
FPGA VIRTUALISATION ON
HETEROGENEOUS COMPUTING

SYSTEMS
—

MODEL, TOOLS, AND SYSTEMS

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2020

Khoa Dang Pham

School of Computer Science

Contents

Abstract 12

Declaration 13

Copyright 14

Acknowledgements 15

1 Introduction 16

1.1 Motivation and Aims . 20

1.2 Contributions . 21

1.2.1 FPGA Virtualisation Model for Heterogeneous Computing Sys-
tems . 21

1.2.2 Bitstream Abstraction . 23

1.2.3 Decoupled Compilation Flow for FPGA Virtualisation 24

1.2.4 System Prototypes . 26

1.3 Thesis Structure . 27

1.3.1 Chapter 2 – Background and Related Works 27

1.3.2 Chapter 3 – Bitstream Manipulation Tool and API 27

1.3.3 Chapter 4 – Decoupled Compilation Flow for FPGA Virtuali-
sation . 29

1.3.4 Chapter 5 – Run-time Management 29

1.3.5 Chapter 6 – System Evaluation 29

1.3.6 Chapter 7 – Conclusion . 29

1.4 Publications . 30

1.5 Open Source Releases . 32

2

2 Background and Related Works 33
2.1 Overview . 33

2.2 Partial Reconfiguration (PR) . 33

2.2.1 FPGA Vendors’ PR Design Flows 34

2.2.2 Academic PR Development Tools 35

2.2.3 Discussion . 37

2.3 Bitstream Manipulation . 37

2.4 Compilation Flows for HLS Applications 38

2.5 Shell-based Systems . 40

2.6 Chapter Summary . 44

3 Bitstream Manipulation Tool and API 46
3.1 Bitstream Investigation and BitMan Implementation 47

3.1.1 Bitstream Format . 47

3.1.2 Module Placement and Relocation 56

3.1.3 Bitstream Manipulation Tool 57

3.2 Applications and Evaluation . 57

3.2.1 Run-time Adaptation . 60

3.2.2 Hardware Mapping and Linking for the Overlay Architecture . 62

3.2.3 Bitstream generation for Enabling On-chip Self-compilation . 63

3.3 Chapter Summary . 64

4 Decoupled Compilation Flow 65
4.1 Design Methodology . 66

4.1.1 Overview . 66

4.1.2 Academic Tools for Routing Constraints Generation and Bit-
stream Manipulation . 69

4.2 Shell Design . 69

4.2.1 Implementation of the Shell 70

4.2.2 Bus Virtualisation . 73

4.2.3 I/O FPGA Virtualisation . 74

4.3 Module Compilation . 77

4.3.1 Overview of Module (Role) Design 78

4.3.2 Module Synthesis . 79

4.3.3 Module Implementation . 80

4.3.4 Hardware Module Library 83

3

4.4 Chapter Summary . 87

5 Run-time Management 90
5.1 Workflow Overview . 90

5.2 Configuration Controller . 91

5.2.1 Overview . 91

5.2.2 Hardware Module Placement Process 92

5.2.3 Configuration Overhead . 93

5.3 Hardware Task Scheduler . 94

5.3.1 Overview . 94

5.3.2 Scheduling Overhead . 95

5.4 Module Device Driver . 95

5.5 Memory Isolation/Management . 96

5.5.1 Overview . 96

5.5.2 Memory Management Framework for FPGA: 97

5.5.3 Memory Management Overhead 98

5.6 Chapter Summary . 99

6 System Evaluation 100
6.1 Design Productivity and Deployment Flexibility 101

6.1.1 Analysis of Design Productivity 101

6.1.2 Analysis of Configuration Overhead 103

6.1.3 Analysis of Deployment Flexibility and System Completion
Time . 103

6.1.4 Summary . 105

6.2 Resource Utilisation and System Performance 105

6.2.1 Analysis of Resource Utilisation and Performance 107

6.2.2 Summary . 107

6.3 Cost of Multi-tenancy Support . 107

6.3.1 Analysis of Resource and Performance Overhead 108

6.3.2 Summary . 109

6.4 Resilience and Maintenance of Multi-node Systems 110

6.4.1 Mitigation Scenarios for Fault Tolerance/Resilience 111

6.4.2 Analysis of System Maintenance 113

6.4.3 Summary . 113

6.5 Scalability and Energy Efficiency . 114

4

6.5.1 Analysis of Scalability and Energy Efficiency 117

6.5.2 Summary . 119

6.6 Chapter Summary . 119

7 Conclusion 120
7.1 Summary of Contributions . 120

7.1.1 A Model of FPGA Virtualisation on Heterogeneous Comput-
ing Platforms . 120

7.1.2 A Tool and API for Bitstream Abstraction 120

7.1.3 Design Methodology and System Implementation 121

7.1.4 System Prototype and Evaluation 121

7.2 Future Works . 121

7.2.1 Security for Multi-tenancy FPGA-virtualised Systems 121

7.2.2 High-speed Configuration Infrastructure 122

7.2.3 Vendor-independent FPGA Platforms for Education and Re-
search Purposes . 122

Bibliography 124

A IPRDF 136
A.1 Introduction . 136

A.2 Related Work . 140

A.2.1 Isolation Design Flows . 140

A.2.2 Partial Reconfiguration Tools 140

A.2.3 Designing for Reliability . 140

A.3 The IPRDF Flow . 141

A.3.1 Overview . 141

A.3.2 Static Design . 142

A.3.3 Module Design . 144

A.4 Case Study I: Triple Modular Redundancy 144

A.4.1 System Implementation . 146

A.4.2 Error Detection and Recovering Schemes 147

A.4.3 Result . 149

A.5 Case Study II: Single-chip Cryptographic Design 151

A.5.1 System Implementation . 152

A.5.2 Result . 152

5

A.6 Conclusion . 153

6

List of Tables

1.1 Comparison between a software OS and the proposed model of FPGA virtu-

alisation. 23

2.1 HLS Development Frameworks. 41

2.2 Comparision of shells . 45

3.1 Resource information in the Xilinx Virtex-6, and 7-Series families. 51

3.2 Resource information in the UltraScale and UltraScale+ families. 51

3.3 BitMan functions . 58

3.4 Performances of BitMan (B) and Maverick (M)’s bitstream generation. . . . 58

3.5 BitMan performance on overlay architecture’s support. 62

3.6 Overheads of bitstream generation for a partial region. 63

4.1 Resource overheads for bus virtualisation at the logical and physical levels. . 74

4.2 Available resources for 1 slot of on the ZCU102 platform and the UltraZed &

Ultra96 platforms. 80

4.3 The overheads of two implementation options on the ZCU102 and Ultra-

Zed/Ultra96 platforms. 81

4.4 The compilation flow’s bitstream XML keyword description. 84

4.5 Module compilation overhead: the Xilinx PR flow vs. the decoupled compi-

lation flow. 88

5.1 The overhead of using the SMMU. 98

6.1 Matrix Multiplication (MM) and Discrete Cosine Transform (DCT) show cases.102

6.2 Shell update latency breakdown. 112

6.3 Throughput of ICAP-based controller in intra- and inter-chip configuration. . 117

A.1 Isolation Design Flows’ features and supports. 138

7

A.2 Available primitives on various resource slots and required elements for dif-

ferent modules. 146
A.3 Available resources in ISO_K0 and ISO_K1 partial regions and size of partial

bitstream to reconfigure each region. 154

8

List of Figures

1.1 The U.S. FPGA Market by applications 17

1.2 The organisation of a heterogeneous CPU+FPGA computing system 19

1.3 Analogies between the software operating system concepts and the proposed

FPGA virtualisation model for heterogeneous computing systems. 22

1.4 The proposed abstractions and their functional roles in the FPGA develop-

ment/deployment process. Note that the work of scheduler and driver/kernel

library is done by A. Vaishnav, while the remaining parts are core contribu-

tions of this PhD thesis. 24

1.5 Decoupled compilation flow for FPGA virtualisation. 26

1.6 Contributions of this PhD thesis. 28

2.1 A typical FPGA vendor’s PR design flow. 34

2.2 Overview of the GoAhead PR toolflow 36

2.3 Island style placement vs slot style placement. 43

3.1 7-Series, UltraScale and UltraScale+’s Frame Address Register Descriptions. 48

3.2 Frame configurations for a CLB column in the 7-Series (left), UltraScale

(middle), and UltraScale+ (right) devices. 48

3.3 Overview of Kintex UltraScale XCKU025’s device layout. 49

3.4 Switch matrix multiplexer implementation. 50

3.5 Example of bitstream encodings for routing in the 7-Series family. 52

3.6 Example of bitstream encodings for routing in the UltraScale+ family. . . . 52

3.7 Clock resource encodings of 7-Series FPGAs in bitstream. 53

3.8 Clock resource encodings of UltraScale+ FPGAs in bitstream. 53

3.9 Possible connections in a switch matrix of a Xilinx UltraScale+ FPGA. . . . 54

3.10 The BitMan process. 56

3.11 An example of module relocation. 60

3.12 Conventional CAM (a) vs LUT-modifiable CAM (b). 61

9

3.13 Performances of ROB and BitMan. 62

3.14 The EFCAD flow. 63

4.1 The decoupled compilation flow. 68

4.2 The overall organisation of an FPGA-virtualised system. 70

4.3 The physical implementation on the Zybo platform. 71

4.4 The implemented static system on the ZCU102 platform. 72

4.5 The physical implementation on the UltraZed and Ultra96 platforms. 72

4.6 An example for bus virtualisation. 73

4.7 Implementation of a bus abstraction layer on UltraZed/Ultra96 platforms . . 75

4.8 I/O FPGA virtual pins . 75

4.9 I/O Virtualisation. 76

4.10 The module compilation process. 78

4.11 Options of module compilation. 81

4.12 Physical implementation designs on the Zybo platform. 83

4.13 Physical implementation designs on the ZCU102 platform. 84

4.14 Physical implementation designs on the UltraZed and Ultra96 platforms. . . 85

4.15 Implemented results from the Xilinx PR flow and the decoupled compilation

flow. 86

5.1 Hardware (HW) module compilation steps and the run-time execution envi-

ronment for hardware modules. 91

5.2 Run-time execution and management 92

5.3 The configuration controller’s hardware module placement process. 94

5.4 Resource allocation for tasks from different scheduling policies. 95

5.5 The implementation of the ARM SMMU in the memory system 96

6.1 Various instantiation and execution schemes for Matrix Multiplication (MM)

and Discrete Cosine Transform (DCT) kernels. 104

6.2 Completion time in various execution schemes in Figure 6.1. 104

6.3 Comparison of different scheduling policies on CPU+FPGA platforms. . . . 106

6.4 Cost of security and virtualisation. 109

6.5 The cluster setup for the case study of live migration. 111

6.6 Execution traces of an accelerator in different scenarios of data movement. . 112

6.7 A cluster of QFDB (Quad-Daughter FPGA Board) featuring Xilinx ZU9EG

Zynq MPSoCs. 115

10

6.8 The ECOSCALE platform with 16 QFDBs (64 FPGAs and 1TB RAM) is

used in this case study. 116
6.9 Execution latency and energy consumption of Michelsen on different deploy-

ing platforms. 118

A.1 Isolated Partial Reconfiguration Design Flow (IPRDF). 141
A.2 An example of a 16-bit bus for system communication. 142
A.3 Module placement, communication tunnels and blockers for the selected par-

tial module. 143
A.4 Partial slots with various FPGA primitive slots 144
A.5 Block diagram of the TMR system. 145
A.6 Two different error detection and recovering schemes. 148
A.7 Implemented options of a Video Overlay Generator module. 150
A.8 System layout of the TMR design implemented on a XC7Z020 FPGA. . . . 151
A.9 The single-chip cryptographic (SCC) system’s block diagram. 151
A.10 System layout of the SCC design implemented on the XC7Z020 FPGA. . . . 153

11

Abstract

Field Programmable Gate Arrays (FPGAs) can be utilised to speed up applications by
two orders of magnitude as compared to running on conventional CPUs. However,
designing FPGA accelerators still remains challenging for most users. Furthermore,
despite the trend of integrating FPGA resources into high-performance and cloud com-
puting systems, FPGA management is still immature commonly following a run-to-
completion execution model and with providing no abstraction layers to underlying
hardware. Thus, FPGA virtualisation is highly desired to provide an abstraction level
for FPGA development and deployment in complex heterogeneous CPU+FPGA com-
puting systems which provide us an opportunity to adapt the workload on either soft-
ware (running on CPUs) or hardware (running on FPGAs). This PhD thesis aims at
promoting FPGA virtualisation for such heterogeneous computing systems ranging
from embedded, to edge, to high-performance and cloud nodes. Consequently, this
thesis proposes a fully FPGA-virtualised computing model to tackle these obstacles
on complex heterogeneous CPU+FPGA systems. Moreover, partial reconfiguration
is one of the key techniques to implement the proposed model, yet has still significant
limitations which prevented us to implement such model on real hardware. These limi-
tations motivated this PhD project and resulted in the development and implementation
of several solutions to overcome these limitations, and hence, advance the partial re-
configuration technique towards the propsed fully FPGA-virtualised computing model.
Combining this new capability of partial reconfiguration with other academic design
tools, a novel design methodology has been developed to realise the proposed model
on real hardware. Finally, resulting systems of the proposed design methodology on
various heterogeneous computing platforms have shown significant improvements in
compute performance thanks to the here implemented FPGA-virtualised techniques.

12

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

13

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the University
IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487),
in any relevant Thesis restriction declarations deposited in the University Li-
brary, The University Library’s regulations (see http://www.manchester.ac.uk/
library/aboutus/regulations) and in The University’s policy on presentation of
Theses

14

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations
http://www.manchester.ac.uk/library/aboutus/regulations

Acknowledgements

First and foremost, I would like to express my deep gratitude to my supervisor, Dr. Dirk
Koch, for his patient guidance, enthusiastic support, and strong encouragement. His
vision, experience and expertise helped to clarify my doubts and overcome the hurdles.
I also thank Dr. James Garside, my co-supervisor, for his valuable feedback and advice.

I appreciate my friends Anuj Vaishnav, Edson Horta, Malte Vesper, Jose Raul Gar-
cia, Kristiyan Manev and Athanasios Stratikopoulos for their help, support, encour-
agement, deep insights, thorough discussions, and fruitful collaborations during my
research of this PhD project. People from APT group are also thankful for the positive
and professional research environment.

I also thank to K. Georgopoulos, A. Ioannou, I. Mavroidis, and P. Malakonakis
from the ECOSCALE project for the friendly support and effective collaborations.

Finally, I would like to thank my parents, my loving family, and my dear Viet-
namese friends in Manchester whose support and understanding helped me to achieve
this milestone.

This work is supported by the European Commission under the H2020 Programme
and the ECOSCALE project (grant agreement 671632).

15

Chapter 1

Introduction

People who are really serious about software

should make their own hardware.
Alan Kay

Field Programmable Gate Array (FPGA) devices can be used not only to substantially

accelerate applications, but they are also able to achieve these performance advantages with

fairly low power overhead [CSPJ03]. Therefore, more and more software applications such

as deep learning [AOC+17], computer vision [JCP+10], telecommunication [BCB18], and

networking [LMW+07] are being implemented as FPGA-based accelerators to exploit high

performance and energy efficiency. Moreover, with the capability of reconfiguration and short

time-to-market, the demand for FPGAs has increased in many industrial domains, as sum-

marised in Figure 1.1.

However, FPGA accelerators are difficult to develop for most of software developers as

they have to deal with new programming languages/paradigms, and/or coding styles, as well

as several low-level system development including IP cores, system integration, bootloaders,

and drivers which can be error-prone and time-consuming. In addition, despite the availability

of large capacity devices and demand for more complex applications, FPGA management is

still rudimentary without real abstraction layers to underlying resources. This renders FPGA

acceleration similar to the traditional bare-metal embedded application use case. In those sys-

tems, applications are able to access the underlying hardware freely but are not able to switch

to another application arbitrarily or to start new processes at run-time.

