9 research outputs found

    DeepTract: A Probabilistic Deep Learning Framework for White Matter Fiber Tractography

    Full text link
    We present DeepTract, a deep-learning framework for estimating white matter fibers orientation and streamline tractography. We adopt a data-driven approach for fiber reconstruction from diffusion weighted images (DWI), which does not assume a specific diffusion model. We use a recurrent neural network for mapping sequences of DWI values into probabilistic fiber orientation distributions. Based on these estimations, our model facilitates both deterministic and probabilistic streamline tractography. We quantitatively evaluate our method using the Tractometer tool, demonstrating competitive performance with state-of-the art classical and machine learning based tractography algorithms. We further present qualitative results of bundle-specific probabilistic tractography obtained using our method. The code is publicly available at: https://github.com/itaybenou/DeepTract.git

    Beyond Crossing Fibers: Tractography Exploiting Sub-voxel Fibre Dispersion and Neighbourhood Structure

    Get PDF
    In this paper we propose a novel algorithm which leverages models of white matter fibre dispersion to improve tractography. Tractography methods exploit directional information from diffusion weighted magnetic resonance (DW-MR) imaging to infer connectivity between different brain regions. Most tractography methods use a single direction (e.g. the principal eigenvector of the diffusion tensor) or a small set of discrete directions (e.g. from the peaks of an orientation distribution function) to guide streamline propagation. This strategy ignores the effects of within-bundle orientation dispersion, which arises from fanning or bending at the sub-voxel scale, and can lead to missing connections. Various recent DW-MR imaging techniques estimate the fibre dispersion in each bundle directly and model it as a continuous distribution. Here we introduce an algorithm to exploit this information to improve tractography. The algorithm further uses a particle filter to probe local neighbourhood structure during streamline propagation. Using information gathered from neighbourhood structure enables the algorithm to resolve ambiguities between converging and diverging fanning structures, which cannot be distinguished from isolated orientation distribution functions. We demonstrate the advantages of the new approach in synthetic experiments and in vivo data. Synthetic experiments demonstrate the effectiveness of the particle filter in gathering and exploiting neighbourhood information in recovering various canonical fibre configurations and experiments with in vivo brain data demonstrate the advantages of utilising dispersion in tractography, providing benefits in practical situations. © 2013 Springer-Verlag

    Building connectomes using diffusion MRI: why, how and but

    Get PDF
    Why has diffusion MRI become a principal modality for mapping connectomes in vivo? How do different image acquisition parameters, fiber tracking algorithms and other methodological choices affect connectome estimation? What are the main factors that dictate the success and failure of connectome reconstruction? These are some of the key questions that we aim to address in this review. We provide an overview of the key methods that can be used to estimate the nodes and edges of macroscale connectomes, and we discuss open problems and inherent limitations. We argue that diffusion MRI-based connectome mapping methods are still in their infancy and caution against blind application of deep white matter tractography due to the challenges inherent to connectome reconstruction. We review a number of studies that provide evidence of useful microstructural and network properties that can be extracted in various independent and biologically-relevant contexts. Finally, we highlight some of the key deficiencies of current macroscale connectome mapping methodologies and motivate future developments

    A novel global tractography algorithm based on an adaptive spin glass model.

    No full text
    International audienceThis paper introduces a novel framework for global diffusion MRI tractography inspired from a spin glass model. The entire white matter fascicle map is parameterized by pieces of fibers called spins. Spins are encouraged to move and rotate to align with the main fiber directions, and to assemble into longer chains of low curvature. Moreover, they have the ability to adapt their quantity in regions where the spin concentration is not sufficient to correctly model the data. The optimal spin glass configuration is retrieved by an iterative minimization procedure, where chains are finally assimilated to fibers. As a result, all brain fibers appear as growing simultaneously until they merge with other fibers or reach the domain boundaries. In case of an ambiguity within a region like a crossing, the contribution of all neighboring fibers is used determine the correct neural pathway. This framework is tested on a MR phantom representing a 45 degrees crossing and a real brain dataset. Notably, the framework was able to retrieve the triple crossing between the callosal fibers, the corticospinal tract and the arcuate fasciculus

