑥𝑖𝑛=0,1   ∀𝑖={1,2,…,𝑀}

1
1




M

i

inx

{𝑏𝑛𝑥𝑖𝑛 + 𝑓𝑛+1(𝑠𝑖𝑛 − 𝑡𝑖𝑛𝑥𝑖𝑛)} 

 

For illustration purposes, Figure 32 depicts the graphical representation of the dynamic 

programming for the project allocation using Formulation 1. 
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Figure 32: Dynamic Programming Representation for Model 1 

 
Obviously, proposing a software or an algorithm based on this dynamic programing 

approach will undoubtedly add a considerable contribution to the literature and provide a 

great saving in computational’ s efforts and time. 

At the end, we anticipate the decision-making framework proposed in this study can be 

further applied to different project types.   
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APPENDIX 1 

 

MATLAB's R2014 b optimization toolbox is designed to solve Mixed-integer linear 

programming (MILP) problems by the function (intlinprog).  This function can be 

modified with its options and other related constraints to solve any pure IP and BIP linear 

problems. These options can be found in the MATLAB R2014 b manual. For the reader's 

convenience, all of options and default settings are shown in Table 15 [66]. 

Table 14: MATLAB R2014 b Available Options and Default Settings 

Option Description Default setting 

BranchingRule Rule for choosing the component for branching: 

 'maxpscost' — The fractional component 

with maximum pseudocost.  

 'mostfractional' — The component whose 

fractional part is closest to 1/2. 

 'maxfun' — The fractional component with 

maximal corresponding component in the 

absolute value of objective vector f. 

'maxpscost' 

CutGeneration Level of cut generation (see Cut Generation): 

 'none' — No cuts. Makes CutGenMaxIter 

irrelevant. 

 'basic' — Normal cut generation. 

 'intermediate' — Use more cut types. 

 'advanced' — Use most cut types. 

'basic' 

CutGenMaxIter Number of passes through all cut generation 

methods before entering the branch-and-bound 

phase, an integer from 1 through 50. Disable cut 

generation by setting the CutGeneration option to 

'none'. 

10 

Display Level of display (see Iterative Display): 

'off' or 'none' — No iterative display 

'final' — Show final values only 

'iter' — Show iterative display 

'iter' 

Heuristics Algorithm for searching for feasible points (see 

Heuristics for Finding Feasible Solutions): 

 'none' 

 'rss' 

 'round' 

 'rins' 

'rss' 
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Table 14: Continued 

 

Option Description Default setting 

HeuristicsMaxNodes Strictly positive integer that bounds the number 

of nodes intlinprog can explore in its branch-

and-bound search for feasible points. See 

Heuristics for Finding Feasible Solutions. 

50 

IPPreprocess Types of integer preprocessing (see Mixed-

Integer Program Preprocessing): 

 'none' — Use very few integer 

preprocessing steps. 

 'basic' — Use a moderate number of 

integer preprocessing steps. 

 'advanced' — Use all available integer 

preprocessing steps. 

'basic' 

LPMaxIter Strictly positive integer, the maximum number 

of simplex algorithm iterations per node during 

the branch-and-bound process.  

3e4 

LPPreprocess Type of preprocessing for the solution to the 

relaxed linear program (see Linear Program 

Preprocessing): 

 'none' — No preprocessing. 

 'basic' — Use preprocessing. 

'basic' 

MaxNodes Strictly positive integer that is the maximum 

number of nodes intlinprog explores in its 

branch-and-bound process.  

1e7 

MaxNumFeasPoints Strictly positive integer. intlinprog stops if it 

finds MaxNumFeasPoints integer feasible 

points.  

Inf 

MaxTime Positive real that is the maximum time in 

seconds that intlinprog runs.  

7200 

NodeSelection Choose the node to explore next. 

 'simplebestproj' — Best projection. See 

Branch and Bound. 

 'minobj' — Explore the node with the 

minimum objective function. 

 'mininfeas' — Explore the node with the 

minimal sum of integer infeasibilities. 

See Branch and Bound. 

'simplebestproj' 

ObjectiveCutOff Real greater than -Inf. During the branch-and-

bound calculation, intlinprog discards any node 

where the linear programming solution has an 

objective value exceeding ObjectiveCutOff. 

Inf 
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Table 14: Continued 

 

Option Description Default 

setting 

OutputFcn Specify one or more functions that an 

optimization function calls at events, either as a 

function handle or as a cell array of function 

handles. 