There are two major types of FPGA systems: 1) heterogeneous (SoC-based) computing

systems, such as Intel Xeon-Arria hybrid chips [Huf], Xilinx Adaptive Compute Acceleration

Platform [Xil19a], and Xilinx Zynq UltraScale+ MPSoC devices [Xil17b], in which CPUs and

FPGAs are tightly coupled on the same die; and 2) PCIe-based systems, which are targeting

high performance computing (HPC) and data centre markets. Hence, it is worth to highlight the

differences of architecture and organisation between the SoC-based and PCIe-based systems.

16

17

1.35 1.44
1.52 1.60

1.72
1.83

1.97
2.11

2.25
2.39

2014

Telecom Industrial Automotive Military and aerospace

Data processing Consumer electronics Others

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

2.56

U
SD

 B
ill

io
n

s

Figure 1.1: The U.S. FPGA Market by applications, 2014 – 2024 (USD Billion) [Gra18]

A heterogeneous computing system can utilise the built-in system bus interface (such as

ARM AMBA [ARMa]) to communicate with main memory and the host CPU. Therefore, no

reconfigurable logic resources have to be used to implement a PCIe core and DDR controllers,

which can contribute as much as 70% of the resource utilisation of the PCIe-based static sys-

tem, as reported in [VKP17]. Furthermore, the bus interconnect that is required to connect

the different modules with memory and resources needed to cross clock domains between ker-

nel and DDR memory is hardened on heterogeneous devices. The hardened bus interconnect

allows for higher bus clock frequencies than in PCIe-based systems. An SoC-based system

allows accelerators working directly on the main memory used by the CPU, saving the trans-

fers to and from dedicated FPGA memory required by PCIe-based counterparts. Therefore,

an SoC-based system is often able to deliver higher clock frequency, more efficient memory

access, and lower energy requirements, while a PCIe-based system provides space for larger

kernels and allows choosing the host CPU alongside more various host memory configurations.

Since this PhD project aims at deploying reconfigurable resources in high performance

computing systems as well as data centres [MPL+16, SVC+16], there is a need to adapt swiftly

to changing workloads and to a different number of tasks to execute [MPL+16]. This swift

adaptability does not fit the traditional methods of operating FPGAs. Moreover, to achieve

high utilisation, individual systems often have a number of active tasks, each operating without

any impact or knowledge of each other. For such systems, it would be highly desirable to have

a middleware that can automatically adapt for any workload scenario that may arise at run-time

18 CHAPTER 1. INTRODUCTION

in the best possible way.

With the rise of heterogeneous computing systems, we have now an unprecedented oppor-

tunity to adapt the workload on either software (running on CPUs) or hardware (running on

FPGAs), as shown in Figure 1.2. Therefore, FPGA virtualisation is required to provide an ab-

straction level for both FPGA development and deployment in an analogue fashion as known

from traditional software operating systems (OSs).

Overall objectives of such FPGA virtualisation can be summarised in [VPK18a, VPK18b]

as following:

• Multi-tenancy: The ability to serve multiple different users simultaneously by sharing

the same FPGA fabric.

• Resource Management: Providing an abstraction/driver layer to the FPGA fabric and

means of scheduling tasks to the CPU and the FPGA as well as monitoring the CPU+FPGA

resource usage.

• Flexibility: Ability to support a wide range of acceleration workload, i.e. from cus-

tom accelerators handcrafted in RTL to accelerators designed in a High-Level Language

(HLL) or a Domain Specific Language (DSL).

• Isolation: Providing the illusion of being a sole user of the FPGA resources for better

security, fewer dependencies and correctness of the task execution.

• Scalability: A system/application that can scale to multiple different FPGAs or can

support multiple different users at relatively low overhead.

• Performance: The impact of virtualisation should be minimal on the performance

achievable and therefore, should maximise FPGA resources usable by the user appli-

cation.

• Security: Ensuring that information of other tenants is not leaked and for safekeeping

the infrastructure from malicious users. This also contributes to overall robustness of a

system.

• Resilience: Ability to keep the system/service running despite failures.

• Maintenance: Ability to update hardware/software in a node without affecting the exe-

cuting applications.

• Design Productivity: Improving the time-to-market and reducing the complexity of

deploying a design to an FPGA from its software description.

19

CPU FPGA

Memory

PCIe

Ethernet

USB

Memory

Ethernet

U
A

R
T

I2
C

U
A

R
T

PCIe

G
P

IO

SA
TA

G
P

IO

SW
1

SW
2

SW
n...

HW
1

HW
2

HW
n...

SW
Context
switch

HW
Context
switch?

SW-HW
Context
switch?

System bus

Figure 1.2: The organisation of a heterogeneous CPU+FPGA computing system. Depending
on the application, peripherals and memory may be connected to either the CPU, the FPGA
fabric, or arbitrary to both. This implies some challenges, in particular if both parts the CPU
and the FPGA need access to the peripherals or a shared memory. Moreover, although context
switching on the CPU side (SW context switching) is a mature topic in computer science,
performing context switching on the FPGA side (HW context switching) or between both sides
(HW-SW context switching) is another challenge and open question.

20 CHAPTER 1. INTRODUCTION

The FPGA ecosystem is steadily improving and IP integration has become much easier

thanks to a widespread adoption of the ARM Advanced Micro-controller Bus Architecture

(AMBA) specification [ARMa]. Similarly, application development is now well-supported

through standardised High-level synthesis (HLS) approaches, such as OpenCL [KHR]. More-

over, partial reconfiguration (PR) [Koc12], a noticeable feature allowing FPGAs to change a

portion of reconfigurable hardware circuitry while the rest of the FPGA is still functioning,

can be utilised to decouple accelerator design from the underlying platform and to switch be-

tween various hardware applications arbitrarily. A PR system includes a static part which

does not change the functionality during system operation, and the reconfigurable part with

one or more PR regions. Therefore, combining these technologies would allow software de-

velopers building their accelerators once but instantiating them multiple times in the provided

regions on the platform in a hot plug-and-play manner. Such kind of feature is essential to-

wards building FPGA-virtualised systems. Despite this progress, there are still few examples

of methodologies, toolflows, and systems available that fulfil the aforementioned objectives of

FPGA virtualisation.

1.1 Motivation and Aims

The main motivation of this research is to advance the existing knowledge of FPGA virtuali-

sation ranging from embedded/edge to high-performance/cloud computing systems. Thus, key

research questions tackled in this thesis include:

• Models and Methodologies: How to efficiently virtualise and abstract resources in

heterogeneous computing systems? What should the model of an FPGA-virtualised

heterogeneous computing system be? How to speed up the design, implementation, and

deployment of hardware applications?

• Systems: How to launch and manage multiple hardware tasks transparently? How to dy-

namically orchestrate software and hardware context switching in heterogeneous com-

puting systems for better performance and better utilisation of resources? And how to

protect data and execution of a specific user from another on a multi-tenanted platform?

• Tools and Flows: How to physically implement FPGA-virtualised heterogeneous com-

puting systems at a high level of abstraction with the latest FPGA technology?

Therefore, this PhD project is going to 1) investigate state-of-the-art FPGA virtualisation

techniques; 2) propose a novel approach/model to virtualise FPGA resources in heterogeneous

computing systems; 3) explore novel design methodology, tools, and frameworks to implement

the proposed approach; 4) propose a compilation path for productive application development;

1.2. CONTRIBUTIONS 21

5) provide an abstraction layer between accelerators and the underlying platform as a ready-

to-use hardware operating system (OS) infrastructure; 6) enable run-time support for running,

sharing and swapping multiple accelerators; and 7) investigate mechanisms to make the system

safer, more secure, and more resilient.

1.2 Contributions

To tackle the aforementioned research questions, this PhD thesis proposes a 1) novel model of

FPGA virtualisation including three level of resource abstractions (i.e. infrastructure abstrac-

tion, development abstraction, and deployment abstraction) as well as 2) introducing a tool

for bitstream abstraction supporting modern Xilinx FPGAs, 3) a novel design methodology

targeting heterogeneous computing systems, and 4) FPGA-virtualised system prototypes, as

discussed in the following paragraphs.

1.2.1 FPGA Virtualisation Model for Heterogeneous Computing
Systems

Based on the deep understanding and thorough analysis of state-of-the-art trends and tech-

niques on FPGA virtualisation [VPK18a] as well as due to the increasing popularity of het-

erogeneous computing systems (see Figure 1.2), this thesis proposes that FPGA resources in
heterogeneous systems should be abstracted, managed, and virtualised in an analogous
way as the way that is known from software operating systems (OSs). With this model,

we can contrast and compare OS services known from software system with services needed

for FPGA management. The equivalent concept of the software OS kernel is named the FPGA

shell, or shell for short and it provides all essential infrastructure, whereas the user applications

(often called roles) do perform the actual work. A brief comparison between a software OS

and the proposed model of FPGA virtualisation is shown in Table 1.1. Ultimately, the proposed

model is a great fit to partial reconfiguration (PR) of FPGAs, in which a shell is located in the

fixed part of a PR system, while roles are assigned to reconfigurable parts, called slots (i.e. PR

regions), and deployed at run-time in a hot plug-and-play manner, as illustrated in Figure 1.3.

To implement the proposed model for achieving the aforementioned objectives of FPGA

virtualisation, this thesis proposes the following abstractions:

• Infrastructure abstraction: the underlying heterogeneous resources including their

various layouts and available primitives should be designed, abstracted and managed as

shells to provide common essential services, such as system bus communication, I/O

access, and memory access to the deploying roles.

• Development abstraction: the requirements for this level of abstraction are:

22 CHAPTER 1. INTRODUCTION

User applications

OS kernel

User applications
User application

User applications

Static part/
FPGA Shell

User applicationsPR module/
Role

Software
operating system

(OS)

The proposed FPGA
virtualisation model

Fixed part

Changeable
part

Figure 1.3: Analogies between the software operating system concepts and the proposed
FPGA virtualisation model for heterogeneous computing systems.

1) In this project, shell and roles are able to be designed independently, and hence, to

be updated individually as long as the pre-defined system communication and the pre-

allocated resources of a slot remain the same (i.e. decoupling the development of shell

and roles). 2) A role should be compiled once and reused as many times as possible

regardless of its physical mapping to the shell.

Requirement 1 of decoupled compilation may lead to internal resource fragmentation

[Koc12] as a role can occupy more or less resources than what are available in a slot. We

have further targeted this issue by utilising design space exploration (DSE) techniques

[MMRL17], providing the flexibility of 2D module-stitching at run-time [PHK+18] (for

roles occupying much less resources than what a slot can provide), or merging multiple

adjacent slots to host a big role [PVVK18] (for roles occupying more resources than

what a slot can provide), as explained further in Chapter 4. Moreover, Requirement 2 is

not supported by state-of-the-art vendor PR flows because a role needs to be compiled

many times to all possible mappings to the shell, as discussed in Section 2.2.

• Deployment abstraction: at this level of abstraction, there are four requirements:

1) Roles can be deployed on top of the underlying shell in a hot plug-and-play manner.

2) A user may run multiple roles, or multiple users may run one or multiple roles on

the same shell to utilise the underlying resource, to reduce each user’s waiting time and

to enhance the overall system throughput. Moreover, 3) temporal and spatial resource

sharing between roles via hardware/hardware-software context switching, and coopera-

tive scheduling must be performed transparently from the user’s point of view. Finally,

4) role deployment must not imply any security threat to the whole system, including

the underlying hardware and other users [MLG+20].

1.2. CONTRIBUTIONS 23

Table 1.1: Comparison between a software OS and the proposed model of FPGA virtualisa-
tion.

Software OS Proposed model
Organisation * Fixed part: OS kernel * Fixed part: FPGA shell (i.e.

static infrastructure)
* Changeable part: user ap-
plications

* Changeable part: roles (i.e.
acceleration modules)

Objects of hardware
abstractions

CPU, memory, and I/Os Physical FPGA primitives
(may include memory and
FPGA I/Os)

Resource sharing/-
management

Time domain Space and time domains

The positions and functional roles of these proposed abstractions in real-world are illus-

trated in Figure 1.4. The infrastructure abstraction is provided by shells according to the phys-

ical FPGA layouts as well as the essential infrastructure, as introduced in [PCC+14, KBT08],

while the author of this thesis has implemented shells for heterogeneous platforms ranging

from Xilinx Zynq-7000 to Xilinx Zynq UltraScale+ devices. Moreover, the development ab-

straction and the deployment abstraction are original contributions of this PhD project as they

are direct results from an enhanced partial reconfiguration approach (via bitstream abstrac-

tion), as discussed in Section 1.2.2 and Chapter 3, and a novel compilation flow, as discussed

in Section 1.2.3 and Chapter 4. Ultimately, operational system prototypes for CPU+FPGA het-

erogeneous computing systems including the proposed abstractions are presented and evaluated

against the objectives of FPGA virtualisation, as described in Section 1.2.4 and Chapter 6.

1.2.2 Bitstream Abstraction

In the proposed model for FPGA virtualisation, partial reconfiguration [Koc12] is playing a

key role to improve design productivity, to perform hardware context switching, to enhance the

resilience as well as the maintainability of the system. However, despite of current progresses,

state-of-the-art approaches of partial reconfiguration have significant limitations which lessen

its potential contribution to FPGA virtualisation dramatically, as pointed out in a recent sur-

vey [VF18]. Hence, this thesis has explored an alternative approach to leverage the principle of

partial reconfiguration (PR) for FPGA virtualisation. PR is innovated with design productivity,

system efficiency, and physically isolated modularity [PHK+18] in mind.

At the heart of the problem, the ability to adapt FPGA designs at bitstream level for latest

architectures is the crucial missing key for any PR flow towards FPGA virtualisation (see Sec-

tion 2.2). This thesis, therefore, has provided a generic tool and API called BitMan [PHK17]

24 CHAPTER 1. INTRODUCTION

ARM CPUs
(PetaLinux + Ubuntu, FPGA

Drivers)

SHELL

PR SLOT n

...

PR SLOT 1

PR SLOT 0

GCC/G++ AARCH64 MODULE COMPILATION

Driver/Library

Scheduler

Configuration Controller

Hardware Library

Application Code HLS Applications

C/C++
OpenCL

RTLFPGA Chip layout

SHELL DESIGN

Design
Phase

Compile
Phase

Deploy
Phase

Infrastructure
abstraction

Deployment
abstraction

Development
abstraction

Figure 1.4: The proposed abstractions and their functional roles in the FPGA developmen-
t/deployment process. Note that the work of scheduler and driver/kernel library is done by A.
Vaishnav, while the remaining parts are core contributions of this PhD thesis.

for this FPGA bitstream adaptation purpose. At the time of this PhD thesis written, BitMan is

the only tool which can support all recent Xilinx FPGAs such as Spartan-6, Virtex-6, 7-Series,

UltraScale and UltraScale+ devices, as discussed detail in Chapter 3.

BitMan, thus, complements the PR flow in [Koc12] and contributes two pivotal attributes:

1) to enable the decoupled compilation flow for development abstraction; and 2) to dynamically

switch PR modules (i.e. roles) at run-time via the Configuration Controller (See Figure 1.6)

for deployment abstraction to implement the proposed model of FPGA virtualisation in hetero-

geneous computing systems.

1.2.3 Decoupled Compilation Flow for FPGA Virtualisation

Although many progresses have been made to improve the design productivity and the ease

of FPGA application deployment [Ama] such as High-Level Synthesis [CLN+11, CCA+13],

IP integration [Xild, Xilc], and partial reconfiguration [VF18], there are very few notable so-

lutions that allow direct application development such that software engineers can develop ac-

celerators for hugely dynamic FPGA-based systems. Designing such a partially reconfigurable

system still requires very specific knowledge in the FPGA domain and expertise in the vendors’

1.2. CONTRIBUTIONS 25

partial reconfiguration toolchains, which is a challenge even for many experienced FPGA de-

velopers. Furthermore, user applications (roles) must be designed and implemented with the

surrounding infrastructure (shell) as a monolithic system. This approach commonly causes

unnecessarily lengthy design phase and even worse, a single change in either the application

or the surrounding infrastructure will likely request the whole system to be rebuilt. Therefore,

it is impossible to maintain or upgrade either shell or role independently. This limitation still

remains in most of the state-of-the-art partial reconfiguration design flows [Xil18c, Alt17], as

discussed in Chapter 2.