    New tractography methods based on parametric models of white matter fibre dispersion

    Get PDF
    Diffusion weighted magnetic resonance imaging (DW-MRI) is a powerful imaging technique that can probe the complex structure of the body, revealing structural trends which exist at scales far below the voxel resolution. Tractography utilises the information derived from DW-MRI to examine the structure of white matter. Using information derived from DW-MRI, tractography can estimate connectivity between distinct, functional cortical and sub-cortical regions of grey matter. Understanding how seperate functional regions of the brain are connected as part of a network is key to understanding how the brain works. Tractography has been used to deliniate many known white matter structures and has also revealed structures not fully understood from anatomy due to limitations of histological examination. However, there still remain many shortcomings of tractography, many anatomical features for which tractography algorithms are known to fail, which leads to discrepancies between known anatomy and tractography results. With the aim of approaching a complete picture of the human connectome via tractography, we seek to address the shortcomings in current tractography techniques by exploiting new advances in modelling techniques used in DW-MRI, which provide more accurate representation of underlying white matter anatomy. This thesis introduces a methodology for fully utilising new tissue models in DWMRI to improve tractography. It is known from histology that there are regions of white matter where fibres disperse or curve rapidly at length scales below the DW-MRI voxel resolution. One area where dispersion is particularly prominent is the corona radiata. New DW-MRI models capture dispersion utilising specialised parametric probability distributions. We present novel tractography algorithms utilising these parametric models of dispersion in tractography to improve connectivity estimation in areas of dispersing fibres. We first present an algorithm utilising the the new parametric models of dispersion for tractography in a simple Bayesian framework. We then present an extension to this algorithm which introduces a framework to pool neighbourhood information from multiple voxels in the neighbournhood surrounding the tract in order to better estimate connectivity, introducing the new concept of the neighbourhood-informed orientation distribution function (NI-ODF). Specifically, using neighbourhood exploration we address the ambiguity arising in ’fanning polarity’. In regions of dispersing fibres, the antipodal symmetry inherent in DW-MRI makes it impossible to resolve the polarity of a dispersing fibre configuration from a local voxel-wise model in isolation, by pooling information from neighbouring voxels, we show that this issue can be addressed. We evaluate the newly proposed tractography methods using synthetic phantoms simulating canonical fibre configurations and validate the ability to effectively navigate regions of dispersing fibres and resolve fanning polarity. We then validate that the algorithms perform effectively in real in vivo data, using DW-MRI data from 5 healthy subjects. We show that by utilising models of dispersion, we recover a wider range of connectivity compared to other standard algorithms when tracking through an area of the brain known to have significant white fibre dispersion - the corona radiata. We then examine the impact of the new algorithm on global connectivity estimates in the brain. We find that whole brain connectivity networks derived using the new tractography method feature strong connectivity between frontal lobe regions. This is in contrast to networks derived using competing tractography methods which do not account for sub-voxel fibre dispersion. We also compare thalamo-cortical connectivity estimated using the newly proposed tractography method and compare with a compteing tractography method, finding that the recovered connectivity profiles are largely similar, with some differences in thalamo-cortical connections to regions of the frontal lobe. The results suggest that fibre dispersion is an important structural feature to model in the basis of a tractography algorithm, as it has a strong effect on connectivity estimation

    Whole-brain cortical parcellation: A hierarchical method based on dMRI tractography