@savemilpsolutions collects the integer-feasible 

points in the xIntSol matrix in your workspace, 

where each column is one integer feasible point. 

[ ] 

PlotFcns Plots various measures of progress while the 

algorithm executes, select from predefined plots 

or write your own. Pass a function handle or a 

cell array of function handles. 

@optimplotmilp plots the internally-calculated 

upper and lower bounds on the objective value of 

the solution. 

[ ] 

RelObjThreshold Nonnegative real. intlinprog changes the current 

feasible solution only when it locates another 

with an objective function value that is at least 

RelObjThreshold lower: (fold – fnew)/(1 + fold) 

> RelObjThreshold. 

1e-4 

RootLPAlgorithm Algorithm for solving linear programs: 

 'dual-simplex' — Dual simplex algorithm 

 'primal-simplex' — Primal simplex 

algorithm 

'dual-simplex' 

RootLPMaxIter Nonnegative integer that is the maximum number 

of simplex algorithm iterations to solve the initial 

linear programming problem.  

3e4 

TolCon Real from 1e-9 through 1e-3 that is the maximum 

discrepancy that linear constraints can have and 

still be considered satisfied. TolCon is not a 

stopping criterion. 

1e-4 

TolFunLP Nonnegative real where reduced costs must 

exceed TolFunLP for a variable to be taken into 

the basis.  

1e-7 

TolGapAbs Nonnegative real. intlinprog stops if the 

difference between the internally calculated upper 

(U) and lower (L) bounds on the objective 

function is less than or equal to TolGapAbs: 

U – L <= TolGapAbs 

0 
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Table 14: Continued 
 

Option Description Default setting 

TolGapRel Real from 0 through 1. intlinprog stops if the relative 

difference between the internally calculated upper (U) 

and lower (L) bounds on the objective function is less 

than or equal to TolGapRel: 

(U – L) / (abs(U) + 1) <= TolGapRel. 

1e-4 

TolInteger Real from 1e-6 through 1e-3, where the maximum 

deviation from integer that a component of the solution 

x can have and still be considered an integer. TolInteger 

is not a stopping criterion.  

1e-5 
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APPENDIX 2 
 

Factor N Levels Data set 

 
The experimental data set, multivariate observation, for factor N levels are shown in 

Tables 15,16,17,18, and 19 for the levels of 20, 40, 60, 80, and 100, respectively. 

 

Table 15: Seal Coat Project Data Set, n=20 

Project No. ADT GOFA CYA MIL TYS TCOS 

1 193 19950 601 6.160 72336 35197 

2 1200 5675 167 0.895 18573 10390 

3 300 48150 1204 10.669 126468 82887 

4 5950 25525 658 2.850 67530 46419 

5 1507 20640 585 4.469 59136 36643 

6 1995 6978 160 1.000 18186 12900 

7 450 28357 1026 7.343 86158 69100 

8 474 56650 1430 7.250 194036 54023 

9 1200 28005 854 6.060 73046 54132 

10 600 55490 1700 10.890 155280 77590 

11 2057 16780 468 2.984 46264 29538 

12 310 10300 279 2.500 35090 21965 

13 336 26368 650 7.509 89967 56684 

14 935 29666 836 7.230 84832 66900 

15 1712 32345 900 7.172 97640 62796 

16 190 10218 250 2.270 26635 13500 

17 4900 13140 480 2.840 40691 28575 

18 500 47355 1107 12.788 150941 69163 

19 369 71320 1680 18.202 218944 116348 

20 623 30031 839 7.462 86240 66952 

 

 

 

 

 

 

 



 

