1,048 research outputs found

    Smart technologies for effective reconfiguration: the FASTER approach

    Get PDF
    Current and future computing systems increasingly require that their functionality stays flexible after the system is operational, in order to cope with changing user requirements and improvements in system features, i.e. changing protocols and data-coding standards, evolving demands for support of different user applications, and newly emerging applications in communication, computing and consumer electronics. Therefore, extending the functionality and the lifetime of products requires the addition of new functionality to track and satisfy the customers needs and market and technology trends. Many contemporary products along with the software part incorporate hardware accelerators for reasons of performance and power efficiency. While adaptivity of software is straightforward, adaptation of the hardware to changing requirements constitutes a challenging problem requiring delicate solutions. The FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) project aims at introducing a complete methodology to allow designers to easily implement a system specification on a platform which includes a general purpose processor combined with multiple accelerators running on an FPGA, taking as input a high-level description and fully exploiting, both at design time and at run time, the capabilities of partial dynamic reconfiguration. The goal is that for selected application domains, the FASTER toolchain will be able to reduce the design and verification time of complex reconfigurable systems providing additional novel verification features that are not available in existing tool flows

    Configuration Sharing Optimized Placement and Routing

    Get PDF
    Reconfigurable systems have been shown to achieve very high computational performance. However, the overhead associated with reconfiguration of hardware remains a critical factor in overall system performance. This paper discusses the development and evaluation of a technique to minimize the delay associated with reconfiguration based upon optimized sharing of configuration bit streams between design contexts. This is achieved through modified placement and routing algorithms

    A general framework for efficient FPGA implementation of matrix product

    Get PDF
    Original article can be found at: http://www.medjcn.com/ Copyright Softmotor LimitedHigh performance systems are required by the developers for fast processing of computationally intensive applications. Reconfigurable hardware devices in the form of Filed-Programmable Gate Arrays (FPGAs) have been proposed as viable system building blocks in the construction of high performance systems at an economical price. Given the importance and the use of matrix algorithms in scientific computing applications, they seem ideal candidates to harness and exploit the advantages offered by FPGAs. In this paper, a system for matrix algorithm cores generation is described. The system provides a catalog of efficient user-customizable cores, designed for FPGA implementation, ranging in three different matrix algorithm categories: (i) matrix operations, (ii) matrix transforms and (iii) matrix decomposition. The generated core can be either a general purpose or a specific application core. The methodology used in the design and implementation of two specific image processing application cores is presented. The first core is a fully pipelined matrix multiplier for colour space conversion based on distributed arithmetic principles while the second one is a parallel floating-point matrix multiplier designed for 3D affine transformations.Peer reviewe

    Design methodology addressing static/reconfigurable partitioning optimizing software defined radio (SDR) implementation through FPGA dynamic partial reconfiguration and rapid prototyping tools

    Get PDF
    The characteristics people request for communication devices become more and more demanding every day. And not only in those aspects dealing with communication speed, but also in such different characteristics as different communication standards compatibility, battery life, device size or price. Moreover, when this communication need is addressed by the industrial world, new characteristics such as reliability, robustness or time-to-market appear. In this context, Software Defined Radios (SDR) and evolutions such as Cognitive Radios or Intelligent Radios seem to be the technological answer that will satisfy all these requirements in a short and mid-term. Consequently, this PhD dissertation deals with the implementation of this type of communication system. Taking into account that there is no limitation neither in the implementation architecture nor in the target device, a novel framework for SDR implementation is proposed. This framework is made up of FPGAs, using dynamic partial reconfiguration, as target device and rapid prototyping tools as designing tool. Despite the benefits that this framework generates, there are also certain drawbacks that need to be analyzed and minimized to the extent possible. On this purpose, a SDR design methodology has been designed and tested. This methodology addresses the static/reconfigurable partitioning of the SDRs in order to optimize their implementation in the aforementioned framework. In order to verify the feasibility of both the design framework and the design methodology, several implementations have been carried out making use of them. A multi-standard modulator implementing WiFi, WiMAX and UMTS, a small-form-factor cognitive video transmission system and the implementation of several data coding functions over R3TOS, a hardware operating system developed by the University of Edinburgh, are these implementations.Las características que la gente exige a los dispositivos de comunicaciones son cada día más exigentes. Y no solo en los aspectos relacionados con la velocidad de comunicación, sino que también en diferentes características como la compatibilidad con diferentes estándares de comunicación, autonomía, tamaño o precio. Es más, cuando esta necesidad de comunicación se traslada al mundo industrial, aparecen nuevas características como fiabilidad, robustez o plazo de comercialización que también es necesario cubrir. En este contexto, las Radios Definidas por Software (SDR) y evoluciones como las Radios Cognitivas o Radios Inteligentes parecen la respuesta tecnológica que va a satisfacer estas necesidades a corto y medio plazo. Por ello, esta tesis doctoral aborda la implementación de este tipo de sistemas de comunicaciones. Teniendo en cuenta que no existe una limitación, ni en la arquitectura de implementación, ni en el tipo de dispositivo a usar, se propone un nuevo entrono de diseño formado por las FPGAs, haciendo uso de la reconfiguración parcial dinámica, y por las herramientas de prototipado rápido. A pesar de que este entorno de diseño ofrece varios beneficios, también genera algunos inconvenientes que es necesario analizar y minimizar en la medida de lo posible. Con este objetivo, se ha diseñado y verificado una metodología de diseño de SDRs. Esta metodología se encarga del particionado estático/reconfigurable de las SDRs para optimizar su implementación sobre el entrono de diseño antes comentado. Para verificar la viabilidad tanto del entorno, como de la metodología de diseño propuesta, se han realizado varias implementaciones que hacen uso de ambas cosas. Estas implementaciones son: un modulador multi-estándar que implementa WiFi, WiMAX y UMTS, un sistema cognitivo y compacto de transmisión de video y la implementación de varias funciones de codificación de datos sobre R3TOS, un sistema operativo hardware desarrollado por la Universidad de Edimburgo