    Get PDF
    In den modernen Neurowissenschaften ist allgemein anerkannt, dass die Gehirnfunktionen auf dem Zusammenwirken von verschiedenen Regionen in Netzwerken beruhen und die strukturelle Konnektivität daher großer Bedeutung ist. Daher kann die Abgrenzung funktioneller Hirnbereiche auf der Grundlage der Diffusions-Magnet-Resonanz-Tomographie (dMRT) und der Traktografie zu wertvollen Hirnkarten führen.Existierende Verfahren versuchen eine fest vorgegebene Anzahl von Regionen zu finden und/oder sind auf kleine Bereiche der grauen Substanz beschränkt. Im Allgemeinen ist es jedoch unwahrscheinlich, dass eine einzelne Parzellierung des Kortex, eine ausreichende Darstellung der funktio- anatomischen Organisation des Gehirns erlaubt. In dieser Arbeit schlagen wir eine hierarchische Clusteranalyse vor um diese Einschränkungen zu überwinden und das gesamte Gehirn zu parzellieren. Wir zeigen, dass dieses Verfahren die Eigenschaften der zugrundeliegenden Struktur auf allen Granularitätstufen des hierarchischen Baums (Dendrogramm) kodieren kann. Weiterhin entwickeln wir eine optimale Verarbeitungspipeline zur Erstellung dieses Baums, die dessen Komplexität mit minimalem Informationsverlust reduziert. Wir zeigen wie diese Datenstrukturen verwendet werden können um die Ähnlichkeitstruktur von verschiedenen Probanden oder Messungen zu vergleichen und wie man daraus verschiedene Parzellierungen des Gehirns erhalten kann.Unser neuer Ansatz liefert eine ausführlichere Analyse der anatomischen Strukturen und bietet eine Methode zur Parzellierung des ganzen Gehirns.In modern neuroscience there is general agreement that brain function relies on networks and that connectivity is therefore of paramount importance for brain function. Accordingly, the delineation of functional brain areas on the basis of diffusion magnetic resonance imaging (dMRI) and tractography may lead to highly relevant brain maps.Existing methods typically aim to find a predefined number of areas and/or are limited to small regions of grey matter. However, it is in general not likely that a single parcellation dividing the brain into a finite number of areas is an adequate representation of the function-anatomical organization of the brain. In this work, we propose hierarchical clustering as a solution to overcome these limitations and achieve whole-brain parcellation. We demonstrate that this method encodes the information of the underlying structure at all granularity levels in a hierarchical tree or dendrogram. We develop an optimal tree building and processing pipeline that reduces the complexity of the tree with minimal information loss. We show how these trees can be used to compare the similarity structure of different subjects or recordings and how to extract parcellations from them.Our novel approach yields a more exhaustive representation of the real underlying structure and successfully tackles the challenge of whole-brain parcellation

    Atlas Construction for Measuring the Variability of Complex Anatomical Structures