 128 

Table 16: Seal Coat Project Data Set, n=40 

Project No. ADT GOFA CYA MIL TYS TCOS 

1 220 12250 294 2.58 30792 17352 

2 930 8675 266 2.782 32646 15245 

3 11274 48415 1536 2.879 147367 114529 

4 850 48955 1442 15.199 178340 84492 

5 70 7500 210 2.17 25500 21700 

6 1448 35955 1008 6.049 107156 69810 

7 2000 99760 2714 16.225 260285 178048 

8 390 18910 420 4.637 54416 29892 

9 7500 1445 50 0.252 4184 3064 

10 890 97882 3274 21.267 300778 203359 

11 360 27366 772 6.672 78285 49960 

12 730 52890 1850 7.4 157445 95000 

13 1000 6590 168 2.082 22200 9452 

14 850 7127 190 1.583 18574 12301 

15 3500 45120 1572 3.857 96661 97268 

16 769 16204 463 3.958 46441 38743 

17 201 13075 303 3.454 40650 21021 

18 1196 63970 2124 12.042 169563 123393 

19 450 23250 560 4.817 58664 40833 

20 1300 58840 1904 9.268 152250 102427 

21 573 42380 1080 13.68 144977 120900 

22 3318 99300 2376 6.108 257959 171704 

23 1100 71550 1792 13.81 183271 107987 

24 1400 51310 1716 9.459 132249 99393 

25 3317 41005 1060 9.69 141402 95270 

26 250 14385 490 4.213 55953 29804 

27 1200 28005 854 6.06 73046 54132 

28 767 9855 274 2.241 26635 18262 

29 1875 20000 518 5.2 67972 37905 

30 346 17637 503 4.305 50512 38500 

31 4274 17200 450 3.18 58730 42047 

32 6873 60465 1914 4.523 178170 115822 

33 1896 62510 1884 13.227 184456 128811 

34 724 20730 600 5.243 65137 37742 

35 160 14370 368 2.952 36130 24511 

36 700 52250 1330 11.819 140772 86537 
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Table 16: Continued 

Project No. ADT GOFA CYA MIL TYS TCOS 

37 474 56650 1430 7.25 194036 54023 

38 251 24290 58 7.279 76621 39020 

39 950 10225 255 2.303 27023 17845 

40 3488 64990 1818 4.642 174577 116151 

 

 

Table 17: Seal Coat Project Data Set, n=60 

Project No. ADT GOFA CYA MIL TYS TCOS 

1 220 12250 294 2.58 30792 17352 

2 930 8675 266 2.782 32646 15245 

3 11274 48415 1536 2.879 147367 114529 

4 850 48955 1442 15.199 178340 84492 

5 70 7500 210 2.17 25500 21700 

6 1448 35955 1008 6.049 107156 69810 

7 2000 99760 2714 16.225 260285 178048 

8 390 18910 420 4.637 54416 29892 

9 7500 1445 50 0.252 4184 3064 

10 890 97882 3274 21.267 300778 203359 

11 360 27366 772 6.672 78285 49960 

12 730 52890 1850 7.4 157445 95000 

13 1000 6590 168 2.082 22200 9452 

14 850 7127 190 1.583 18574 12301 

15 3500 45120 1572 3.857 96661 97268 

16 769 16204 463 3.958 46441 38743 

17 201 13075 303 3.454 40650 21021 

18 1196 63970 2124 12.042 169563 123393 

19 450 23250 560 4.817 58664 40833 

20 1300 58840 1904 9.268 152250 102427 

21 573 42380 1080 13.68 144977 120900 

22 3318 99300 2376 6.108 257959 171704 

23 1100 71550 1792 13.81 183271 107987 

24 1400 51310 1716 9.459 132249 99393 

25 3317 41005 1060 9.69 141402 95270 

26 250 14385 490 4.213 55953 29804 

27 1200 28005 854 6.06 73046 54132 
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Table 17: Continued 

Project No. ADT GOFA CYA MIL TYS TCOS 

28 767 9855 274 2.241 26635 18262 

29 1875 20000 518 5.2 67972 37905 

30 346 17637 503 4.305 50512 38500 

31 4274 17200 450 3.18 58730 42047 

32 6873 60465 1914 4.523 178170 115822 

33 1896 62510 1884 13.227 184456 128811 

34 724 20730 600 5.243 65137 37742 

35 160 14370 368 2.952 36130 24511 

36 700 52250 1330 11.819 140772 86537 

37 474 56650 1430 7.25 194036 54023 

38 251 24290 58 7.279 76621 39020 

39 950 10225 255 2.303 27023 17845 

40 3488 64990 1818 4.642 174577 116151 

41 400 36520 840 10.934 115710 58620 

42 4200 38900 1042 3.693 104019 70803 

43 7500 193965 6216 15.636 526798 382165 

44 5600 71155 2564 15.49 218104 154638 

45 6100 10881 321 1.056 30976 19819 

46 3450 55668 1320 9.65 145141 93942 

47 2600 81010 2849 15.972 231810 164098 

48 951 21400 564 5.688 77166 36666 

49 1750 13000 575 3.065 43155 25900 

50 12200 28510 750 5.6 97357 65308 

51 836 48995 1440 12.267 143933 83695 

52 1841 67130 1708 16.049 226573 113715 

53 2063 18570 574 5.047 71318 34824 

54 353 34560 1080 7.954 93280 60561 

55 7486 51627 1667 6.13 173930 107617 

56 336 18050 343 4 46933 32497 

57 450 11462 394 2.031 28600 16710 

58 492 22230 623 5.285 62011 41714 

59 330 3700 70 0.766 10452 5467 

60 1814 25920 1365 6.665 113446 81092 
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Table 18: Seal Coat Project Data Set, n=80 