    FPGA dynamic and partial reconfiguration : a survey of architectures, methods, and applications

    Get PDF
    Dynamic and partial reconfiguration are key differentiating capabilities of field programmable gate arrays (FPGAs). While they have been studied extensively in academic literature, they find limited use in deployed systems. We review FPGA reconfiguration, looking at architectures built for the purpose, and the properties of modern commercial architectures. We then investigate design flows, and identify the key challenges in making reconfigurable FPGA systems easier to design. Finally, we look at applications where reconfiguration has found use, as well as proposing new areas where this capability places FPGAs in a unique position for adoption

    Accelerated Frame Data Relocation on Xilinx Field Programmable Gate Array

    Get PDF
    Emerging reconfiguration techniques that include partial dynamic reconfiguration and partial bitstream relocation have been addressed in the past in order to expose the flexibility of field programmable gate array at runtime. Partial bitstream relocation is a technique used to target a partial bitstream of a partial reconfigurable region (PRR) onto other identical reconfigurable regions inside an FPGA, while partial dynamic reconfiguration is used to target a single reconfigurable region. Prior works in this domain aim to minimize relocation time with the help of on-chip or on-line processing. In this thesis, a novel PRR-PRR relocation algorithm is proposed and implemented both in software and hardware. Dedicated hardware architecture, called the accelerated relocation circuit (ARC), is designed and presented for fast relocation. An analytical model is also proposed to evaluate the performance of the PRR-PRR relocation algorithm and highlight the speed-up obtained by the proposed hardware implementation. ARC has been tested on two categories of designs: dynamically scalable systolic array designs and fault tolerant designs. It has been compared against the software implementation of the algorithm, BiRF, hardware architecture for bitstream relocation, and a software solution for bitstream relocation. An average speed-up of 153x for ARC over BiRF is observed, with the additional advantage of not storing any bitstreams, thus saving invaluable block random access memory (BRAMs). Accuracy of proposed analytical model was found to be more than 95% for all the test cases