Thus we have introduced a novel design methodology to design FPGA shells and to com-

pile hardware modules (roles) from user applications. A resulting shell provides the infras-

tructure abstraction on the targeting platform featuring multiple adjacent partial reconfigura-

tion (PR) regions, called slots, having an identical resource layout. Module compilation for

application development takes HLS/RTL/netlist descriptions to produce relocatable accelera-

tor partial bitstreams in a fully software-centric design process [PVVK18], which essentially

presents the development abstraction. Note that the BitMan tool, which were mentioned in Sec-

tion 1.2.2, is an essential part of this compilation flow, as explained in Chapter 4. This module

compilation also delivers prerequisites for the deployment abstraction by allowing users build-

ing their hardware modules once but instantiating them multiple times in the provided regions

in a hot plug-and-play manner as well as implementing different implemented module variants

that can share the reconfigurable resources at run-time. The development and deployment sce-

narios are similar to compiling a software binary from its source code and then running it on top

of a software OS. The proposed compilation is summarised and compared to the conventional

software counterpart in Figure 1.5.

To demonstrate this automatically implemented process, we have compiled applications

written in RTL, OpenCL [GAPK16], and in C language as partially reconfigurable modules

without manual intervention, as shown in Chapter 4. Although the Xilinx Vitis development

flow [Xil20], released when this thesis was already submitted, can offer similar automatic

compilation experience for heterogeneous computing systems, this decoupled compilation flow

offers more attributes than the Vitis flow. For instance, this module compilation can be done

independently from shell development process as long as they keep in pre-defined resource

footprints for roles and the interface between shell and roles. In one showcase, we deliberately

designed a shell and several roles in different Xilinx Vivado versions, and then launched roles

on top of shell at run-time (see Section 6.1). Moreover, Vitis has not yet reached the level of

flexibility introduced by this proposed compilation flow for compiling relocatable PR modules,

as discussed further in Section 2.4. Note that the work in this thesis has been carried out,

demonstrated, and published in [PVVK18, PPV+19, VPMK19] before the introduction of the

Xilinx Vitis flow.

26 CHAPTER 1. INTRODUCTION

Applications (C/
C++/OpenCL ...)

Software Compilation

Library of
Software Binaries

Roles (C/C++/
OpenCL ...)

High-Level Synthesis (HLS)
Synthesis

Implementation

Hardware
Accelerators

Bitstream
Transformation

Library of Hardware
Modules

OS Execution Shell

Figure 1.5: Left: conventional software compilation. Right: the proposed module compilation
flow [PVVK18].

1.2.4 System Prototypes

Four system prototypes [HSPK17, PHK+18, PVVK18, PPV+19] using different FPGA

families, including Xilinx Zynq-7000 [Xil18e] and Zynq UltraScale+ [Xil17b] heterogeneous

devices, have been built on top of the proposed methodology, tools, and framework. The

systems are composed of three essential parts contributing to their distinct features: shell, the

module compilation, and the run-time management. These systems, as shown in Figure 1.6,

realised the proposed model of FPGA virtualisation by providing the following features:

• Decoupled Implementation: static systems (shells) and reconfigurable modules (roles)

are implemented independently; supports most application design techniques such as

HLS (OpenCL, C/C++), RTL (Verilog/VHDL), and netlist.

• Bus Virtualisation: supporting different AXI interfaces (Master/Slave/Stream as well as

32/64/128-bit data width) transparently.

• I/O FPGA Virtualisation: allowing the same reconfigurable module bitstream to be used

multiple times in systems with different I/O layouts.

• Run-time Flexibility: supporting different partial configuration styles: 1) island-style

(where a module is placed exclusively in a reconfigurable region); 2) slot-style (where

1.3. THESIS STRUCTURE 27

multiple modules can be daisy-chained within one shared region); and 3) 2-dimensional

module placement as modules may occupy multiple adjacent regions.

• Cooperative Scheduling: allowing hardware context switching to adjust resource allo-

cation dynamically and transparently through a user-friendly API. The research and im-

plementation of run-time heterogeneous scheduling algorithms has been conducted by

A. Vaishnav and interacts with the low-level FPGA API developed in this thesis project.

• Memory Isolation: through memory management enabling isolation of simultaneously

running hardware tasks in multi-tenanted environments. The work of Linux kernel driver

for this memory management is contributed by K. Paraskevas, while the author of this

thesis is in charge of system integration and user interface.

• Physical Module Isolation: fulfilling the requirements for single chip cryptography

(SCC) [NIS01] as well as building robust triple modular redundancy (TMR) systems.

The here presented design methodology has been extended to guarantee module isola-

tion requirements [PHK+18].

1.3 Thesis Structure

This thesis is organised in seven chapters. In addition, an appendix provides another show-

case in applying the proposed design methodology to build SCC and robust TMR systems.

Brief descriptions of the content of the remaining six chapters are described in the following

paragraphs.

1.3.1 Chapter 2 – Background and Related Works

Since the primary idea of this PhD project is to leverage partial reconfiguration for FPGA virtu-

alisation, this chapter discusses state-of-the-art partial reconfiguration toolflows and obstacles

have been examined. Additionally, related works of bitstream manipulation and HLS frame-

work for designing partially reconfigurable systems are being reviewed. Finally, shell-based

systems are classified and examined to highlight the contributions of this PhD thesis amongst

recent works.

1.3.2 Chapter 3 – Bitstream Manipulation Tool and API

As the ability to adapt FPGA designs at binary (bitstream) level for modern FPGAs is highly

desired for the proposed FPGA-virtualised model yet missing in state-of-the-art design method-

ology and deploying systems, this chapter describes our effort to fulfil this requirement. A tool

28 CHAPTER 1. INTRODUCTION

H
ard

w
are Task

Sch
ed

u
ler

C
o

n
figu

ratio
n

 C
o

n
tro

lle
r

K
ern

el’s X
M

L File an
d

 P
lacin

g Lo
catio

n

C
o

n
figu

ratio
n

 P
o

rt
D

river

Fin
al P

artial B
itstream

P
C

A
P

/IC
A

P

U
ser

Sp
a

ce

K
ern

el
Sp

a
ce

C
P

U
 Sid

e

FP
G

A
 Sid

e

B
u

s Traffic C
o

n
tro

l
D

rive
r

M
em

o
ry M

an
agem

en
t

D
river

SM
M

U

A
p

p
licatio

n
s

(C
/C

++/O
p

en
C

L...)

H
igh

 Level Syn
th

esis
(H

LS)

Syn
th

esis

Im
p

lem
en

tatio
n

B
itstre

am
 A

sse
m

b
ly

Lib
rary o

f
H

ard
w

are

M
o

d
u

le
s

Sh
ell

In
frastru

ctu
re

Syn
th

esis

Im
p

lem
en

tatio
n

U
ser ap

p
licatio

n
s

U
ser ap

p
licatio

n
s

R
o

le
R

o
le

Sin
gle

 u
se

r/
static ro

le
Sin

gle
 u

se
r/

m
u

ltip
le

 ro
le

s
M

u
ltip

le
 u

se
rs/

m
u

ltip
le

 ro
le

s

R
o

le
R

o
le

R
o

le

M
o

d
u

le D
evice D

river

0 1 2

R
eco

n
figu

rab
le p

art

X
C

ZU
3

EG
-

SFV
A

6
2

5
Static part

O
rigin

al co
n

trib
u

tio
n

Jo
in

t co
n

trib
u

tio
n

IP
 in

tegratio
n

Figure
1.6:

T
he

partially
reconfigurable

system
fram

ew
ork

builtin
this

PhD
projectconsisting

ofdesign
elem

ents
forbuilding

the
static

shellas
w

ellas
the

reconfigurable
roles

and
run-tim

e
services

forconfiguring
and

running
roles

on
the

system
.

1.3. THESIS STRUCTURE 29

and API, called BitMan, has been developed and utilised to provide the development and de-

ployment abstractions.

1.3.3 Chapter 4 – Decoupled Compilation Flow for FPGA Virtual-
isation

With the availability of academic design tools such as GoAhead/TedTCL and BitMan, a novel

design methodology is introduced in this chapter to incorporate these academic tools and the

Xilinx Vivado toolflow into a single decoupled compilation flow to design systems for the

proposed FPGA-virtualised heterogeneous computing model. This design methodology es-

sentially provides the development abstraction which decouples the development of the static

shell and the reconfigurable roles. Moreover, static shells developed by this design method-

ology crucially provide the infrastructure abstraction to the underlying FPGA platforms. A

number of FPGA-virtualised systems have been implemented and evaluated on top of various

development platforms featuring different FPGA devices as well as families by utilising the

proposed methodology.

1.3.4 Chapter 5 – Run-time Management

The run-time management which ultimately provides the deployment abstraction is described

in this chapter. Components of the run-time management including the configuration controller,

the hardware task scheduler, the module device driver, and the memory isolation framework

are presented.

1.3.5 Chapter 6 – System Evaluation

Five case studies of the resulting systems are presented and evaluated against the aforemen-

tioned objectives of FPGA virtualisation in order to demonstrate the versatility of the here

introduced FPGA virtualusation techniques in this Chapter.

1.3.6 Chapter 7 – Conclusion

Finally, this chapter summarises this thesis and discusses future work, which has been enabled

by the research carried out through this project.

30 CHAPTER 1. INTRODUCTION

1.4 Publications

The research conducted throughout this project has been produced through the 16 research

articles listed below.

1. K. D. Pham, E. Horta, and D. Koch, BITMAN: a Tool and API for FPGA Bitstream
Manipulations, in Design Automation and Test in Europe (DATE), 2017.

2. E. Horta, X. Shen, K. D. Pham, and D. Koch, Accelerating Linux Bash Commands on
FPGAs Using Partial Reconfiguration, in FPGAs for Software Programmers (FSP),

2017.

3. M. Vesper, D. Koch, and K. D. Pham, PCIeHLS: an OpenCL HLS framework, in

FPGAs for Software Programmers (FSP), 2017.

4. A. Vaishnav, K. D. Pham, D. Koch, and J. Garside, Resource Elastic Virtualization for
FPGAs using OpenCL, in Field-Programmable Logic and Applications (FPL), 2018.

5. A. Vaishnav, K. D. Pham, and D. Koch, A Survey on FPGA Virtualization, in Field-

Programmable Logic and Applications (FPL), 2018.

6. K. D. Pham, A. Vaishnav, M. Vesper, and D. Koch, ZUCL: A ZYNQ UltraScale+
Framework for OpenCL HLS Applications, in FPGAs for Software Programmers (FSP),

2018.

7. K. D. Pham, E. Horta, D. Koch, A. Vaishnav, and T. Kuhn, IPRDF: an Isolated Partial
Reconfiguration Design Flow for Xilinx FPGAs, in Multicore/Many-core Systems-on-

Chip (MCSoC), 2018.

8. A. Vaishnav, K. D. Pham, and D. Koch, Live Migration for OpenCL FPGA Accelera-
tors, in Field-Programmable Technology (FPT), 2018.

9. K. D. Pham, M. Vesper, D. Koch, and E. Hung, EFCAD – an Embedded FPGA CAD
Tool Flow for Enabling On-Chip Self-Compilation, in Field-Programmable Custom

Computing Machines (FCCM), 2019.

10. A. Vaishnav, K. D. Pham, and D. Koch, Heterogeneous Resource-Elastic Schedul-
ing for CPU+FPGA Architectures, in Highly-Efficient Accelerators and Reconfigurable

Technologies (HEART), 2019.

11. A. Vaishnav, K. D. Pham, Kristiyan Manev, and D. Koch, The FOS (FPGA Operating
System) Demo, in Field Programmable Logic and Applications (FPL), 2019.

1.4. PUBLICATIONS 31

12. K. D. Pham, Kyriakos Paraskevas, Anuj Vaishnav, Andrew Attwood, Malte Vesper, and

D. Koch, ZUCL 2.0: Virtualised Memory and Communication for ZYNQ UltraScale+
FPGAs, in FPGAs for Software Programmers (FSP), 2019.

13. K. Georgopoulos, K. Bakanov, I. Mavroidis, I. Papaefstathiou, A. Ioan-nou, P. Malakon-

akis, K. Pham, D. Koch, and L. Lavagno, A Novel Framework for Utilising Multi-
FPGAs in HPC Systems, in Heterogeneous Computing Architectures: Challenges and

Vision, Taylor and Franchis Group, 2019.

14. A. Vaishnav, K. D. Pham, J. Powell, and D. Koch, FOS: A Modular FPGA Operating
System for Dynamic Workloads, in arXiv, 2020.

15. K. Matas, T. La, N. Grunchevski, K. D. Pham, and D. Koch, Invited Tutorial: FPGA
Hardware Security for Datacenters and Beyond, in Field-Programmable Gate Arrays

(FPGA), 2020.

16. K. Matas, T. La, K. D. Pham, and D. Koch, Power-hammering through Glitch Amplifi-
cation – Attacks and Mitigation, in Field-Programmable Custom Computing Machines

(FCCM), 2020.

Papers are currently under review process:

• A. Vaishnav, K. D. Pham, J. Powell and D. Koch, FOS: A Modular FPGA Operat-
ing System for Dynamic Workloads, in ACM Transaction Reconfigurable Technology

(TRETS).

• T. M. La, K. Matas, N. Grunchevskip, K. D. Pham, and D. Koch, FPGADefender: Ma-
licious Self-Oscillator Scanning for Xilinx UltraScale+ FPGAs, in ACM Transaction

Reconfigurable Technology (TRETS).

32 CHAPTER 1. INTRODUCTION

1.5 Open Source Releases

This PhD thesis has also contributed the following open-source projects:

1. BitMan: a Tool and API for FPGA Bitstream Manipulations.

Available at https://github.com/khoapham/bitman.git

2. ZUCL: A ZYNQ UltraScale+ Framework for OpenCL HLS Applications.

Available at https://github.com/zuclfpl/zucl_fsp.git

3. EFCAD — an Embedded FPGA CAD Tool Flow for Enabling On-Chip Self-Compilation.

Available at https://github.com/khoapham/efcad.git

4. FOS — FPGA Operating System Demo

Available at https://github.com/khoapham/fos.git

Chapter 2

Background and Related Works

This too shall pass.

Rumi

2.1 Overview

To provide layers of abstraction and virtualisation for FPGA development and deployment,

this PhD project is going to leverage partial reconfiguration (PR) of FPGAs. Therefore, ba-

sic concepts of PR and a brief overview of state-of-the-art PR flows, including industrial and

academic flows, are provided in Section 2.2. Moreover, remaining problems of current PR

approaches are further discussed to emphasise the need of conducting the work on bitstream

abstraction/manipulation. Next, Section 2.3 provides background and related works for bit-

stream manipulation. Further, state-of-the-art compilation flows High-level Synthesis (HLS)

applications are reviewed in Section 2.4. Finally, shell-based systems are analysed to identify

our work amongst state-of-the-art ones in Section 2.5.

2.2 Partial Reconfiguration (PR)

Partial reconfiguration is a distinguished feature of FPGA technology in which a portion of

the FPGA fabric can be reconfigured to change the functional behaviour and/or structure of the

system whereas the remaining of the fabric can keep functioning. Hence, PR has been being an

active research topic in the FPGA community. Ultimately, this PhD project is going to exploit

partial reconfiguration to construct a novel compilation flow, which is used to implement such

FPGA-virtualised systems as described in Chapter 1. Hence, this section is going to briefly re-

view the topic focusing on design methodologies and toolchains as well as highlighting current

33

34 CHAPTER 2. BACKGROUND AND RELATED WORKS

Partitioning

Synthesis

HDL HDL HDL HDL
High Level

Synthesis (HLS)

OpenCL/
C/C++/

C#/Java...