Project No. ADT GOFA CYA MIL TYS TCOS 

1 6204 27445 859 3.375 77929 50871 

2 9636 80480 2184 4.855 236291 143764 

3 985 32740 924 9.618 119586 58052 

4 1152 17327 410 3.85 45173 16783 

5 350 32825 1008 9.362 110820 59953 

6 1100 17290 518 3.654 44510 33213 

7 370 11231 292 3.099 37951 29536 

8 3318 99300 2376 6.108 257959 171704 

9 1044 32420 832 5.978 82794 55361 

10 645 19200 444 5.204 61211 29095 

11 360 19280 434 4.828 56826 30784 

12 336 26368 650 7.509 89967 56684 

13 400 36520 840 10.934 115710 58620 

14 3300 32780 812 2.9 84294 60117 

15 550 18105 560 4.98 60822 33182 

16 4700 42090 1572 9.562 145863 88680 

17 5908 24915 664 6.53 95161 45164 

18 730 52890 1850 7.4 157445 95000 

19 5478 92570 2551 6.131 265838 178193 

20 103 17710 420 4.545 53659 28985 

21 180 41687 1367 9.83 117555 73036 

22 265 37585 892 10.243 120494 61100 

23 470 13700 376 3.328 40356 24236 

24 6975 27540 774 2.16 69404 44935 

25 216 13148 390 3.163 37113 28617 

26 308 42763 994 11.886 140069 54971 

27 280 14040 318 3.601 42372 22336 

28 20 3032 88 0.673 7897 5400 

29 70 9500 290 2.11 27116 13023 

30 350 56650 1560 11.78 40069 79849 

31 190 10218 250 2.27 26635 13500 

32 6000 17029 515 3.6 42240 18642 

33 3436 30790 924 8.003 119093 56821 

34 1400 51310 1716 9.459 132249 99393 

35 223 9440 281 2.29 26870 20500 

36 6600 3050 89 0.7 9798 5297 
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Table 18: Continued 

Project No. ADT GOFA CYA MIL TYS TCOS 

37 5600 71155 2564 15.49 218104 154638 

38 1875 20000 518 5.2 67972 37905 

39 2700 6050 370 1.678 23626 16538 

40 17400 34770 936 1.549 97939 60879 

41 2834 57460 1755 13.183 178487 101099 

42 12424 34475 969 4.038 98560 83500 

43 1100 20890 624 5.415 80595 38142 

44 700 52250 1330 11.819 140772 86537 

45 1354 43940 1410 8.607 121580 81951 

46 2500 56234 1800 10 164267 144700 

47 2129 90990 2940 17.73 249640 176437 

48 3688 43225 1148 5.554 122641 81482 

49 411 47830 1140 10.678 148092 78092 

50 338 18140 426 4.782 57049 26537 

51 1100 71550 1792 13.81 183271 107987 

52 5866 11950 336 0.825 32270 26009 

53 188 25160 593 6.999 82131 40785 

54 220 13217 310 3.575 43204 22628 

55 210 23925 566 6.666 78300 38849 

56 2246 33450 860 8.01 114759 68890 

57 1696 102050 2786 15.435 282418 237262 

58 200 7090 204 0.946 15556 10814 

59 400 40673 965 8.8 103000 60090 

60 3488 64990 1818 4.642 174577 116151 

61 530 1381 53 0.352 4130 3400 

62 2507 10600 270 2.3 35778 17269 

63 1311 89863 3016 23.727 279098 187077 

64 16155 45990 1665 2.82 146220 115524 

65 689 15350 344 3.967 47503 23441 

66 844 1500 245 0.805 10791 6570 

67 346 17637 503 4.305 50512 38500 

68 2000 68501 2545 14.226 203852 135341 

69 3249 55915 1820 10.889 153322 108827 

70 300 48150 1204 10.669 126468 82887 

71 440 12900 378 3.212 37688 30200 

72 70 9208 241 2.64 30999 23400 
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Table 18: Continued 