    Efficient reconfigurable architectures for 3D medical image compression

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Recently, the more widespread use of three-dimensional (3-D) imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound (US) have generated a massive amount of volumetric data. These have provided an impetus to the development of other applications, in particular telemedicine and teleradiology. In these fields, medical image compression is important since both efficient storage and transmission of data through high-bandwidth digital communication lines are of crucial importance. Despite their advantages, most 3-D medical imaging algorithms are computationally intensive with matrix transformation as the most fundamental operation involved in the transform-based methods. Therefore, there is a real need for high-performance systems, whilst keeping architectures exible to allow for quick upgradeability with real-time applications. Moreover, in order to obtain efficient solutions for large medical volumes data, an efficient implementation of these operations is of significant importance. Reconfigurable hardware, in the form of field programmable gate arrays (FPGAs) has been proposed as viable system building block in the construction of high-performance systems at an economical price. Consequently, FPGAs seem an ideal candidate to harness and exploit their inherent advantages such as massive parallelism capabilities, multimillion gate counts, and special low-power packages. The key achievements of the work presented in this thesis are summarised as follows. Two architectures for 3-D Haar wavelet transform (HWT) have been proposed based on transpose-based computation and partial reconfiguration suitable for 3-D medical imaging applications. These applications require continuous hardware servicing, and as a result dynamic partial reconfiguration (DPR) has been introduced. Comparative study for both non-partial and partial reconfiguration implementation has shown that DPR offers many advantages and leads to a compelling solution for implementing computationally intensive applications such as 3-D medical image compression. Using DPR, several large systems are mapped to small hardware resources, and the area, power consumption as well as maximum frequency are optimised and improved. Moreover, an FPGA-based architecture of the finite Radon transform (FRAT)with three design strategies has been proposed: direct implementation of pseudo-code with a sequential or pipelined description, and block random access memory (BRAM)- based method. An analysis with various medical imaging modalities has been carried out. Results obtained for image de-noising implementation using FRAT exhibits promising results in reducing Gaussian white noise in medical images. In terms of hardware implementation, promising trade-offs on maximum frequency, throughput and area are also achieved. Furthermore, a novel hardware implementation of 3-D medical image compression system with context-based adaptive variable length coding (CAVLC) has been proposed. An evaluation of the 3-D integer transform (IT) and the discrete wavelet transform (DWT) with lifting scheme (LS) for transform blocks reveal that 3-D IT demonstrates better computational complexity than the 3-D DWT, whilst the 3-D DWT with LS exhibits a lossless compression that is significantly useful for medical image compression. Additionally, an architecture of CAVLC that is capable of compressing high-definition (HD) images in real-time without any buffer between the quantiser and the entropy coder is proposed. Through a judicious parallelisation, promising results have been obtained with limited resources. In summary, this research is tackling the issues of massive 3-D medical volumes data that requires compression as well as hardware implementation to accelerate the slowest operations in the system. Results obtained also reveal a significant achievement in terms of the architecture efficiency and applications performance.Ministry of Higher Education Malaysia (MOHE), Universiti Tun Hussein Onn Malaysia (UTHM) and the British Counci

    An Adaptive Modular Redundancy Technique to Self-regulate Availability, Area, and Energy Consumption in Mission-critical Applications

    Get PDF
    As reconfigurable devices\u27 capacities and the complexity of applications that use them increase, the need for self-reliance of deployed systems becomes increasingly prominent. A Sustainable Modular Adaptive Redundancy Technique (SMART) composed of a dual-layered organic system is proposed, analyzed, implemented, and experimentally evaluated. SMART relies upon a variety of self-regulating properties to control availability, energy consumption, and area used, in dynamically-changing environments that require high degree of adaptation. The hardware layer is implemented on a Xilinx Virtex-4 Field Programmable Gate Array (FPGA) to provide self-repair using a novel approach called a Reconfigurable Adaptive Redundancy System (RARS). The software layer supervises the organic activities within the FPGA and extends the self-healing capabilities through application-independent, intrinsic, evolutionary repair techniques to leverage the benefits of dynamic Partial Reconfiguration (PR). A SMART prototype is evaluated using a Sobel edge detection application. This prototype is shown to provide sustainability for stressful occurrences of transient and permanent fault injection procedures while still reducing energy consumption and area requirements. An Organic Genetic Algorithm (OGA) technique is shown capable of consistently repairing hard faults while maintaining correct edge detector outputs, by exploiting spatial redundancy in the reconfigurable hardware. A Monte Carlo driven Continuous Markov Time Chains (CTMC) simulation is conducted to compare SMART\u27s availability to industry-standard Triple Modular Technique (TMR) techniques. Based on nine use cases, parameterized with realistic fault and repair rates acquired from publically available sources, the results indicate that availability is significantly enhanced by the adoption of fast repair techniques targeting aging-related hard-faults. Under harsh environments, SMART is shown to improve system availability from 36.02% with lengthy repair techniques to 98.84% with fast ones. This value increases to five nines (99.9998%) under relatively more favorable conditions. Lastly, SMART is compared to twenty eight standard TMR benchmarks that are generated by the widely-accepted BL-TMR tools. Results show that in seven out of nine use cases, SMART is the recommended technique, with power savings ranging from 22% to 29%, and area savings ranging from 17% to 24%, while still maintaining the same level of availability
    corecore