Place and
Route

Bitstream
Generation

Figure 2.1: A typical FPGA vendor’s PR design flow.

limitations which are preventing us to have a system which could fulfil the objectives of FPGA

virtualisation.

2.2.1 FPGA Vendors’ PR Design Flows

Xilinx Vivado PR Flow: Vivado PR flow [Xil18c] is an integral part of the Vivado De-

sign Suite to implement partially reconfigurable designs for the latest 7-Series, UltraScale, and

UltraScale+ FPGAs. A PR design consists of the static part which does not change its func-

tionality during system operation and the reconfigurable part including one or more reconfig-

urable regions. In 7-Series and older Xilinx FPGAs, reconfiguration regions may contain only

LUTs, BRAMs, and DSP slices but cannot contain clocks and clock modifying logic, I/O and

I/O related components, serial transceivers and related components, and individual architecture

feature components. However, these restrictions have been lessened for UltraScale/UltraScale+

devices so that only components needed for the actual partial reconfiguration process must re-

main in the static part of the design [Xil18c]. The static part commonly contains a processor

(running the run-time management), a configuration interface as well as memory and network

interface modules (i.e. the essential infrastructure to keep the whole system functioning). Re-

configurable regions instantiate the reconfigurable modules to perform the real computing work

2.2. PARTIAL RECONFIGURATION (PR) 35

and can be reconfigured to change the behaviour at run-time. In the Xilinx PR flow, a PR design

is implemented by using TCL commands.

First of all, partitioning is conducted to decide how many reconfigurable regions the system

should provide and their capacity in terms of resources. Modules are synthesised to produce

corresponding netlists. In the default PR flow, floorplanning is then performed manually to

specify the locations and bounding boxes of reconfigurable regions in the FPGA fabric, al-

though it could be assisted by academic tools such as [GK15, NK16] . A characteristic of the

vendor PR flow is that reconfigurable modules are implemented as an increment to the static

system which prevents using modules at different locations inside one system or using a re-

configurable module across multiple systems. These regions may not need to be rectangular

in shape or be aligned to clock region boundaries in the latest UltraScale/UltraScale+ FPGAs.

Floorplanning details are stored in the Xilinx Design Constrains (XDC) file for incorporation

in the implementation stage. The Xilinx PR flow is illustrated in Figure 2.1. While the PR flow

introduced in the Vivado toolchain is easier to use than earlier versions of the Xilinx vendor

tools [Xila], building sophisticated reconfigurable systems is still a discipline requiring very

specific FPGA domain knowledge.

In this Vivado PR flow, static signals are still permitted to use routing resources in recon-

figurable regions which help to improve the routability as well as timing performance [Xil18c].

Therefore, this characteristic arguably results in faster PR designs but obviously is not able to

implement relocatable modules. Moreover, a single modification of the static logic may require

the whole PR design including all modules to be re-implemented through this already lengthy

process. Further, the Vivado PR flow is using interconnect tiles directly for implementation

of anchor logic instead of LUT-based bus macros, which were introduced in [LBM+06], to

enhance routing efficiency and timing performance. However, this practice makes run-time

bitstream relocation even more difficult because Vivado has no means to specify the exact

physical interface between the static system and the reconfigurable modules. Consequently,

multiple reconfigurable regions could not be implemented with the same physical interface.

Intel/Altera PR Flow: Intel/Altera PR flow is supported in the latest Quartus Prime design

software [Alt17] and fundamentally similar to the Xilinx PR flow as illustrated in Figure 2.1.

Ultimately, this flow permits static routing using reconfigurable regions’ routing resources, so

building relocatable modules is also impossible.

2.2.2 Academic PR Development Tools

As run-time module relocation for deployment abstraction as well as decoupling of static

and module designs for development abstraction are very useful and highly desired features,

36 CHAPTER 2. BACKGROUND AND RELATED WORKS

Figure 2.2: Overview of the GoAhead PR toolflow [BKT12]. GoAhead and BitMan [PHK17],
a tool and API for bitstream manipulation developed in this PhD project, are major building
blocks of the novel decoupled compilation flow (see Chapter 4).

several academic PR tools such as ReCoBus-Builder [KBT08], OpenPR [SAFW11], GoA-

head [BKT12], TPaR [VFBS14], RapidSmith 2.0 [HNH15], and RapidWright [LK18] have

been proposed to provide these features. Although the changes in Xilinx architectures, toolchains

as well as low-level API support such as the abandonment of XDL interface [BKT11] for TCL-

like interface made most of the academic tools obsolete, GoAhead, RapidSmith 2.0 and Rapid-

Wright were able to catch up these changes, and hence, to work on the Vivado Design Suite to

support the latest FPGA devices.

Figure 2.2 shows the GoAhead toolflow as an example of academic PR development tools,

in which the static and reconfigurable parts are implemented independently in different de-

signs. Moreover, blocker macros are used to prevent the static nets from crossing PR regions

to support module relocation between resource-identical reconfigurable regions. However, by

constraining a system in such a way that static routing follows a regular pattern, GoAhead

also allows static routing crossing reconfigurable regions without sacrificing the availability of

module relocation.

2.3. BITSTREAM MANIPULATION 37

2.2.3 Discussion

Although there have been significant progresses in the partial reconfiguration research, many

obstacles still exist:

1. The ability to adapt bitstreams at run-time for latest FPGA devices is crucial for module

relocation yet not a trivial task, as discussed in Section 2.3.

2. Despite the availability of academic PR development tools to support development and

deployment abstractions, a ready-to-use solution, including the integration of those tools

with High-Level Synthesis (HLS) tools and, especially, with the underlying infrastruc-

ture, is still absent. Such kind of solution is extremely useful for users who do not

posses the expertise of low-level FPGA details yet want to accelerate their applications

on FPGA devices. Related works of this research direction is discussed in Section 2.4.

3. None of the existing academic PR tools provides an integrated or complementary run-

time management for improved abstraction to allow loading and unloading of new con-

figurations similarly to dynamic loading and unloading of software modules [VF18].

Moreover, scheduling policies to orchestrate the modules with the available heteroge-

neous computing resources are other missing pieces.

These obstacles are the major motivator for this PhD project, and solutions to these three issues

will be provided in Chapter 3, Chapter 4, and Chapter 5, respectively.

2.3 Bitstream Manipulation

A bitstream contains all information of a design which is mapped, placed, and routed on

a dedicated FPGA chip. Therefore, bitstream manipulation needs to be done with care since

a corrupted bitstream may damage an FPGA device physically and permanently [BKT10].

However, bitstream manipulation also enables powerful features such as updating designs at

run-time, fully flexible module replacements, or even composing overlay architectures on-the-

fly [YKL15]. To perform this bitstream manipulation, we need detailed information about the

bitstream format.

Early efforts, such as JBit [GLS99], JBG [RS02] and ParBit [HLK02], provided means to

dynamically link and assemble partial hardware modules into FPGA fabric. However, these

approaches do not support latest devices and cannot easily reroute connections to modules and

maintain clock resources.

Previously, Note et al. [NR08] suggested to use the Xilinx Description Language [BKT11]

and cross-correlation algorithm to analyse the Xilinx bitstream and reconstruct the netlist. In

38 CHAPTER 2. BACKGROUND AND RELATED WORKS

this PhD project, we did not use the cross-correlation algorithm since all bitstream informa-

tion can be derived precisely from Xilinx FPGA bitstreams for CLB, DSP, BRAM, and the

interconnection fabric.

RapidSmith [LPL+14] released by the Brigham Young University can parse, manipulate,

and export bitstreams for Xilinx Virtex-4, Virtex-5 and Virtex-6. Moreover, in their latest

attempts, Kulkarni et al. provided a similar API for bitstream manipulation to change the

LUT contents and switch blocks configuration in Virtex 5 and 7-Series devices as part of their

Dynamic Circuit Specialisation system [KS16, KVS+16]. Their works were significant, and

hence, we have aimed at generalising it for later devices since they do not support any newer

FPGAs than the 7-Series devices. Additionally, [LPL+14, KS16, KVS+16] were based on the

old Xilinx ISE design suite which is obsolete for latest devices and represents a hurdle for

porting these tools to recent FPGAs. Note that since the UltraScale family, all recent FPGA

families of the vendor Xilinx are only supported on the Vivado design tool. Instead of using

only Xilinx ISE, we can support both ISE and Vivado design suites [Xil14].

Another significant effort was Project X-Ray [Sym], which documented all bitstreams of

Xilinx 7-Series FPGAs. In addition, Project X-Ray was integrated to an academic CAD flow,

named Maverick [GGNW19], which can take Verilog source codes, synthesise, implement

the designs, and finally generate bitstreams without any Xilinx tool in the process. This open-

source Maverick project has used the TCL interface on Vivado toolchain to extract the bitstream

encoding information for 7-Series devices.

Throughout this PhD project, a bitstream manipulation tool and API, called BitMan, has

been developed for targeting the Vivado toolchain as well as latest Xilinx FPGAs including

7-Series, UltraScale, and UltraScale+ families [PHK17], as described in Chapter 3. The author

of this PhD thesis developed BitMan and extracted the required bitstream information. Bit-

Man 1) enabled the novel decoupled compilation flow for FPGA virtualisation, as discussed in

Chapter 4, and 2) formed up the configuration controller to deploy PR modules at run-time in a

hot plug-and-play manner, as described in Chapter 5. Furthermore, BitMan was also integrated

to another academic vendor-independent CAD flow to generate partial bitstreams from Verilog

source codes for Xilinx UltraScale+ FPGA devices [PVKH19].

2.4 Compilation Flows for HLS Applications

FPGA applications have conventionally been written in Hardware Description Language

(HDL) such as Verilog and VHDL. To ease software users to develop FPGA applications,

High-Level Synthesis tools [CLN+11, CCA+13] have been introduced to compile applications

from high-level languages such as C/C++, OpenCL to their HDL formats. Then, the HDL

2.4. COMPILATION FLOWS FOR HLS APPLICATIONS 39

source codes go through steps of a normal FPGA development process, including synthesis,

placement, and routing, to produce the FPGA configuration binary of resulting FPGA designs

(i.e. FPGA bitstreams). Note that the HLS applications are required to be integrated to the

surrounding system infrastructure for operation as well as to the low-level driver/kernel API

for user-space software interface. Therefore, compilation flows are usually integral parts of the

corresponding HLS development platforms/frameworks, which provide the essential hardware-

software services.

To support software developers for using the heterogeneous Zynq UltraScale+ FPGAs, Xil-

inx has formerly provided the SDSoC development environment [Xild]. Xilinx SDSoC was a

framework, built on top of the Vivado HLS toolchain [Xil19b], for compiling C/C++/OpenCL

applications into hardware systems and running them on FPGAs. Further, this SDSoC frame-

work provided profiling user applications, integrating user applications to required system in-

frastructure such as the system bus and the memory controller, optimising full systems for

performance as well as providing various memory access patterns. However, Xilinx SDSoC

did not support partial reconfiguration. This means, when a user wants to change their sys-

tem functionality, it is required to shutdown the whole system, reconfigure the FPGA fabric

and start the system again. This limitation introduced a performance overhead in systems that

require frequent reconfiguration. Further, if a design would require more resources than what

are available on the device, that design cannot be implemented at all. Ultimately, as partial

reconfiguration was not available together with SDSoC, using PR for sharing resources is im-

possible.

On the other hand, Xilinx SDAccel [Xilc] has been introduced to compile OpenCL, C/C++

applications and to run them on PCIe-based FPGA platforms. This SDAccel framework en-

abled partial reconfiguration (PR) on these devices since the communication between the host

CPU and OpenCL kernels was performed via PCIe connectivity, which must be active when

swapping kernels. However, this framework did not allow users to build modules indepen-

dently from the static design. A single change in the static design required the whole system to

be re-implemented. This meant that design decoupling of static system and modules is infeasi-

ble. Moreover, users could only swap kernels which are built for a pre-defined PR region. This

limited users to adapt their applications to various run-time scenarios.

Xilinx has released Vitis development framework [Xil20], which is supporting both SoC-

based and PCIe-based FPGAs, when this PhD thesis was submitted. In addition, Vitis enables

PR for SoC-based systems and provides a run-time management layer, called Xilinx RunTime

(XRT) library [Xilf], to share FPGA resources between PR modules. Despite these progresses,

Vitis does not fully support the development and deployment abstractions as proposed and

implemented in this PhD work. For instance, the same HLS application needs to be compiled

many times to be deployed on different PR regions. Ultimately, changes in the static design will

force the whole system to be rebuilt.

40 CHAPTER 2. BACKGROUND AND RELATED WORKS

There are academic approaches [GBLV12, RFG16, GPK18] to implement systems sup-

porting module relocation with the help of the Xilinx Isolation Design Flow (IDF) [Xil16c].

Unfortunately, they do not work reliably with wide module interfaces and systems using mul-

tiple clock domains, which is commonly the case.

Other academic and commercial frameworks compiling HLS applications to FPGA plat-

forms are RIFFA [JRHK15], hCODE 2.0 [ZHA+17], DyRACT [VF14a], RC2F [KGS17], and

Dyplo [vZ13]. However, none of them supports relocatable hardware modules, design de-

coupling of static and PR modules or flexibility to instantiate different sized PR modules, as

summarised in Table 2.1 and discussed later in Chapter 6.

Instead, this PhD project aimed at developing and deploying real-world applications from

HLS source codes with complicated control flows, AXI4 system bus communication, multi-

ple clock domains, various memory access patterns as well as decoupled compilation flow and

hot-plug-and-play module deployment, as described in Chapter 4 and demonstrated in Chap-

ter 6. The work in this PhD thesis has been integrated to a novel FPGA Operating System

(FOS) [VPPK20] to fully virtualise FPGA resources in heterogeneous (SoC-based) systems, as

shown in Figure 1.4.

2.5 Shell-based Systems

Building reconfigurable systems on FPGAs has a long history, and most related systems

partition the FPGA resources into the static part providing the infrastructure and the recon-

figurable part for hosting the actual accelerator modules [DPP02, MTAB07, Koc12]. In re-

cent years, however, the term shell emerged for the static part of the system, as discussed

in [PCC+14]. This was done to express the encapsulation and I/O virtualisation that these in-

frastructures provide. Ultimately, the shell approach provides the infrastructure abstraction to

deploy user applications on top with ease.

The following paragraphs had been adopted from our previous publication [VPK18a] for

completeness. Moreover, Eckert et al. shed another light on the topic by their survey [EMHK16].

For this shell approach, the execution models are the prime drivers for deciding which

functionality is required to be a part of a shell and these shell-based systems can be categorised

into four types:

1. Single FPGA Single Application (SFSA): This is an ideal model for relatively simple

systems with a few accelerators that are used entirely exclusive to each other, as pro-

posed in [PCC+14, PA12, FVS15, TLF+17, VF14a, ZHA+17, Xilc, JRHK15, VKVF16];

2. Single FPGA Multiple Applications (SFMA): One or more applications may share the

2.5. SHELL-BASED SYSTEMS 41

Ta
bl

e
2.

1:
H

L
S

D
ev

el
op

m
en

tF
ra

m
ew

or
ks

.