Project No. ADT GOFA CYA MIL TYS TCOS 

73 3600 4373 136 0.899 12658 9623 

74 590 6530 196 1.373 17723 11267 

75 5557 27925 736 2.559 69381 52398 

76 6300 21668 850 4.788 67415 53900 

77 1800 39560 1080 8.861 140652 68977 

78 1039 29925 634 5.466 64134 44364 

79 4200 38900 1042 3.693 104019 70803 

80 5600 57469 1884 10.966 167725 82700 

 
 

Table 19: Seal Coat Project Data Set, n=100 

Project No. ADT GOFA CYA MIL TYS TCOS 

1 260 12385 281 2.629 30845 22337 

2 63 15349 390 4.44 52096 42900 

3 10355 59200 1654 5.437 204178 147397 

4 5908 24915 664 6.53 95161 45164 

5 210 23925 566 6.666 78300 38849 

6 11358 17080 488 2.331 48156 31019 

7 500 19135 550 4.364 56332 32266 

8 453 31450 825 6.503 89096 60203 

9 568 18092 510 4.094 52096 42800 

10 590 6530 196 1.373 17723 11267 

11 201 13075 303 3.454 40650 21021 

12 440 10595 288 2.73 32000 18647 

13 1258 84760 2892 16.479 232036 173637 

14 1300 58840 1904 9.268 152250 102427 

15 401 12850 224 2.955 34672 20606 

16 850 7127 190 1.583 18574 12301 

17 347 13575 302 3.946 41732 19453 

18 1000 12700 368 3.313 38876 21832 

19 292 14275 333 3.87 46258 24241 

20 6839 73948 2406 7.92 236976 154822 

21 180 41687 1367 9.83 117555 73036 

22 220 13217 310 3.575 43204 22628 

23 2834 57460 1755 13.183 178487 101099 
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Table 19: Continued 

Project No. ADT GOFA CYA MIL TYS TCOS 

24 1200 5675 167 0.895 18573 10390 

25 11309 18445 520 4.479 51822 38519 

26 986 20625 588 5.1 59833 40773 

27 1700 15590 522 2.966 41776 29956 

28 4014 105080 3339 15.645 280816 272053 

29 649 17680 408 4.277 54872 29648 

30 11918 43835 1280 2.194 130670 86385 

31 6872 66705 1870 6.76 190362 126900 

32 500 47355 1107 12.788 150941 69163 

33 450 23250 560 4.817 58664 40833 

34 5404 128535 3374 14.071 365715 271611 

35 1270 50015 1440 12.25 157092 94129 

36 3600 4373 136 0.899 12658 9623 

37 1689 9150 264 2.425 33870 16408 

38 12200 28510 750 5.6 97357 65308 

39 3436 30790 924 8.003 119093 56821 

40 602 26060 764 6.199 73503 46794 

41 20 3032 88 0.673 7897 5400 

42 826 28310 552 6.456 76965 30568 

43 2246 33450 860 8.01 114759 68890 

44 479 36151 1021 8.851 103052 85600 

45 2507 10600 270 2.3 35778 17269 

46 2624 34596 979 4 98560 50144 

47 4900 13140 480 2.84 40691 28575 

48 1136 25300 714 6.568 92490 45188 

49 7500 193965 6216 15.636 526798 382165 

50 470 8060 224 1.695 20000 14355 

51 220 12250 294 2.58 30792 17352 

52 350 17050 747 4.015 56533 34243 

53 6204 27445 859 3.375 77929 50871 

54 455 25771 605 7.005 82244 41688 

55 1600 14515 427 1.421 38980 26174 

56 308 42763 994 11.886 140069 54971 

57 193 19950 601 6.16 72336 35197 

58 950 10225 255 2.303 27023 17845 

59 12000 82885 2831 8.154 270440 171959 
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Table 19: Continued 