    Get PDF
    RÉSUMÉ La recherche sur l'anatomie humaine, en particulier sur le cœur et le cerveau, est d'un intérêt particulier car leurs anomalies entraînent des pathologies qui sont parmi les principales causes de décès dans le monde et engendrent des coûts substantiels. Heureusement, les progrès en imagerie médicale permettent des diagnostics et des traitements autrefois impossibles. En contrepartie, la quantité phénoménale de données produites par ces technologies nécessite le développement d'outils efficaces pour leur traitement. L'objectif de cette thèse est de proposer un ensemble d'outils permettant de normaliser des mesures prélevées sur différents individus, essentiels à l'étude des caractéristiques de structures anatomiques complexes. La normalisation de mesures consiste à rassembler une collection d'images dans une référence commune, aussi appelée construction d'atlas numériques, afin de combiner des mesures provenant de différents patients. Le processus de construction inclut deux étapes principales; la segmentation d'images pour trouver des régions d'intérêts et le recalage d'images afin de déterminer les correspondances entres régions d'intérêts. Les méthodes actuelles de constructions d'atlas peuvent nécessiter des interventions manuelles, souvent fastidieuses, variables, et sont en outre limitées par leurs mécanismes internes. Principalement, le recalage d'images dépend d'une déformation incrémentales d'images sujettes a des minimums locaux. Le recalage n'est ainsi pas optimal lors de grandes déformations et ces limitations requièrent la nécessite de proposer de nouvelles approches pour la construction d'atlas. Les questions de recherche de cette thèse se concentrent donc sur l'automatisation des méthodes actuelles ainsi que sur la capture de déformations complexes de structures anatomiques, en particulier sur le cœur et le cerveau. La méthodologie adoptée a conduit à trois objectifs de recherche spécifiques. Le premier prévoit un nouveau cadre de construction automatise d'atlas afin de créer le premier atlas humain de l'architecture de fibres cardiaques. Le deuxième vise à explorer une nouvelle approche basée sur la correspondance spectrale, nommée FOCUSR, afin de capturer une grande variabilité de formes sur des maillages. Le troisième aboutit finalement à développer une approche fondamentalement différente pour le recalage d'images à fortes déformations, nommée les démons spectraux. Le premier objectif vise plus particulièrement à construire un atlas statistique de l'architecture des fibres cardiaques a partir de 10 cœurs ex vivo humains. Le système développé a mené à deux contributions techniques et une médicale, soit l'amélioration de la segmentation de structures cardiaques et l'automatisation du calcul de forme moyenne, ainsi que notamment la première étude chez l'homme de la variabilité de l'architecture des fibres cardiaques. Pour résumer les principales conclusions, les fibres du cœur humain moyen varient de +- 12 degrés, l'angle d'helix s'étend entre -41 degrés (+- 26 degrés) sur l'épicarde à +66 degrés (+- 15 degrés) sur l'endocarde, tandis que l'angle transverse varie entre +9 degrés (+- 12 degrés) et +34 degrés (+- 29 degrés) à travers le myocarde. Ces résultats sont importants car ces fibres jouent un rôle clef dans diverses fonctions mécaniques et électrophysiologiques du cœur. Le deuxième objectif cherche à capturer une grande variabilité de formes entre structures anatomiques complexes, plus particulièrement entre cortex cérébraux à cause de l'extrême variabilité de ces surfaces et de leur intérêt pour l'étude de fonctions cognitives. La nouvelle méthode de correspondance surfacique, nommée FOCUSR, exploite des représentations spectrales car l'appariement devient plus facile et rapide dans le domaine spectral plutôt que dans l'espace Euclidien classique. Dans sa forme la plus simple, FOCUSR améliore les méthodes spectrales actuelles par un recalage non rigide des représentations spectrales, toutefois, son plein potentiel est atteint en exploitant des données supplémentaires lors de la mise en correspondance. Par exemple, les résultats ont montré que la profondeur des sillons et de la courbure du cortex cérébral améliore significativement la correspondance de surfaces de cerveaux. Enfin, le troisième objectif vise à améliorer le recalage d'images d'organes ayant des fortes variabilités entre individus ou subis de fortes déformations, telles que celles créées par le mouvement cardiaque. La méthodologie amenée par la correspondance spectrale permet d'améliorer les approches conventionnelles de recalage d'images. En effet, les représentations spectrales, capturant des similitudes géométriques globales entre différentes formes, permettent de surmonter les limitations actuelles des méthodes de recalage qui restent guidées par des forces locales. Le nouvel algorithme, nommé démons spectraux, peut ainsi supporter de très grandes déformations locales et complexes entre images, et peut être tout autant adapté a d'autres approches, telle que dans un cadre de recalage conjoint d'images. Il en résulte un cadre complet de construction d'atlas, nommé démons spectraux multijoints, où la forme moyenne est calculée directement lors du processus de recalage plutôt qu'avec une approche séquentielle de recalage et de moyennage. La réalisation de ces trois objectifs spécifiques a permis des avancées dans l'état de l'art au niveau des méthodes de correspondance spectrales et de construction d'atlas, en permettant l'utilisation d'organes présentant une forte variabilité de formes. Dans l'ensemble, les différentes stratégies fournissent de nouvelles contributions sur la façon de trouver et d'exploiter des descripteurs globaux d'images et de surfaces. D'un point de vue global, le développement des objectifs spécifiques établit un lien entre : a) la première série d'outils, mettant en évidence les défis à recaler des images à fortes déformations, b) la deuxième série d'outils, servant à capturer de fortes déformations entre surfaces mais qui ne reste pas directement applicable a des images, et c) la troisième série d'outils, faisant un retour sur le traitement d'images en permettant la construction d'atlas a partir d'images ayant subies de fortes déformations. Il y a cependant plusieurs limitations générales qui méritent d'être investiguées, par exemple, les données partielles (tronquées ou occluses) ne sont pas actuellement prises en charge les nouveaux outils, ou encore, les stratégies algorithmiques utilisées laissent toujours place à l'amélioration. Cette thèse donne de nouvelles perspectives dans les domaines de l'imagerie cardiaque et de la neuroimagerie, toutefois, les nouveaux outils développés sont assez génériques pour être appliqués a tout recalage d'images ou de surfaces. Les recommandations portent sur des recherches supplémentaires qui établissent des liens avec la segmentation à base de graphes, pouvant conduire à un cadre complet de construction d'atlas où la segmentation, le recalage, et le moyennage de formes seraient tous interdépendants. Il est également recommandé de poursuivre la recherche sur la construction de meilleurs modèles électromécaniques cardiaques à partir des résultats de cette thèse. En somme, les nouveaux outils offrent de nouvelles bases de recherche et développement pour la normalisation de formes, ce qui peut potentiellement avoir un impact sur le diagnostic, ainsi que la planification et la pratique d'interventions médicales.