Fe
at

ur
es

X
ili

nx
SD

So
C

[X
ild

]

X
ili

nx
SD

A
cc

el
[X

ilc
]

X
ili

nx
V

iti
s

[X
il2

0]
R

IF
FA

[J
R

H
K

15
]

hC
O

D
E

2.
0

[Z
H

A
+

17
]

D
yR

A
C

T
[V

F1
4a

]
PC

Ie
H

L
Sa

[V
K

P1
7]

R
C

2F
[K

G
S1

7]
D

yp
lo

[v
Z

13
]

FO
Sb

[V
PP

K
20

]

FP
G

A
fa

m
ili

es
Z

Y
N

Q
U

S+
V

ir
te

x
U

S+
Z

Y
N

Q
U

S+
&

V
ir

te
x

U
S+

V
ir

te
x-

7
V

ir
te

x-
7

V
ir

te
x-

7
V

ir
te

x-
7

V
ir

te
x-

7
Z

Y
N

Q
70

00
Z

Y
N

Q
U

S+

Pa
rt

ia
l

re
co

n-
fig

ur
at

io
n

(P
R

)
su

pp
or

t
7

3
3

3
3

3
3

3
3

3

D
es

ig
n

de
co

u-
pl

in
g

of
st

at
ic

an
d

PR
m

od
ul

es
7

7
7

7
7

7
3

7
7

3

R
el

oc
at

ab
le

PR
m

od
ul

es
7

7
7

7
7

7
3

7
7

3

Fl
ex

ib
ili

ty
to

in
st

an
tia

te
di

f-
fe

re
nt

si
ze

d
PR

m
od

ul
es

7
7

7
7

7
7

3
7

7
3

In
de

pe
nd

en
t

m
ai

nt
en

an
ce

of
st

at
ic

an
d

re
co

nfi
gu

ra
bl

e
pa

rt
s

7
7

7
7

7
7

3
7

7
3

O
pe

n-
so

ur
ce

ac
ce

ss
7

7
7

3
3

3
7

3
3

3

a T
he

au
th

or
of

th
is

Ph
D

th
es

is
ha

s
co

nt
ri

bu
te

d
by

pr
ov

id
in

g
an

d
in

te
gr

at
in

g
th

e
B

itM
an

to
ol

to
th

is
fr

am
ew

or
k

fo
rV

ir
te

x-
7

da
ta

ce
nt

re
FP

G
A

s.
b T

hi
s

fr
am

ew
or

k
ta

rg
et

in
g

C
PU

+F
PG

A
he

te
ro

ge
ne

ou
s

co
m

pu
tin

g
sy

st
em

s
ha

s
be

en
de

ve
lo

pe
d

th
ro

ug
ho

ut
th

is
Ph

D
pr

oj
ec

t.

42 CHAPTER 2. BACKGROUND AND RELATED WORKS

same FPGA fabric at run-time to achieve higher system throughput and shorter wait-

ing time for each application such as systems in [BSB+14, KGS17, CSZ+14, FVS15,

MTAB07, Xilc, VKP17, PVVK18, ZHA+17, AGV+17, VPPK20];

3. Multiple FPGAs Single Application (MFSA): For instance, in the Microsoft Catapult

project [PCC+14], a large number of FPGAs are connected to accelerate the Bing Search

engine. Other examples can be found in [PA12, WPAH16, TLF+17, VKVF16, GBM+19];

4. Multiple FPGAs Multiple Applications (MFMA): This model provides a certain level

of flexibility to the users for deploying their applications and therefore, are ideal for

large data centres and cloud computing systems, as proposed in [KGS17, WAHH15,

ZXX+17, BSB+14, VKP17, PVVK18, VPPK20].

It would be desirable to have an efficient (light-weight) shell for MFMA as that provides most

flexibility and could also support all other modes.

Multiple applications on a single FPGA are achieved using multiple partial regions. A

partial region is constituted by a set of adjacent functional primitives such as look-up tables

(LUTs), Block RAMs (BRAMs), and DSPs, and associated routing resources. Instantiating

a reconfigurable module inside a partial region to launch a user application on top of a shell

means configuring the functional primitives and routing resources such that the partial region

provides the functionality of the reconfigure module.

These regions can be asymmetric as well as symmetric in shape. Asymmetric regions, usu-

ally called islands, support multiple different sizes of modules without having to reconfigure

the entire FPGA [ZHA+17]. The number of reconfigurable resources inside a partial region

has to satisfy the footprint of the largest reconfigurable module (i.e. the module which has the

biggest resource budget that might be instantiated in it). Please note that a partial region has

to satisfy all kind of resources, such as LUTs, BRAMs, and DSPs together. For FPGA appli-

cations in Register-Transfer Level (RTL), this asymmetric approach offers various options to

map a specific reconfigurable module to its best fit partial region as the number of resources

per reconfigurable module cannot be changed easily. However, there are cases when there

are substantial amount of unused resources in the targeting partial regions, as illustrated in Fig-

ure 2.3. This under-utilisation leads to the internal fragmentation, which is the major drawback

of this asymmetric approach [Koc12]. Nevertheless, the asymmetric solution is the only ap-

proach that is officially supported by partial reconfiguration design flows of the FPGA vendor

tools [Xil18c, Alt17].

The symmetric approach uses similar or identically sized partial regions with the same re-

source footprint, called tiled regions or resources slots or 1D slots, as classified in [KBT08].

With the symmetric solution, a module can occupy one or more adjacent slots which pro-

vides more flexibility for the resource allocation to trade-off resource for system throughput

2.5. SHELL-BASED SYSTEMS 43

Hardened CPUs

m1

m2 Hardened CPUs

m1

m2

m3

Unused resources
in reconfigurable

areas

Static part of
the system

a) Island style b) Slot style

Figure 2.3: Island style placement vs slot style placement. In all cases, the total reconfigurable
area and the module sizes are the same. With more fine-grained slots, internal fragmentation
can be minimised, and the number of simultaneously placed modules can be maximised. The
figure is adopted from [Koc12] to incorporate the hardened CPUs found in modern CPU+FPGA
heterogeneous computing systems.

at run-time, as shown in [VPKG18, PVVK18, VPPK20]. However, according to the run-

time module allocation, a waiting multi-slot module cannot be deployed although there are

enough free resources at that time as the free slots are not in a contiguous region. This issue

is called external fragmentation, which can be resolved by the system scheduler as explained

in Chapter 5. Ultimately, this symmetric approach needs a custom design flow to be imple-

mented [KBT08, BKT12].

Each execution model requires one of the following classes of connectivity:

• Host connectivity: this includes connectivity to a CPU for controlling register files or

for shared memory access,

• Exclusive connectivity: this typically includes connectivity to some I/O primitives such

as I/O pins or Gigabit transceivers,

• Hybrid connectivity: a combination of host connectivity and exclusive connectivity.

Because the host connectivity approach has the host CPU handling the resource management

of the FPGA, its shells could reserve as many resources as possible for the applications as

shown in [FVS15, ZXX+17]. Another large-scale example is the Amazon EC2 F1 FPGA

Cloud Service [Ama] where its instances are built from FPGA accelerators each plugged into

PCIe slots and where all network connectivity is provided through the host CPU.

On the other hand, the exclusive connectivity approach allows sharing of FPGA resources

44 CHAPTER 2. BACKGROUND AND RELATED WORKS

among multiple different CPUs [WAHH15, WPAH16] or even standalone FPGAs for the appli-

cation [PCC+14, WAHH15, BSB+14, TLF+17]. Certainly, this class of exclusive connectivity

introduces significantly more resource overhead in the shells than the host connectivity coun-

terparts since FPGA support for the network layer and other I/O resources (e.g. Ethernet and

memory controllers) are required, as reported in Table 2.2.

The hybrid approach aims at supporting both forms of connectivity to benefit from off-

loading control intensive or complex resource management tasks to CPUs, but also to use the

special hardware on an FPGA to accelerate I/O accesses if required. For example, in Mi-

crosoft’s Catapultv2 shell [CCP+16], the FPGAs are located between the network and the host

machine. This approach is also known as bump-in-the-wire integration.

Although the aforementioned shells have provided certain levels of infrastructure abstrac-

tion, due to obstacles of state-of-the-art partial reconfiguration design methodologies as ex-

amined in Section 2.2, none of them is able to support development abstraction (i.e. design

decoupling of static and PR modules) and deployment abstraction, as discussed in Chapter 4

and demonstrated in Chapter 6. This PhD work, instead, contributes to all three level of ab-

stractions to a novel full-stack FPGA Operating System [VPPK20] thanks to the enhanced PR

approach, as illustrated in Figure 1.4.

2.6 Chapter Summary

As mentioned before, partial reconfiguration can be utilised to build up a system that provides

abstraction layers and the sense of virtualisation for FPGA development and deployment, hence

achieves the overall goals for FPGA virtualisation. Although there are a lot of solutions avail-

able, no fully integrated framework considering the whole FPGA ecosystem to support the

proposed FPGA-virtualised model has ever been built. This is due to the obstacles which are

discussed in Section 2.2. Therefore, current design methodology as well as design tools need

to be revised to support our ultimate FPGA virtualisation targets. The next two chapters will

explain our innovation in design tool and methodology in detail.

2.6. CHAPTER SUMMARY 45

Ta
bl

e
2.

2:
C

om
pa

ri
so

n
of

sh
el

ls
.

Sc
al

ab
ili

ty
co

ns
id

er
s

th
e

su
pp

or
to

f
co

nn
ec

tiv
ity

in
th

e
sh

el
l(

L
ow

:
ho

st
co

nn
ec

tio
n

on
ly

,M
ed

iu
m

:
ne

tw
or

k
co

nn
ec

tio
n,

H
ig

h:
bo

th
ho

st
an

d
ne

tw
or

k
co

nn
ec

tio
n)

,F
le

xi
bi

lit
y

co
ns

id
er

s
th

e
su

pp
or

tf
or

ra
ng

e
of

ac
ce

le
ra

to
r

de
si

gn
is

co
ns

id
er

ed
i.e

.
cu

st
om

ac
ce

le
ra

to
r,

fr
am

ew
or

k,
an

d
bu

m
p-

in
-t

he
-w

ir
e

(L
ow

:
1

m
od

el
,

M
ed

iu
m

:
2

m
od

el
,

H
ig

h:
al

l
3

m
od

el
s)

,
D

es
ig

n
P

ro
du

ct
iv

ity
co

ns
id

er
s

if
sh

el
l

su
pp

or
ts

R
T

L
,

H
L

S/
D

SL
an

d
fr

am
ew

or
ks

(L
ow

:
on

ly
R

T
L

,
M

ed
iu

m
:

H
L

S
/

D
SL

+
R

T
L

,
H

ig
h:

H
L

S/
D

SL
+

R
T

L
+

fr
am

ew
or

ks
),

Is
ol

at
io

n
co

ns
id

er
sh

ow
ad

va
nc

ed
su

pp
or

ti
sp

ro
vi

de
d

by
co

m
po

ne
nt

m
an

ag
er

sa
nd

fin
al

ly
(L

ow
:1

,M
ed

iu
m

:2
,H

ig
h:

>
2

re
so

ur
ce

m
ul

tip
le

xi
ng

),
U

til
is

at
io

n
co

ns
id

er
s

th
e

am
ou

nt
of

re
gi

on
w

hi
ch

w
ou

ld
be

in
us

e
at

ru
n-

tim
e

th
is

in
cl

ud
es

su
pp

or
t

fo
r

m
ul

tip
le

ac
ce

le
ra

to
rs

on
ch

ip
as

w
el

l
as

le
ve

l
of

sc
he

du
lin

g
te

ch
ni

qu
es

em
pl

oy
ed

(L
ow

:1
re

gi
on

,M
ed

iu
m

:>
1

re
gi

on
,H

ig
h:

>
1

re
gi

on
+

sp
at

ia
ls

ch
ed

ul
in

g)
.I

ni
tia

lt
ab

le
pr

ov
id

ed
in

[V
PK

18
a]

.

Sh
el

l
A

cc
el

er
at

io
n

L
og

ic
M

ul
ti-

te
na

nc
y

Sc
al

ab
ili

ty
Fl

ex
ib

ili
ty

D
es

ig
n

Pr
od

uc
tiv

ity
Is

ol
at

io
n

U
til

is
at

io
n

B
ym

a
et

al
.[

B
SB

+
14

]
26

%
3

M
ed

iu
m

M
ed

iu
m

M
ed

iu
m

L
ow

M
ed

iu
m

Pu
tn

am
et

al
.[

PC
C
+

14
]

24
%

7
H

ig
h

H
ig

h
L

ow
-

L
ow

C
he

n
et

al
.[

C
SZ

+
14

]
59

%
3

M
ed

iu
m

M
ed

iu
m

H
ig

h
M

ed
iu

m
M

ed
iu

m

W
ee

ra
si

ng
he

et
al

.[
W

A
H

H
15

]
67

%
3

H
ig

h
M

ed
iu

m
M

ed
iu

m
H

ig
h

M
ed

iu
m

Fa
hm

y
et

al
.[

FV
S1

5]
93

%
7

L
ow

L
ow

M
ed

iu
m

-
L

ow

W
ee

ra
si

ng
he

et
al

.[
W

PA
H

16
]

68
%

7
M

ed
iu

m
M

ed
iu

m
M

ed
iu

m
-

L
ow

Ta
ra

fd
ar

et
al

.[
T

L
F+

17
]

80
%

7
H

ig
h

M
ed

iu
m

H
ig

h
-

L
ow

Z
ha

ng
et

al
.[

Z
X

X
+

17
]

87
%

3
H

ig
h

H
ig

h
H

ig
h

H
ig

h
M

ed
iu

m

K
no

de
le

ta
l.

[K
G

S1
7]

58
%

3
H

ig
h

H
ig

h
M

ed
iu

m
H

ig
h

M
ed

iu
m

A
si

at
ic

et
al

.[
A

G
V
+

17
]

-
3

M
ed

iu
m

L
ow

M
ed

iu
m

M
ed

iu
m

H
ig

h

K
ha

w
aj

a
et

al
.[

K
L

P+
18

]
-

3
H

ig
h

H
ig

h
L

ow
H

ig
h

H
ig

h

A
m

az
on

E
C

2
F1

sh
el

l[
A

m
a]

66
%

7
H

ig
h

H
ig

h
L

ow
H

ig
h

L
ow

E
C

O
SC

A
L

E
sh

el
l*

[G
B

M
+

19
]

53
%

3
H

ig
h

H
ig

h
M

ed
iu

m
H

ig
h

H
ig

h

FO
S

sh
el

l*
[V

PP
K

20
]

83
%

3
L

ow
M

ed
iu

m
M

ed
iu

m
M

ed
iu

m
H

ig
h

*
T

he
se

sh
el

ls
ha

ve
be

en
de

ve
lo

pe
d

th
ro

ug
ho

ut
th

is
Ph

D
Pr

oj
ec

t.

Chapter 3

Bitstream Manipulation Tool and API

Where there’s a will, there’s a way.

The deployment abstraction as mentioned in Chapter 1 requires run-time relocation of hard-

ware accelerators on FPGA resources. Many high performance reconfigurable systems, such as

proposed in the projects EXTRA [SVC+16], ECOSCALE [MPL+16], OpenStack-enabled vir-

tualised FPGA platform [BSB+14], and embedded systems [vZ13], recommend to use partial

reconfiguration to achieve this flexible module relocation. However, fully flexible relocation

is hard to achieve since a relocatable module requires inter-communications to other modules

as well as fitting clock resources in order to work accurately [Koc12]. This level of automa-

tion does not exist in current vendor design flows, as pointed out in Chapter 2. Therefore, to

overcome this obstacle, we may need either to build our own FPGAs and the corresponding

design toolchains or to perform bitstream manipulation. Although do-it-yourself FPGAs and

toolchains [Uni19] would allow full control of the architecture and the application development

process, bitstream manipulation of modern FPGAs provides the ability of flexible module re-

location on top of the existing FPGA ecosystem. In the scope of this PhD project, bitstream

manipulation has been chosen as we are targeting the modern heterogeneous CPU+FPGA com-

puting systems.

With a deep understanding of the bitstream format, we are able to:

• modify the configuration of FPGA primitives (e.g., LUT values [KS16] or memory

(BRAM) contents [SFK+17]),

• reroute wires,

• reconfigure clock buffers,

• flexibly relocate and duplicate hardware modules,

46

3.1. BITSTREAM INVESTIGATION AND BITMAN IMPLEMENTATION 47

• route through physical LUTs or FPGA resources [KBL13, HW13],

• perform hardware linking at binary (bitstream) level for overlay architectures [YKL15],

• generate full/partial bitstreams which are compatible with the Xilinx FPGA bitstream

format [PVKH19].