Project No. ADT GOFA CYA MIL TYS TCOS 

60 6000 17029 515 3.6 42240 18642 

61 1882 40925 1160 11.935 153085 76820 

62 290 17605 397 4.545 53333 25777 

63 1400 51310 1716 9.459 132249 99393 

64 2712 6150 200 0.513 15650 11472 

65 152 36650 868 10.328 118022 56438 

66 4500 33450 980 3.773 97601 58544 

67 1000 79800 2448 12.53 221519 168402 

68 310 30530 666 6.514 76431 40285 

69 360 19280 434 4.828 56826 30784 

70 530 5540 150 1.372 14488 11000 

71 320 21244 601 5.19 60896 39149 

72 2100 18710 559 3.811 58343 31408 

73 400 5725 165 1.212 17064 11070 

74 1814 25920 1365 6.665 113446 81092 

75 350 32825 1008 9.362 110820 59953 

76 935 29666 836 7.23 84832 66900 

77 11942 21100 605 1.6 60075 39558 

78 769 16204 463 3.958 46441 38743 

79 210 27600 658 5.78 69769 39188 

80 1370 56420 1522 10.375 152150 103586 

81 1000 17866 428 3.5 47168 29373 

82 600 55490 1700 10.89 155280 77590 

83 4200 38900 1042 3.693 104019 70803 

84 244 12340 356 3.35 35376 24213 

85 520 15285 504 2.292 46490 31169 

86 3500 45120 1572 3.857 96661 97268 

87 4600 74225 2009 7.025 197297 139889 

88 160 14370 368 2.952 36130 24511 

89 12424 34475 969 4.038 98560 83500 

90 104 30305 690 8.105 95450 43788 

91 3000 12000 333 2.335 32877 22531 

92 650 17950 420 3.962 46658 32022 

93 952 9639 225 2.149 25125 13210 

94 440 6150 144 0.987 19460 9959 

95 4700 42090 1572 9.562 145863 88680 
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Table 19: Continued 

Project No. ADT GOFA CYA MIL TYS TCOS 

96 7500 1445 50 0.252 4184 3064 

97 3680 28735 841 5.005 81189 43659 

98 836 48995 1440 12.267 143933 83695 

99 800 6737 141 1.5 17600 9803 

100 1252 21740 636 4.084 62305 39776 

 

 

Complete Experimental Results 

 
Each experimental combination result, with replications, for both strategies and 

formulations is represented in Tables 20 and 21. 
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Table 20: Replicated Experimental Results for Solving Model 1 

 
Branching Strategy Type 

N M 

Default Proposed 

Time 

(sec.) 

Abs. 

Gap 

Relative 

Gap (%) Best Sub-Set 

Time 

(sec.) 

Abs. 

Gap 

Relative 

Gap (%) Best Sub-Set 

20 

5 

275.195 8 0.0035 (5,11,4) 207.506 2 0.0004 (3,13,4) 

268.371 8 0.0035 (5,11,4) 206.138 2 0.0004 (3,13,4) 

271.461 8 0.0035 (5,11,4) 204.511 2 0.0004 (3,13,4) 

10 

522.99 75 0.0367 (0,14,6) 412.685 12 0.0054 (0,13,7) 

510.121 75 0.0367 (0,14,6) 411.468 12 0.0054 (0,13,7) 

527.863 75 0.0367 (0,14,6) 410.383 12 0.0054 (0,13,7) 

15 

471.997 69 0.0334 (0,15,5) 458.837 12 0.0054 (0,13,7) 

471.048 69 0.0334 (0,15,5) 458.711 12 0.0054 (0,13,7) 

472.084 69 0.0334 (0,15,5) 458.685 12 0.0054 (0,13,7) 

40 

5 

426.138 46 0.0081 (7,19,14) 392.19 11 0.0017 (8,19,13) 

425.622 46 0.0081 (7,19,14) 391.335 11 0.0017 (8,19,13) 

425.914 46 0.0081 (7,19,14) 392.396 11 0.0017 (8,19,13) 

10 

1245.916 23 0.0039 (0,32,8) 823.001 3 0.0003 (1,29,10) 

1243.513 23 0.0039 (0,32,8) 823.279 3 0.0003 (1,29,10) 

1244.181 23 0.0039 (0,32,8) 822.145 3 0.0003 (1,29,10) 

15 

898.495 25 0.0044 (0,24,16) 30.13 2 0.0001 (0,29,11) 

898.634 25 0.0044 (0,24,16) 35.766 2 0.0001 (0,29,11) 

902.187 25 0.0044 (0,24,16) 34.946 2 0.0001 (0,29,11) 
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Table 20: Continued 

 
Branching Strategy Type 

N M 

Default Proposed 

Time 

(sec.) 

Abs. 

Gap 

Relative 

Gap (%) Best Sub-Set 

Time 

(sec.) 

Abs. 