----------ABSTRACT Research on human anatomy, in particular on the heart and the brain, is a primary concern for society since their related diseases are among top killers across the globe and have exploding associated costs. Fortunately, recent advances in medical imaging offer new possibilities for diagnostics and treatments. On the other hand, the growth in data produced by these relatively new technologies necessitates the development of efficient tools for processing data. The focus of this thesis is to provide a set of tools for normalizing measurements across individuals in order to study complex anatomical characteristics. The normalization of measurements consists of bringing a collection of images into a common reference, also known as atlas construction, in order to combine measurements made on different individuals. The process of constructing an atlas involves the topics of segmentation, which finds regions of interest in the data (e.g., an organ, a structure), and registration, which finds correspondences between regions of interest. Current frameworks may require tedious and hardly reproducible user interactions, and are additionally limited by their computational schemes, which rely on slow iterative deformations of images, prone to local minima. Image registration is, therefore, not optimal with large deformations. Such limitations indicate the need to research new approaches for atlas construction. The research questions are consequently addressing the problems of automating current frameworks and capturing global and complex deformations between anatomical structures, in particular between human hearts and brains. More precisely, the methodology adopted in the thesis led to three specific research objectives. Briefly, the first step aims at developing a new automated framework for atlas construction in order to build the first human atlas of the cardiac fiber architecture. The second step intends to explore a new approach based on spectral correspondence, named FOCUSR, in order to precisely capture large shape variability. The third step leads, finally, to a fundamentally new approach for image registration with large deformations, named the Spectral Demons algorithm. The first objective aims more specifically at constructing a statistical atlas of the cardiac fiber architecture from a unique human dataset of 10 ex vivo hearts. The developed framework made two technical, and one medical, contributions, that are the improvement of the segmentation of cardiac structures, the automation of the shape averaging process, and more importantly, the first human study on the variability of the cardiac fiber architecture. To summarize the main finding, the fiber orientations in human hearts has been found to vary with about +- 12 degrees, the range of the helix angle spans from -41 degrees (+- 26 degrees) on the epicardium to +66 degrees (+- 15 degrees) on the endocardium, while, the range of the transverse angle spans from +9 degrees (+- 12 degrees) to +34 degrees (+- 29 degrees) across the myocardial wall. These findings are significant in cardiology since the fiber architecture plays a key role in cardiac mechanical functions and in electrophysiology. The second objective intends to capture large shape variability between complex anatomical structures, in particular between cerebral cortices due to their highly convoluted surfaces and their high anatomical and functional variability across individuals. The new method for surface correspondence, named FOCUSR, exploits spectral representations since matching is easier in the spectral domain rather than in the conventional Euclidean space. In its simplest form, FOCUSR improves current spectral approaches by refining spectral representations with a nonrigid alignment; however, its full power is demonstrated when using additional features during matching. For instance, the results showed that sulcal depth and cortical curvature improve significantly the accuracy of cortical surface matching. Finally, the third objective is to improve image registration for organs with a high inter-subject variability or undergoing very large deformations, such as the heart. The new approach brought by the spectral matching technique allows the improvement of conventional image registration methods. Indeed, spectral representations, which capture global geometric similarities and large deformations between different shapes, may be used to overcome a major limitation of current registration methods, which are in fact guided by local forces and restrained to small deformations. The new algorithm, named Spectral Demons, can capture very large and complex deformations between images, and can additionally be adapted to other approaches, such as in a groupwise configuration. This results in a complete framework for atlas construction, named Groupwise Spectral Demons, where the average shape is computed during the registration process rather than in sequential steps. The achievements of these three specific objectives permitted advances in the state-of-the-art of spectral matching methods and of atlas construction, enabling the registration of organs with significant shape variability. Overall, the investigation of these different strategies provides new contributions on how to find and exploit global descriptions of images and surfaces. From a global perspective, these objectives establish a link between: a) the first set of tools, that highlights the challenges in registering images with very large deformations, b) the second set of tools, that captures very large deformations between surfaces but are not applicable to images, and c) the third set of tools, that comes back on processing images and allows a natural construction of atlases from images with very large deformations. There are, however, several general remaining limitations, for instance, partial data (truncated or occluded) is currently not supported by the new tools, or also, the strategy for computing and using spectral representations still leaves room for improvement. This thesis gives new perspectives in cardiac and neuroimaging, yet at the same time, the new tools remain general enough for virtually any application that uses surface or image registration. It is recommended to research additional links with graph-based segmentation methods, which may lead to a complete framework for atlas construction where segmentation, registration and shape averaging are all interlinked. It is also recommended to pursue research on building better cardiac electromechanical models from the findings of this thesis. Nevertheless, the new tools provide new grounds for research and application of shape normalization, which may potentially impact diagnostic, as well as planning and performance of medical interventions