In this chapter, we introduce a generic methodology to analyse and manipulate the Xilinx

FPGA bitstreams with the goal to build a generic tool that may even support device families

that may be introduced after UltraScale and UltraScale+ ones. We provide a low-level API

providing access to FPGA fabric resources such as LUT/BRAM contents, routing and clock

resources. Furthermore, high-level functions such as module placement and relocation are fully

supported.

Besides a generic X-Y coordinate system abstraction for defining geometrical parameters,

BitMan supports a coarse abstraction in resource column of a definable height. In the case of

Xilinx FPGAs, the height of a clock region is the smallest vertically atomically reconfigurable

unit of these FPGAs. Any module relocation has to consider the primitive layout of the fabric,

and we adopted a string model approach as presented in [GK15].

A part of this work has been published in [PHK17] and is reproduced here with additional

material. The author of this PhD thesis developed BitMan as well as extracted necessary bit-

stream information to implement the aforementioned features.

3.1 Bitstream Investigation and BitMan Implementa-
tion

In this section, we are taking a closer look into a bitstream’s structure, frame address, resource

description, and how they are being used in the BitMan tool.

3.1.1 Bitstream Format

The FPGA bitstream consists of configuration commands and configuration data. A configura-

tion bitstream for Xilinx FPGAs has a header (including a bus width detection pattern, a SYNC

word, and some configuration commands) and the actual configuration data (for all primitives

and the routing), which is followed by a footer. We refer readers to configuration user guides

from Xilinx vendor such as [Xil15a] and [Xil15b] for further information about header, bus

width pattern and SYNC word. A footer may have CRC values, if any, and a DESYNC word

to indicate the end of configuration data. In this work, we focus on the configuration frames,

the device description and on how an FPGA device is reconfigured to help understanding how

the bitstream manipulation tool works.

48 CHAPTER 3. BITSTREAM MANIPULATION TOOL AND API

26 25

Reserved

31 23 21 17 16 7 6 0

Minor addressMajor addressRow address

Block

type

Top/bottom

bit

7 Series Frame Address Register Description

26 25

Reserved

31 22 21 17 16 7 6 0

Minor addressMajor addressRow address

Block

type

UltraScale Frame Address Register Description

2627

Reserved

31 24 23 18 17 8 7 0

Minor addressMajor addressRow address

Block

type

UltraScale+ Frame Address Register Description

Figure 3.1: 7-Series, UltraScale and UltraScale+’s Frame Address Register Descriptions.

31 Word 0 0

31 Word 1 0 CLB

0

31 Word 2 0

31 Word 3 0 CLB

1

31 Word 56 0

31 Word 57 0 CLB

28

31 Word 58 0

31 Word 59 0 CLB

29

31 Word 60 0

31 Word 61 0

31 Word 62 0

31 Word 63 0

31 Word 64 0 CLB

30

31 Word 65 0

31 Word 66 0 CLB

31

31 Word 119 0

31 Word 120 0 CLB

58

31 Word 121 0

31 Word 122 0 CLB

59

...

...

RCLK

31 Word 0 0

31 Word 1 0 CLB

0

31 Word 2 0

31 Word 3 0 CLB

1

31 Word 48 0

31 Word 49 0 CLB

24

31 Word 50 0

31 Word 51 0 CLB

25

31 Word 52 0

31 Word 53 0

31 Word 54 0 CLB

26

31 Word 55 0

31 Word 56 0 CLB

27

31 Word 97 0

31 Word 98 0 CLB

48

31 Word 99 0

31 Word 100 0 CLB

49

...

...

HCLK

31 Word 0 0

31 Word 1 0

31 Word 2 0

31 Word 45 0

31 Word 46 0

31 Word 47 0

...

...

RCLK

0

1

31 Word 42 0

31 Word 43 0

31 Word 44 0

28

29

31 Word 48 0

31 Word 49 0

31 Word 50 0

30

31

31 Word 91 0

31 Word 92 0

31 Word 93 0

58

59

Figure 3.2: Frame configurations for a CLB column in the 7-Series (left), UltraScale (middle),
and UltraScale+ (right) devices.

3.1. BITSTREAM INVESTIGATION AND BITMAN IMPLEMENTATION 49

C
LB

 c
o

lu
m

n

B
R

A
M

 c
o

lu
m

n

D
SP

 c
o

lu
m

n

IO
 c

o
lu

m
n

P
C

IE
 c

o
lu

m
n

G
TH

E
co

lu
m

n

Clock region
X0Y0

Clock region
X1Y0

Clock region
X2Y0

Clock region
X3Y0

RCLK

Clock region
X0Y1

Clock region
X1Y1

Clock region
X2Y1

Clock region
X3Y1

Clock region
X0Y2

Clock region
X1Y2

Clock region
X2Y2

Clock region
X3Y2

Majors

012 34 567 8 ...

Major CLBs

0 1

Major BRAMs

2 ...

Minors

...

...

...

R
o

w
 1

R
o

w
 2

R
o

w
 0

R
o

w
s

W
o

rd
_I

n
d

ex
es

Figure 3.3: Overview of Kintex UltraScale XCKU025’s device layout. This device has in
total 3 repetitive resource rows and 12 clock regions. The figure is adopted from the Vivado
design tool [Xil14].

50 CHAPTER 3. BITSTREAM MANIPULATION TOOL AND API

C1C1C1
C1C1C0 C1C1C1C1C1C1 C1C1C1C1

C1C2 C1C1
C1
C1
C1C3

C1 C1 C1 C1 C1C4 C5 C6 C7 C8

Inputs Pass transistors Output

a)
C1 C1 C1 C1 C1C0 C1 C2 C3 C4b)

Figure 3.4: (a) Switch matrix multiplexer implementation on Xilinx 7-series FPGAs; (b)
Switch matrix multiplexer implementation on UltraScale+ FPGAs.

Configuration memory frames: are atomic, indivisible elements in FPGA configuration

data. Each frame has its own address, which consists of a minor, major, and row address field

as well as the block type of the resource (e.g., the routing of BRAMs and the actual BRAM

content are stored in different sections of the bitstream, each belonging to a different block

type). Consequently, the block type identifies if a resource is CLB (Configurable Logic Block),

BRAM content or CFG_CLB [Xil09]. Please note that the allocation of the FPGA resources

into block type may vary across different device families of the vendor Xilinx and BitMan is

designed generically to take such family specific properties into account.

The row address shows which row of clock regions the resources belong to, while the

major address specifies the resource column. The minor address, in turn, defines a specific

configuration frame within a specific column of resources. Figure 3.1 depicts the descriptions

of frame address in 7-Series, UltraScale, and UltraScale+ devices. Note that the 7-Series has

a bit to select a top-half or bottom-half row (bit 22), while UltraScale/UltraScale+ FPGAs

dismissed this bit.

Depending on the FPGA family, a frame has a specific number of data words. For example,

in 7-Series family a configuration frame has 101 32-bit words, while it has 123 and 93 words

in UltraScale and UltraScale+ families, respectively. Figure 3.2 shows configuration frames

for a CLB column in 7-Series, UltraScale, and UltraScale+ devices. We can identify that the

number of words per frame relates to the number of CLBs and how many configuration bits are

used per CLB. 7-Series devices have 50 CLBs per column and a reconfiguration frame has 101

words, whereof 1 word is used for configuring some clock resources. Respectively, UltraScale

and UltraScale+ devices provide 60 CLBs per column with 123 and 93 words per frame and 3
words for the CLKs.

3.1. BITSTREAM INVESTIGATION AND BITMAN IMPLEMENTATION 51

Table 3.1: Resource information in the Xilinx Virtex-6, and 7-Series families.

Device family Virtex-6

Resource column CLB DSP BRAM

Block Type 0x000 0x000 0x001

of frames for interconnect 28 28 28

of frames for content 8 0 128

Device family 7-Series

Resource column CLB DSP BRAM

Block Type 0x000 0x000 0x001

of frames for interconnect 28 28 28

of frames for content 8 0 128

Table 3.2: Resource information in the UltraScale and UltraScale+ families.

Device family UltraScale

Resource column CLB DSP Switch Matrix BRAM

Block Type 0x000 0x000 0x000 0x001

of frames for interconnect 0 4 58 4

of frames for content 12 0 0 128

Device family UltraScale+

Resource column CLB DSP Switch Matrix BRAM

Block Type 0x000 0x000 0x000 0x001

of frames for interconnect 0 8 76 6

of frames for content 16 0 0 256

52 CHAPTER 3. BITSTREAM MANIPULATION TOOL AND API

INT_R_X1Y50/SE2END0 -> NR1BEG0
CLB col 01 row 50
Frame 07 : 00 00 00 40 00 00 00 00
Frame 15 : 00 00 00 80 00 00 00 00

INT_R_X1Y50/SE2END0 -> SS2BEG0
CLB col 01 row 50
Frame 06 : 00 00 08 00 00 00 00 00
Frame 14 : 00 00 04 00 00 00 00 00

Figure 3.5: Example of bitstream encodings for routing in the 7-Series family.

INT_X1Y180/WW2_E_END0->INODE_E_1_FT1
CLB col 01 row 0
Frame 69 : 00 00 00 02 00 00

INT_X1Y180/WW1_W_BLN_7_FT1->INODE_E_1_FT1
CLB col 01 row 0
Frame 59 : 00 00 00 01 00 00

Figure 3.6: Example of bitstream encodings for routing in the UltraScale+ family.

3.1. BITSTREAM INVESTIGATION AND BITMAN IMPLEMENTATION 53

HCLK_L_X32Y78/HCLK_CK_OUTIN_L7 ->
HCLK_LEAF_CLK_B_TOPL5
CLB col 01 row 75
Frame 01 : 00 08 09 B3 00 00 00 00

HCLK_L_X32Y78/HCLK_CK_OUTIN_L1 ->
HCLK_LEAF_CLK_B_TOPL5
CLB col 01 row 75
Frame 01 : 80 00 09 BF 00 00 00 00

Figure 3.7: Clock resource encodings of 7-Series FPGAs in bitstream.

BUFCE_LEAF_X0Y0

Row Address 0
CLK col 01
Frame 00 : 20 00 22 22 20 00 02 20 00 00 00 00
Frame 41 : 02 02 80 00 00 00 2A A0 00 00 00 00
Frame 42 : 00 AA A0 00 00 00 82 A8 00 00 00 00
Frame 45 : 00 02 22 22 00 00 02 02 00 00 00 00

BUFCE_LEAF_X1Y0

Row Address 0
CLK col 04
Frame 00 : 80 08 00 00 00 00 88 80 00 00 00 08
Frame 38 : 00 02 22 22 00 00 02 02 00 00 00 00
Frame 41 : 02 02 80 A0 00 00 8A A0 00 00 00 00
Frame 42 : 00 A0 00 80 00 00 A8 A2 00 00 00 00

Figure 3.8: Clock resource encodings of UltraScale+ FPGAs in bitstream.

54 CHAPTER 3. BITSTREAM MANIPULATION TOOL AND API

Figure
3.9:

A
llpossible

connections
in

a
sw

itch
m

atrix
ofa

X
ilinx

U
ltraScale+

FPG
A

are
configured

in
a

V
ivado

design.T
he

routing
constraints

in
this

design
are

generated
by

T
C

L
com

m
ands

from
a

list
of

potential
connections,

w
hich

is
obtained

from
the

G
oA

head
tool.

T
he

resulting
bitstream

ofthis
design

is
then

parsed
through

B
itM

an
to

getthe
corresponding

bitstream
encodings

ofthese
connections.

3.1. BITSTREAM INVESTIGATION AND BITMAN IMPLEMENTATION 55

Device resource description: Xilinx FPGAs are organised in resource columns in terms

of CLB, Block RAM, DSP, clock, and other I/O. Multiple columns are grouped as a resource

row. Figure 3.3 illustrates a Kintex UltraScale XCKU025 device layout with details of one

resource row.

Resource columns consist of frames for the configuration of the corresponding primitives

and for routing. Every column provides routing resources such as switch boxes with rout-

ing multiplexers. These routing resources are used for implementing the signal wiring inside

the FPGA fabric. The configuration bits controlling the routing resources are encoded in the

bitstream file together with the configuration of all other primitives of the FPGA.

The resource’s architecture as well as the number of frames per column in one row stays

the same in a family, but commonly differs from family to family. For example, a CLB on

a 7-Series device has 8 frames for its content, but 12 frames on UltraScale and 16 frames on

UltraScale+ counterparts, respectively. The number of frames for routing is also different due

to differences in the routing fabric. Tables 3.1 and 3.2 give a summary on the number of frames

for a couple of device families that are all supported by BitMan.

Figure 3.5 and Figure 3.6 show how a connection in a switch matrix is encoded in the

bitstream. Moreover, Figure 3.9 shows all possible connections in a switch matrix of a Xilinx

UltraScale+ FPGA. We refer readers to see [LAB+05] for more details on the implementation

of switch matrix multiplexers on modern FPGAs. Multiplexers on SRAM-based FPGAs are

commonly implemented by pass transistors or transmission gates [BRM99] that are directly

controlled by configuration SRAM cells. On 7-Series FPGAs, large multiplexer are organised

in a row-column architecture with one set of configuration bits selecting the rows and another

set for the columns, as discussed in [BKT10] and briefly illustrated in Figure 3.4. For instance,

a 20 : 1 multiplexer on a 7-Series FPGA is organised in a 5× 4 layout and has two groups of

configuration bits with 5+4 = 9 configuration bits in total, as shown in Figure 3.5.

On the other hand, UltraScale+ devices expose both dimensions of the multiplexers for

rows and columns as individual multiplexers directly to the user. Therefore, UltraScale+ de-

vices appear to have more but smaller multiplexers which in turn are typically encoded by a

one-hot scheme in the bitstream, as illustrated in Figure 3.6.

Figure 3.7 and Figure 3.8 show how clock resources are encoded in the bitstreams of 7-

Series and UltraScale+ FPGAs. Note that the clock architectures have been changed signifi-

cantly from 7-Series devices to UltraScale/UltraScale+ devices, see [Xil18a, Xil18d] for more

details. By changing the configuration data, we could reroute clock signals. BitMan provides

an API that allows reporting and manipulating clock tree and other routing resources by simply

providing the resource column and the corresponding clock routing wires to be connected or

deleted.

In BitMan, we only manipulate the CLB, BRAM contents, the internal configuration of

56 CHAPTER 3. BITSTREAM MANIPULATION TOOL AND API

Input
Bit-

stream

Output
Bitstream

(full/
partial)

Read

Write

BitMan Tool and API

Resource
report

Report

Configuration
data for one tile

X (column)

Y
(C

LB
 g

ra
n

u
la

ri
ty

)

FrameBuffer

Commands

Figure 3.10: The BitMan process.

CLBs, BRAMs, and DSPs, routing, and clock resources because this is sufficient for dynam-

ically reconfiguring a partially reconfigurable module. Other resources, including I/O blocks,

Gigabit transceivers, or hardened cores are commonly part of a static system (shell) that usually

does not require run-time adaptation through means of partial reconfiguration.

3.1.2 Module Placement and Relocation

From this point, we have to solve the problem of how to model the different resources such that

module placement can be carried out transparently with respect to overlaying software stacks.

We were inspired by the alphabetical string representation method in [GK15], which uses a

resource string abstraction for modeling the FPGA device resources. In our case, the used

symbols are as follows:

• N: NULL (NULL resource which we do not need to read and change the information

such as IO fabric, hardcore CPU, ICAP port or PCIe interface),

• L: CLBL (a logic tile resource column),

• M: CLBM (CLBL plus distributed memory),

• R: BRAM,

• D: DSP,

• B: BUFG (clock resource).

3.2. APPLICATIONS AND EVALUATION 57

For example, the resource string of the first 35 columns on a Kintex UltraScale XCKU025 is:

NLMLRLMDMLMLRLMDMLMLMLMDMLMLRLMDBMLML.