Gap 

Relative 

Gap (%) Best Sub-Set 

60 

5 

689.314 10 0.001 (12,37,11) 612.654 6 0.0005 (10,35,15) 

684.858 10 0.001 (12,37,11) 617.219 6 0.0005 (10,35,15) 

687.162 10 0.001 (12,37,11) 613.863 6 0.0005 (10,35,15) 

10 

1326.616 138 0.0155 (0,39,21) 945.239 20 0.0021 (0,38,22) 

1332.763 138 0.0155 (0,39,21) 966.613 20 0.0021 (0,38,22) 

1331.271 138 0.0155 (0,39,21) 955.104 20 0.0021 (0,38,22) 

15 

1412.114 4790 0.5454 (0,36,24) 539.847 21 0.0023 (0,38,22) 

1412.351 4790 0.5454 (0,36,24) 539.625 21 0.0023 (0,38,22) 

1417.109 4790 0.5454 (0,36,24) 537.713 21 0.0023 (0,38,22) 

80 

5 

690.833 30 0.0032 (14,53,13) 562.569 0 0 (23,45,12) 

693.123 30 0.0032 (14,53,13) 562.43 0 0 (23,45,12) 

689.938 30 0.0032 (14,53,13) 562.314 0 0 (23,45,12) 

10 

1674.168 20 0.0019 (2,59,19) 744.33 30 0.0033 (1,62,17) 

1673.158 20 0.0019 (2,59,19) 743.132 30 0.0033 (1,62,17) 

1673.187 20 0.0019 (2,59,19) 743.161 30 0.0033 (1,62,17) 

15 

1747.586 20 0.0024 (4,20,76) 527.727 0 0 (0,57,23) 

1748.132 20 0.0024 (4,20,76) 522.715 0 0 (0,57,23) 

1750.109 20 0.0024 (4,20,76) 522.894 0 0 (0,57,23) 
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Table 20: Continued 

 
Branching Strategy Type 

N M 

Default Proposed 

Time 

(sec.) 

Abs. 

Gap 

Relative 

Gap (%) Best Sub-Set 

Time 

(sec.) 

Abs. 

Gap 

Relative 

Gap (%) Best Sub-Set 

100 

5 

1516.371 0 0.0003 (21,52,27) 26.234 0 0 (13,55,32) 

1510.759 0 0.0003 (21,52,27) 25.908 0 0 (13,55,32) 

1509.318 0 0.0003 (21,52,27) 26.315 0 0 (13,55,32) 

10 

1286.558 180 0.0151 (1,67,32) 737.487 0 0 (1,62,37) 

1286.117 180 0.0151 (1,67,32) 737.119 0 0 (1,62,37) 

1287.816 180 0.0151 (1,67,32) 739.715 0 0 (1,62,37) 

15 

1590.1246 60 0.0058 (0,65,35) 1143.075 0 0 (1,61,38) 

1593.143 60 0.0058 (0,65,35) 1159.81 0 0 (1,61,38) 

1591.117 60 0.0058 (0,65,35) 1155.856 0 0 (1,61,38) 
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Table 21: Replicated Experimental Results for Solving Model 2 

 

 

 
Branching Strategy Type 

N M 

Default Proposed 

Time 

(sec.) 

Abs. 

Gap 

Relative 

Gap (%) 

No. 

Nodes Best Sub-Set 

Time 

(sec.) 

Abs. 

Gap 

Relative 

Gap (%) 

No. 

Nodes Best Sub-Set 

20 

5 

0.066 0 0 N.A. (7,7,6) 0.064 0 0 N.A. (0,14,6) 

0.065 0 0 N.A. (7,7,6) 0.059 0 0 N.A. (0,14,6) 

0.064 0 0 N.A. (7,7,6) 0.07 0 0 N.A. (0,14,6) 

10 

0.287 0 0 N.A. (0,13,7) 0.242 0 0 N.A. (0,14,6) 

0.35 0 0 N.A. (0,13,7) 0.376 0 0 N.A. (0,14,6) 

0.279 0 0 N.A. (0,13,7) 0.316 0 0 N.A. (0,14,6) 

15 

0.125 0 0 N.A. (0,13,7) 0.128 0 0 N.A. (0,13,7) 

0.149 0 0 N.A. (0,13,7) 0.131 0 0 N.A. (0,13,7) 

0.158 0 0 N.A. (0,13,7) 0.139 0 0 N.A. (0,13,7) 

40 

5 

0.831 0.021 0.01 4790 (2,22,16) 0.588 0.021 0.01 3720 (2,23,15) 

0.781 0.021 0.01 4790 (2,22,16) 0.62 0.021 0.01 3720 (2,23,15) 

0.84 0.021 0.01 4790 (2,22,16) 0.573 0.021 0.01 3720 (2,23,15) 

10 

1.252 0 0 7042 (2,22,16) 0.358 0.0206 0.0096 1486 (2,23,15) 

1.21 0 0 7042 (2,22,16) 0.345 0.0206 0.0096 1486 (2,23,15) 

1.206 0 0 7042 (2,22,16) 0.314 0.0206 0.0096 1486 (2,23,15) 

15 

0.43 0.0211 0.0097 1894 (0,24,16) 0.314 0.0213 0.01 906 (0,24,16) 

0.449 0.0211 0.0097 1894 (0,24,16) 0.303 0.0213 0.01 906 (0,24,16) 

0.418 0.0211 0.0097 1894 (0,24,16) 0.299 0.0213 0.01 906 (0,24,16) 
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Table 21: Continued 

 
Branching Strategy Type 

N M 

Default Proposed 

Time 

(sec.) 