    Diffusion directions imaging (high resolution reconstruction of white matter fascicles from low angular resolution diffusion MRI)

    Get PDF
    L'objectif de cette thèse est de fournir une chaine de traitement complète pour la reconstruction des faisceaux de la matière blanche à partir d'images pondérées en diffusion caractérisées par une faible résolution angulaire. Cela implique (i) d'inférer en chaque voxel un modèle de diffusion à partir des images de diffusion et (ii) d'accomplir une ''tractographie", i.e., la reconstruction des faisceaux à partir de ces modèles locaux. Notre contribution en modélisation de la diffusion est une nouvelle distribution statistique dont les propriétés sont étudiées en détail. Nous modélisons le phénomène de diffusion par un mélange de telles distributions incluant un outil de sélection de modèle destiné à estimer le nombre de composantes du mélange. Nous montrons que le modèle peut être correctement estimé à partir d'images de diffusion ''single-shell" à faible résolution angulaire et qu'il fournit des biomarqueurs spécifiques pour l'étude des tumeurs. Notre contribution en tractographie est un algorithme qui approxime la distribution des faisceaux émanant d'un voxel donné. Pour cela, nous élaborons un filtre particulaire mieux adapté aux distributions multi-modales que les filtres traditionnels. Pour démontrer l'applicabilité de nos outils en usage clinique, nous avons participé aux trois éditions du MICCAI DTI Tractography challenge visant à reconstruire le faisceau cortico-spinal à partir d'images de diffusion ''single-shell" à faibles résolutions angulaire et spatiale. Les résultats montrent que nos outils permettent de reconstruire toute l'étendue de ce faisceau.The objective of this thesis is to provide a complete pipeline that achieves an accurate reconstruction of the white matter fascicles using clinical diffusion images characterized by a low angular resolution. This involves (i) a diffusion model inferred in each voxel from the diffusion images and (ii) a tractography algorithm fed with these local models to perform the actual reconstruction of fascicles. Our contribution in diffusion modeling is a new statistical distribution, the properties of which are extensively studied. We model the diffusion as a mixture of such distributions, for which we design a model selection tool that estimates the number of mixture components. We show that the model can be accurately estimated from single shell low angular resolution diffusion images and that it provides specific biomarkers for studying tumors. Our contribution in tractography is an algorithm that approximates the distribution of fascicles emanating from a seed voxel. We achieve that by means of a particle filter better adapted to multi-modal distributions than the traditional filters. To demonstrate the clinical applicability of our tools, we participated to all three editions of the MICCAI DTI Tractography challenge aiming at reconstructing the cortico-spinal tract from single-shell low angular and low spatial resolution diffusion images. Results show that our pipeline provides a reconstruction of the full extent of the CST.RENNES1-Bibl. électronique (352382106) / SudocSudocFranceF
    corecore