With this, reconfigurable regions as well as reconfigurable modules will be modeled as

strings, and a feasible module placement requires that the resource footprint string of the mod-

ule fits the resources available in the targeting reconfigurable region. BitMan can include the

resource strings into a bitstream header (for both full and partial bitstreams) and uses this in-

formation for testing feasible module placement positions.

Module relocation is achieved by modifying address information fields inside the bitstream.

Moreover, the clock resource configuration data of the module may need to be adopted to the

specific targeting region as well.

3.1.3 Bitstream Manipulation Tool

BitMan can be used as an independent tool or integrated to a controller as a software API.

Table 3.3 shows functions of BitMan API, which are exposed to higher level applications.

Figure 3.10 shows the operation of BitMan. The whole input bitstream will be read and

stored in a 2-D array FrameBuffer. The FrameBuffer also removes the need for configuration

readback as the buffer mirrors the configuration of the fabric. BitMan, however, can generate

readback bitstreams for debug purposes. BitMan also receives commands from higher level

applications. (X, Y) coordinate system refers to a grid at CLB granularity. Alternatively, a

grid of the height of a clock region in vertical dimension can be used for convenience. All

low-level details of the bitstream are hidden from the user and BitMan translates user-friendly

commands into low-level bitstream manipulation. For example, Algorithm 1 shows how to use

the resource string model and resource description information in Table 3.1 and Table 3.2 to

specify a Frame_Index.

BitMan is written in ANSI C to be portable in literally any platform, from a desktop com-

puter with Intel Core i7 to an embedded ARM Cortex-A9 or a soft-core CPU. Its performances

in various examples will be evaluated in the next Section.

3.2 Applications and Evaluation

In this section, we discuss how applications could benefit from the proposed BitMan tool.

For example, the run-time adaptation of a module such as the module relocation, duplication,

rerouting or LUT/BRAM content modification can be applied to save a significant amount of

logic overhead. Moreover, the binary-level stitching of an overlay design can boost up some

aspect of the CAD toolflow at up to two orders of magnitude, as discussed in Section 3.2.2.

In a recent effort, BitMan has been integrated to an academic vendor-independent toolflow,

called EFCAD [PVKH19], to generate Xilinx FPGA partial bitstreams from Verilog source

58 CHAPTER 3. BITSTREAM MANIPULATION TOOL AND API

Table 3.3: BitMan functions. Note that (Xi,Yi) are the horizontal and vertical coordination of
a logical tile.

High-level APIs Functionality

replace_FPGA_region(X0, Y0, X1, Y1, X2,
Y2)

Replace/duplicate a rectangular FPGA
region bounded by bottom-left (X0,Y0)
and top-right (X1,Y1) to a new region
which starts at (X2,Y2).

Replace will clear configuration data in
the old region.

duplicate_FPGA_region(X0, Y0, X1, Y1,
X2, Y2)

reroute_wire(X, Y, input, output) Change configuration data of switch
box/clock multiplexer (X, Y) to connect
input to output.

reroute_clock(X, Y, input, output)

change_LUT_content(X, Y, LUT,
new_config)

Change the content of LUT
(LUT)/BRAM (X, Y) to the
new_config data.change_BRAM_content(X, Y, new_config)

Table 3.4: Performances of BitMan (B) and Maverick (M)’s bitstream generation [Gli20] on
an Intel Core i7 desktop environment and an embedded Dual-core ARM Cortex-A9 CPU with
512MB RAM (ZedBoard/PYNQ-Z1) platform.

Processing time (µs)

LUT CLB BRAM Routing

System configuration B M B M B M B M

Quad-core Intel Core i7 372 225 1069 717 2604 —* 487 311

Dual-core ARM Cortex-A9 45 93 94 316 229 — 54 146
* BRAMs are not supported by Maverick (M).

3.2. APPLICATIONS AND EVALUATION 59

Algorithm 1 Algorithm to find Frame_Index. To compute a Frame_Index of a specific frame
(i.e. the absolute position of that frame in the whole bitstream), we have to count the weighted
sum of frames with respect to the resource column type.
* RowAddress, Ma jorAddress, and MinorAddress are fields in the Frame Address Register
(FAR), as illustrated in Figure 3.1.
* RAMInterFrames, BUFGFrames, CLBFrames, DSPFrames, and RAMContentFrames are
the number of frames per resource column, see Table 3.1 and Table 3.2 for details.
* RowCLBFrames and RowRAMFrames are the number of frames per CLB row and RAM row.
RAMO f f setFrames is the number of frames before the configuration data of BRAM contents.
These values are device-specific.

1: if NOT a BRAM− content column then
2: for i = 0 to Ma jorAddress do
3: if a BRAM− interconnect column then
4: Increase NoColRAM
5: else if a BUFG column then
6: Increase NoColBUFG
7: else if a CLBM column then
8: Increase NoColCLBM
9: else if a CLBL column then

10: Increase NoColCLBL
11: else if a DSP column then
12: Increase NoColDSP
13: end if
14: end for
15: return (MinorAddress + NoColRAM * RAMInterFrames + NoColBUFG *

BUFGFrames + (NoColCLBM + NoColCLBL) * CLBFrames + NoColDSP *
DSPFrames + RowAddress * RowCLBFrames)

16: else if a BRAM− content column then
17: return (MinorAddress + Ma jorAddress * RAMContentFrames + RowAddress *

RowRAMFrames + RAMO f f setFrames)
18: else
19: return (-1)
20: end if

60 CHAPTER 3. BITSTREAM MANIPULATION TOOL AND API

BitMan tool

Figure 3.11: An example of module relocation. There are 2 steps to achieve this moving: 1)
relocate the whole module resource (fixed arrow), and 2) reroute clock signals for the relocat-
able module (dashed arrow).

codes. The whole process including synthesis, implementation and bitstream generation runs

totally on the Xilinx Zynq UltraScale+ MPSoC in which 64-bit ARM CPUs are tightly coupled

with UltraScale+ FPGAs on the same die, and the resulting bitstream will then be downloaded

onto FPGA fabric via PCAP to reconfigure the FPGA part of the chip, so called programming

logic (PL), to change the system behaviour. Therefore, in the user’s point of view, it looks like

the chip compiles itself.

Note that plain un-encrypted Xilinx FPGA bitstreams were used in below examples. Bit-

Man supports compressed bitstreams as generated by the Xilinx vendor tools, but it does not

support encryption. The later can be implemented by a system providing a secure storage

mechanism.

3.2.1 Run-time Adaptation

Module relocation and duplication: A partial module might spread across a number of

CLB and/or BRAM columns, and its reconfiguration can be carried out without affecting sur-

rounding modules or the static system. In particular if some of the routing resources within

a reconfigurable region implement static routing (e.g., for crossing signals of the surrounding

system through a reconfigurable area, as discussed in Section 4.2.3), the relocation and du-

plication are permitted and will have no side-effects due to a partial reconfigurable process.

The relocation and duplication require routing constraints on the static routing through re-

configurable regions that can be generated with the GoAhead tool [BKT12], as presented in

Chapter 4.

Rerouting: BitMan is able to reroute clock signals by reconfiguring clock multiplexers in

BUFG or BUFHCLK cells. By doing this, a relocatable module could be disabled/enabled

or maintains its operation at a different frequency. This is also needed to keep the routing of

the clock resources that belong to the static system untouched when partially reconfiguring a

module, as discussed more detailed in Chapter 4.

3.2. APPLICATIONS AND EVALUATION 61

L 1

L 2

L 16

[1:0]

[1:0]

[1:0]

Reference
Mask

IP

[3:2]

[3:2]

[3:2]

[31:30]

[31:30]

[31:30]

1 0

1

1

Q

.

.

.

(a)

L 1

L 2

L 16

[5:0]

Reference

Mask

IP
[11:6]

[31:30]

1 0

1

1

Q

.

.

.

==
Look-

up
value

Look-
up

value

(b)

Figure 3.12: Conventional CAM (a) vs LUT-modifiable CAM (b).

Figure 3.11 shows an example of module relocation. While simple systems may use

only a single clock, BitMan is designed for complete real-world systems that use a plural-

ity of clock networks (e.g., for different memory controllers [Ama], NIC interfaces [CCP+16],

PCIe [VKVF16]). Any other routing resource including interconnection could be changed

accordingly.

Table 3.4 shows BitMan performances on an ARM Cortex-A9 embedded platform and an

Intel Core i7 desktop. In this experiment, a 3.85MB bitstream of the Zynq-7000 XC7Z020

device (ZedBoard) was used, and we have manipulated configuration data of an LUT, a CLB,

a BRAM content, or a routing primitive, respectively. Moreover, we found that BitMan’s

performance was comparable with another academic toolflow Maverick [Gli20], which uses

Project X-Ray [Sym] to generate bitstreams for 7-Series FPGAs.

LUT/BRAM content modification: BitMan supports updating the content of LUTs and

BRAMs of an FPGA fabric on-the-fly. Application examples for this are changing coefficients

in digital filters, updating keys in cryptography systems or swapping binaries stored in on-

FPGA memory using the configuration interface rather than some extra user logic. An example

with LUT update for FIR coefficients was mentioned in [KS16], while another example with

nullifying S-Box contents storing in BRAMs to compromise the AES encryption scheme of a

high-security commercial USB flash drive was presented in [SFK+17].

For demonstration the usefulness of LUT content modifications, we looked into an appli-

cation where we compare an IP address with a masked reference IP. As it can be seen, the

62 CHAPTER 3. BITSTREAM MANIPULATION TOOL AND API

Figure 3.13: Stitching processing elements (PEs) to build a large Coarse Grained Reconfig-
urable Array (CGRA) at the netlist level in rapidly building overlay (ROB) work [YKL15].
With BitMan, we are able to perform this stitching at the binary (bitstream) level.

Table 3.5: BitMan performance on overlay architecture’s support.

BitMan Rapid Overlay Builder [YKL15]

Numbers of PEs 101 101

Time (seconds) 2.24 2259

CAM approach in Figure 3.12b results in a carry chain that is only about a third as long as

the conventional approach in Figure 3.12a. This saving in both resources and latency can be

substantial for large CAMs as usual in latest routers.

3.2.2 Hardware Mapping and Linking for the Overlay Architec-
ture

In [YKL15], an approach for rapidly building an overlay CGRA (Coarse Grained Recon-

figurable Array) is presented where a number of physically implemented processing element

(PE) modules were replicated for building large CGRAs with a hundred or more PEs (see

Figure 3.13). This approach tries to amortise CAD tool time for one PE to build large scale

systems. By stitching together fully placed and routed PE tiles, CAD tool times could be

reduced by 9.3× in the original paper [YKL15].

However, the stitching itself in [YKL15] was carried out at the netlist level which requires

a time-consuming netlist translation process that we circumvented by stitching PE tiles directly

at the bitstream level. To demonstrate BitMan, we repeated the same experiments but instead

of stitching at the netlist level, the stitching was performed at the bitstream level.

As shown in Table 3.5, this reduces the whole bitstream generation process into the range

of seconds. The performance of BitMan would allow a just-in-time stitching of CGRAs. For

example, optimised PEs (e.g., integer, floating-point, or logic operations) are stitched together

3.2. APPLICATIONS AND EVALUATION 63

Figure 3.14: The EFCAD flow. The figure is adopted from [PVKH19].

at run-time for a new application without using the vendor CAD tools.

3.2.3 Bitstream generation for Enabling On-chip Self-compilation

EFCAD [PVKH19] is one of the latest efforts from FPGA community to introduce an end-

to-end vendor-independent FPGA development toolflow which takes Verilog source codes as

inputs, and then, generates (partial) bitstreams for education and research purposes. The flow

is targeting Xilinx Zynq UltraScale+ FPGAs with the ARM-FPGA heterogeneous computing

architecture so that the synthesis, implementation, and bitstream generation are executed on the

CPU side, so called processing system (PS), then the resulting (partial) bitstreams are deployed

Table 3.6: Overheads of bitstream generation for a partial region of 8 CLB columns (i.e. 3840
LUTs) in a XCZU3EG Zynq UltraScale+ FPGA.

System configuration Time (seconds)

Vivado 18.2.1 on Quad-core Core i7 @ 3.40GHz and 64GB RAM
- Windows 7

24.87

BitMan on Quad-core ARM Cortex-A53 @ 1.5GHz and 2GB
RAM - Linux 4.18

1.86

64 CHAPTER 3. BITSTREAM MANIPULATION TOOL AND API

on the FPGA side (PL). As the mentioned transformation from Verilog source codes to FPGA

bitstreams all occurs inside the chip transparently from the users and results at changing system

behaviours, EFCAD gives the users a sense that the chip is able to compile itself.

Multiple academic open-source projects, including Yosys+nextpnr [SHW+19] for logic

synthesis and implementation, GoAhead [BKT12] for generating architectural model, ZUCL

[PVVK18] for infrastructure framework, and BitMan for bitstream generation, have been inte-

grated to create the flow, as illustrated in Figure 3.14. Bitstream generation for a partial region

of 8 CLB columns (i.e. 3840 LUTs) was measured at 1.86 seconds on average on the UltraZed

platform, which is an order of magnitude less than the latency of Vivado’s bitstream genera-

tion on a desktop machine, as shown in Table 3.6. More detail about EFCAD can be found

at [PVKH19].

3.3 Chapter Summary

In this chapter, we have introduced the BitMan tool and API that permits complicated bit-

stream manipulation tasks to be carried out at run-time for all latest FPGAs of the vendor

Xilinx. Various use cases were demonstrated and discussed to show BitMan tool’s advantages.

This includes module relocation and duplication, modifying switch matrix and LUT settings as

well as stitching together CGRAs from a PE library. The results of BitMan are configuration

bitstreams that can be directly sent to the FPGA through any available configuration port (e.g.,

ICAP, or PCAP). Moreover, BitMan plays an essential role to fully exploit the flexible run-

time reconfiguration, which is a key feature in FPGA-virtualised systems, as discussed detail

in Chapter 4, Chapter 5, and demonstrated in Chapter 6.

Chapter 4

Decoupled Compilation Flow for
FPGA Virtualisation

In England, everything is permitted except what is forbidden.

In Germany, everything is forbidden except what is permitted.

In France, everything is allowed, even what is prohibited.

In the USSR, everything is prohibited, even what is permitted.
Winston Churchill

As the design methodologies and toolflows from major FPGA vendors face significant ob-

stacles as pointed out in Chapter 2, we need to adopt an alternative methodology to overcome

these obstacles and to achieve the objectives which we have setup for the methodology. For

example, one of the goals is to enhance the design productivity which can be achieved by de-

coupling the design of the basic infrastructure (shell) and the hardware accelerators (roles), i.e.

the development abstraction mentioned in Chapter 1. By this, we can compile the application

independently from the whole system implementation, and hence, it can be compiled dramati-

cally faster than what we are able to do with the vendors’ flows. Like in software compilation

where the complexity of the operating system is hidden by conveniently usable APIs that allow

compiling application individually, we propose the decoupled module compilation flow that

hides the complexity by standardised hardware interfaces for hardware synthesis and physical

implementation.

The decoupled compilation flow is described in Section 4.1 of this chapter, while details

of how to utilise this methodology and corresponding academic tools to build up the systems

are being discussed in the other Section 4.2 (for shell design) and Section 4.3 (for the module

compilation). A number of FPGA-virtualised systems have been implemented and deployed on

top of different platforms using FPGAs ranging from Xilinx Zynq-7000 to Zyng UltraScale+

families by using this proposed methodology.

65

66 CHAPTER 4. DECOUPLED COMPILATION FLOW

As part of this PhD, the decoupled compilation flow for CPU+FPGA heterogeneous com-

puting systems was designed as well as integrated necessary tools into the flow. With this, users

were able to compile partial bitstreams for their HLS applications running on heterogeneous

systems before Xilinx has introduced the Vitis flow [Xil20] to offer a similar software-centric

compilation experience. Parts of this Chapter have been published in [PVVK18, PPV+19,

VPPK20] and represented here with additional materials for the sake of completeness.