Abs. 

Gap 

Relative 

Gap (%) 

No. 

Nodes Best Sub-Set 

Time 

(sec.) 

Abs. 

Gap 

Relative 

Gap (%) 

No. 

Nodes Best Sub-Set 

60 

5 

2.762 0.0326 0.0092 18388 (2,33,25) 1.497 0 0 11229 (2,33,25) 

2.804 0.0326 0.0092 18388 (2,33,25) 1.484 0 0 11229 (2,33,25) 

2.706 0.0326 0.0092 18388 (2,33,25) 1.528 0 0 11229 (2,33,25) 

10 

11.378 0 0 59836 (2,33,25) 7.306 0.0277 0.0063 31783 (2,33,25) 

11.313 0 0 59836 (2,33,25) 6.108 0.0277 0.0063 31783 (2,33,25) 

11.508 0 0 59836 (2,33,25) 6.154 0.0277 0.0063 31783 (2,33,25) 

15 

66.856 0.0344 0.01 149490 (0,40,20) 94.513 0 0 265424 (0,40,20) 

68.209 0.0344 0.01 149490 (0,40,20) 92.809 0 0 265424 (0,40,20) 

69.166 0.0344 0.01 149490 (0,40,20) 94.437 0 0 265424 (0,40,20) 

80 

5 

47.253 0.0368 0.01 332890 (3,43,34) 24.965 0.0313 0.007 159182 (2,44,34) 

48.159 0.0368 0.01 332890 (3,43,34) 25.573 0.0313 0.007 159182 (2,44,34) 

48.305 0.0368 0.01 332890 (3,43,34) 25.871 0.0313 0.007 159182 (2,44,34) 

10 

187.668 0.0258 0.0041 799582 (2,44,34) 71.077 0.0367 0.01 291458 (1,45,34) 

189.215 0.0258 0.0041 799582 (2,44,34) 71.77 0.0367 0.01 291458 (1,45,34) 

187.532 0.0258 0.0041 799582 (2,44,34) 70.913 0.0367 0.01 291458 (1,45,34) 

15 

16.381 0.0361 0.0095 59394 (0,45,35) 8.765 0.0275 0.0048 34346 (0,46,34) 

15.126 0.0361 0.0095 59394 (0,45,35) 8.699 0.0275 0.0048 34346 (0,46,34) 

15.325 0.0361 0.0095 59394 (0,45,35) 8.489 0.0275 0.0048 34346 (0,46,34) 
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Table 21: Continued 

 
Branching Strategy Type 

N M 

Default Proposed 

Time 

(sec.) 

Abs. 

Gap 

Relative 

Gap (%) 

No. 

Nodes Best Sub-Set 

Time 

(sec.) 

Abs. 

Gap 

Relative 

Gap (%) 

No. 

Nodes Best Sub-Set 

100 

5 

2.107 0.0442 0.01 12150 (5,53,42) 0.866 0.0442 0.01 4542 (5,53,42) 

2.134 0.0442 0.01 12150 (5,53,42) 0.846 0.0442 0.01 4542 (5,53,42) 

2.159 0.0442 0.01 12150 (5,53,42) 0.882 0.0442 0.01 4542 (5,53,42) 

10 

1.688 0 0 3508 (3,56,41) 1.723 0 0 3469 (3,56,41) 

1.656 0 0 3508 (3,56,41) 1.733 0 0 3469 (3,56,41) 

1.717 0 0 3508 (3,56,41) 1.768 0 0 3469 (3,56,41) 

15 

1354.017 0.1594 0.0613 >2000000 (1,64,35) 497.573 0 0 711288 (1,64,35) 

1355.949 0.1594 0.0613 >2000000 (1,64,35) 497.808 0 0 711288 (1,64,35) 

1354.275 0.1594 0.0613 >2000000 (1,64,35) 498.119 0 0 711288 (1,64,35) 
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