4.1 Design Methodology

4.1.1 Overview

There are fundamentally differences in the state-of-the-art design methodology from vendor

tools and the here proposed design methodology. In vendor tools, every possible routing is per-

mitted except what is forbidden; whereas in our counterpart, every possible routing is forbidden

except what is permitted. Hence, to provide the infrastructure, development, and deployment

abstractions as mentioned in Chapter 1, the following strict requirements need to be satisfied:

1. Communication interfaces between modules and remaining parts of the system must

be identical, not only with respect to the logical protocol but also with respect to the

physical implementation such that relative positions of connection wires are the same in

all PR regions. This requirement guarantees that modules are able to receive operation

commands from the host CPU and to transfer data back and forth to the main memory,

regardless of a module placement position;

2. Clock splines must be distributed in the same regular pattern across every PR regions.

A module will need to use these clock splines to provide clock signals to slice flip-flops,

BRAMs, and DSPs1;

3. No routing from the static part is allowed in the reconfiguration part and vice versa

(except the pre-defined interface and communication signals) to ensure that module re-

location does not interfere with other parts of the system.

The introduced methodology is used to design an FPGA-virtualised heterogeneous computing

system which provides such necessary abstractions.

The proposed design methodology was built upon the standard FPGA development flow

(Vivado toolchain for Xilinx FPGAs) to implement the basic infrastructure, acting as the OS

1Note that while clock routing including clock splines could be carried out by BitMan at run-time,
this would require running static timing analysis again which is not trivial to perform at bitstream level.

4.1. DESIGN METHODOLOGY 67

shell, and the hardware applications. Our contributions, however, included all the additional

design steps and the corresponding automatic tools that customise and adapt the default flow to

get the final systems. This compilation flow integrates the entire shell and module development

process into a unified design framework, as illustrated in Figure 4.1. Note that our method

ultimately does not require the usage of vendor’s partial reconfiguration design flow, which is

a challenge for even experienced FPGA designers.

The main steps of the decoupled compilation flow are described as following:

1. Planning: In this step, a system architect needs to be involved to make a series of

system-level design decisions.

(a) Resource budgeting: Based on the number of available resources on the chip, an

architect has to decide which parts of the system will be static for the FPGA OS

shell and which parts will be reconfigurable for the deploying hardware accelera-

tors. Here, the trade-off is that the architect should allocate as many resources as

possible for the reconfigurable part as it affects the system throughput, but should

leave sufficient resources to the static part for system upgrade or maintenance.

This trade-off is case-dependent, therefore difficult to be automated entirely. This

step is the only place in the entire framework that requires a thorough understand-

ing of FPGA domain knowledge. However, this step is only carried out once for a

system on a specific FPGA device. This step results in 1) the static system floor-

plan and 2) bounding boxes of the reconfigurable regions.

(b) Static/partial partitioning: The resulting resource budgets for the static and the

partial parts from the previous step will be used for partitioning the chip layout

to clearly divide boundaries between these parts. It also clarifies the size of each

PR region on which the High Level Synthesis (HLS) tools [CLN+11, CCA+13,

Xil19b] can operate the Design Space Exploration (DSE) for throughput optimi-

sation [MMRL17].

(c) Communication interface definition: The communication between the static and

the partial regions has to be specified as well in terms of protocol, mode, and

data-width. This step results in the wrapper templates for PR modules for system

implementation.

2. Routing Constraint Generation: The system floorplan and the PR wrapper template

from the previous step will be used to generate the routing constraints. Once the allo-

cated static/partial parts and communication protocol are known, we can put implemen-

tation rules to academic PR frameworks, such as GoAhead [BKT12] and a TCL library,

called TedTCL [Ves18], to generate routing constraints automatically. These constraints

68 CHAPTER 4. DECOUPLED COMPILATION FLOW

PR Wrapper
templates

❶ Planning:

• Resource budgeting
• Static/Partial partitioning
• Communication interface definition

Static infrastructure
integration

PR infrastructure
integration

Basic infrastructure:

• Embedded/host CPUs
• System bus
• Memory controllers
• Clock resources

Additional infrastructure:

• Bus traffic controllers
• ICAP-customised core
• Other resources

PR Wrapper
templates

System
floorplan

❷ Routing constraint generation

Routing
constraints

Synthesis
&

Placement

Synthesis
&

Placement

PR Wrapper
templates

PR OOC
netlist 1

Routing Routing

Static
bitstream

PR Wrapper
templatesPR Wrapper

templates
Full

bitstream 1

Static

Proposed plug-ins

Partial

❸ Bitstream assembly

PR Wrapper
templatesPR Wrapper

templates
PR

bitstream 1

FPGA development flow
(Vivado)

FPGA development flow
(Vivado HLS + Vivado)

PR Wrapper
templatesPR Wrapper

templates

Applications
(C/C++/

OpenCL...)

Design space exploration
&

OOC synthesis

UsersSystem architect

Figure 4.1: The decoupled compilation flow. The left part is performed once for a specific
version of a shell while the right part is performed once for each module (role).

4.2. SHELL DESIGN 69

are given as generated TCL files, which are then used by Vivado to guide the routing

stage.

3. Configuration Bitstream Generation: The decoupled compilation flow hereby results

in full configuration bitstreams of static and module designs. To compose partial bit-

streams for modules, bitstream manipulation described in Chapter 3 has been used. This

bitstream assembly step can be done either offline to create the hardware library or on-

line to relocate the hardware accelerators.

4.1.2 Academic Tools for Routing Constraints Generation and Bit-
stream Manipulation

Routing constraints are useful to implement systems which fulfil the requirements for FPGA

virtualisation, yet vendor toolflows [Xil14, Alt10] have not supported to generate such required

constraints automatically. There are various choices of academic PR frameworks beyond the

state-of-the-art vendor ones such as RapidSmith2 [HNH15], RapidWrigth [LK18], ReCoBus-

Builder [KBT08], GoAhead [BKT12], or an unpublished TCL library, called TedTCL [Ves18].

Throughout this PhD project, GoAhead and TedTCL have been used intensively as they

support UltraScale/UltraScale+ Xilinx FPGAs and output TCL files to be used with the Vivado

toolflow to guide the physical implementation stage. GoAhead was first released in 2012 and

is being maintained by Christian Beckhoff and Dirk Koch, while TedTCL has been developed

by Malte Vesper during his PhD project in the University of Manchester.

Finally, for the bitstream transformation at design time to compose the hardware library

and at run-time to relocate the module, we use the BitMan tool and API, which was introduced

in Chapter 3.

4.2 Shell Design

This section discusses how to apply the proposed methodology to implement the static

infrastructure (shell). As a case study, we are targeting the Xilinx Zynq-7000 and latest Zynq

UltraScale+ devices that include hardened ARM CPUs in the Processing System (PS) part,

coupled with a 7-Series/UltraScale+ FPGA fabric in the Programmable Logic (PL) part. Other

hardened primitives in the targeting FPGAs are the AXI interfaces, memory controllers, and

clock domain crossing, of which the systems are utilising to build a light-weight yet feature-rich

FPGA operating system services. Like it is common in the software world to use an operating

system without changes, our shells are designed to meet the requirements of most users without

reconfiguration.

70 CHAPTER 4. DECOUPLED COMPILATION FLOW

ARM Cortex-A53
DDR

Controller

Decoupler 0

Bus
virtualised

layer 0

Decoupler 1

Bus
virtualised

layer 1

Decoupler n

Bus
virtualised

layer n

AXI

OS Shell

Partial

PR
Region

0

PR
Region

1

PR
Region

n

I/O
virtualised

layer 0

I/O
virtualised

layer 1

I/O
virtualised

layer n

...

SMMU

Off-chip
communication

Figure 4.2: The overall organisation of an FPGA-virtualised system.

4.2.1 Implementation of the Shell

The shell design starts with the integration of basic infrastructure and additional infrastruc-

ture to the unified top-level shell design (see Figure 4.2). Shell includes the hard 32-bit ARM

Cortex-A9 (in the Zynq-7000 platforms) or the 64-bit ARM Cortex-A53 (in the case of Zynq

UltraScale+ platforms) CPU cores, memory controllers, AXI4 interconnects, Xilinx PR De-

couplers for disabling/enabling static and module communication, clock management tiles for

tuning module frequencies, and PR Wrapper instantiations.

The PR Wrapper module contains two VHDL files: a wrapper to connect the AXI4 bus

to the PR Module Interface and a file describing this interface in terms of FPGA primitives.

The PR Module Interface has an AXI4-Lite Slave for control register access via the CPU and

an AXI4 Master for memory access. This interface corresponds directly to the interface that is

used by default for OpenCL kernels when compiling with Vivado HLS. However, other module

specifications (e.g., C/C++, Verilog, or VHDL) are supported as well, and modules can directly

access the system DDR memory.

This fixed interface between the hardware module and the static system is implemented

using the available routing resources in the Zynq-7000 and Zynq UltraScale+ FPGA devices.

In particular, we keep this interface identical for all PR slots to serve relocatable hardware

modules by pre-placing and pre-routing these communication signals. This reassembles the

4.2. SHELL DESIGN 71

Figure 4.3: The physical implementation on the Zybo platform. This version has two slots
which can host up to two FPGA applications simultaneously.

bus macro approach, which was popular for Xilinx Virtex-II devices [LBM+06].

Moreover, clocking resources for PR slots must be kept identical for relocatable hard-

ware modules. We achieve this condition by blocking all except for a defined subset of the

BUFCE_LEAF primitives inside PR slots. This forces the router to use only the defined subset

of these primitives that each drives a specific vertical clock spline which connects to the flops,

BRAMs, and DSPs. However, we only route the clock for the PR regions this way. When

routing the static system, we firstly route the PR module clocks with prohibit constraints on

the BUFCE_LEAF primitives, then we remove these constraints and route the rest of the sys-

tem. This allows us to route further clock nets as needed by the static system (e.g., for future

implementing high-speed peripheral modules).

Finally, to prevent any static signal from violating PR regions, a blocker macro is inserted

before routing the static system. This blocker macro is generated by the GoAhead tool [BKT12]

or TedTCL library [Ves18] according to the system floorplanning.

The above steps result in the final static designs shown in Figure 4.3 for the Zybo platform,

Figure 4.4 for the ZCU102, and Figure 4.5 for the UltraZed/Ultra96 platforms. Note that

the Zybo has a Zynq-7000 FPGA while the others (ZCU102, UltraZed, and Ultra96) feature

Zynq UltraScale+ FPGAs. We can see that PR Module Interfaces at the borders between the

72 CHAPTER 4. DECOUPLED COMPILATION FLOW

XCZU9EG-
FFVC1156

Static part

1

2

3

4 AXI bus
macro

Clock splines

Reconfigurable part

Figure 4.4: The implemented static system on the ZCU102 platform. Module Interfaces and
Clock splines are kept identical for all PR regions (slots). There are four slots for hosting a
maximum of up to four FPGA applications at the same time. The AXI bus macro ensures that
all slots provide the same physical interface implementation and the reconfigurable part routes
the clock signal to the same vertical clock spines.

1

2

3

Reconfigurable part

XCZU3EG-
SFVA625 St

at
ic

 p
ar

t

Figure 4.5: The physical implementation on the UltraZed and Ultra96 platforms. This version
has three slots which can host up to three FPGA applications simultaneously.

reconfigurable part and the static part have the same relative physical positions in all PR slots.

Furthermore, clock splines are distributed in the same pattern across PR slots.

Software users may not need to concern about this static shell design as it can be provided

pre-built and can be used immediately. Moreover, there is no need to update their hardware

4.2. SHELL DESIGN 73

Processing system

AXI-Lite
interface

AXI DMA

Control
register

AXI MM2S
interface

Module with
AXI Stream
interface

DDR memory

AXI-Lite

AXI4

PS PL

Bus adaptor

Figure 4.6: An example for bus virtualisation: the module has a 32-bit AXI-Lite interface and
a 32-bit AXI Stream interface without DMA engine. In this case, the bus adaptor with AXI
DMA and AXI MM2S IPs are chosen to carry out the communication with the rest of system.

modules if there is an upgrade for the static system implementation, thanks to the unique way

of implementing accelerators independent to the shell. The shell also supports combining

multiple consecutive slots for hosting larger monolithic modules. In this case, only one PR

module interface will be used.

4.2.2 Bus Virtualisation

Operating a hardware accelerator needs communication with the host CPU to issue commands

as well as access to memory for the data to process. A module kernel may have a wide range of

bus width, such as 32/64/128-bit width, and various bus protocols, such as AXI4 Master/Stream

in the proposed approach. Moreover, HLS kernels are often equipped with DMA engines for

fetching data from memory by default, which is not always the case with hand-crafted RTL or

customised netlist accelerators. This fact requires another component in the proposed shell as

we do not want to replace or adjust the current static infrastructure to support another interface.

We have tackled this issue by providing another level of abstraction for bus interfaces

between the FPGA applications and shells, where the interface of the 32-bit AXI-Lite protocol

and the 128-bit AXI4 protocol are fixed. Depending on what exact physical interface will be

used by a module, we use a set of bus adaptors that will be instantiated in a module wrapper

such that a module can communicate with the rest of the system as required by the given

individual FPGA application. An example of this process is illustrated in Figure 4.6. With this,

shells can remain light-weight, operational, and unchanged, while the FPGA applications can

be wrapped up with the provided bus adaptor at design-time or run-time. The hereby shells

support up to 128-bit wide datapaths for memory accesses because this is the native width to

the ARM SoC. The advantage of the here proposed bus adaptor concept is that an adaptor is

only integrated into a module if needed and not speculatively provided by the shell.

74 CHAPTER 4. DECOUPLED COMPILATION FLOW

Table 4.1: Resource overheads for bus virtualisation at the logical and physical levels.

Module interface Shell Interface Bus adaptor’s Resource overhead

services Logical
Level

Physical
Level

32-bit AXI-Lite
and 32-bit AXI4
Master

32-bit AXI-Lite
and 128-bit AXI4
Master

AXI
Inter-connect

LUTs 153 2400

FFs 284 4800

BRAMs 0 12

32-bit AXI -Lite
and 32-bit AXI
Stream

32-bit AXI-Lite
and 128-bit AXI4
Master

Control register,
AXI MM2S, and
AXI DMA

LUTs 1952 2400

FFs 2694 4800

BRAMs 2.5 12

We also use a bus adaptor to translate between AXI Master and AXI Stream protocols. We

provide different versions of AXI Stream adaptors to be used depending on the AXI Stream

channel width. A user can either re-compile their modules with a logical wrapper of the ap-

propriate bus adaptor at design phase or stitch their modules with a pre-built binary of that

bus adaptor at run-time. The latter option is similar to the case of run-time module stitching

as presented in Section 3.2. However, because a fixed portion of the slot is allocated to those

bus adaptors in common scenarios, the resource overhead is significant, as shown in Table 4.1.

Figure 4.7 shows the implementation of the bus adaptor with control register for wrapping the

module registers with the AXI protocol, AXI MM2S, and AXI DMA services for the module

which has 32-bit AXI-Lite and 32-bit AXI Stream interface.

4.2.3 I/O FPGA Virtualisation

Ideally, FPGA applications should be implemented transparently without the detailed knowl-

edge of I/O layouts in FPGA fabrics to allow cross-deploying of hardware modules (roles)

without re-compiling. This comprises a two-fold problem:

1. A module which has to deal with I/O pins does not need to care about PCB layout details

across platforms.

2. A computing-intensive module which does not need access to I/O pins should occupy as

many resources as possible without being blocked by other system’s off-chip communi-

cations.

To resolve these issues, we constrained a set of dedicated physical wires, which were cross-

ing the partial region boundary, in an orderly and regularly routed pattern for the static crossing

signals. In the first case, as illustrated in Figure 4.8, those physical wires between an FPGA

4.2. SHELL DESIGN 75

Bus macros Blockers

OS Shell
Bus Abstraction

Layer
FPGA App.

Figure 4.7: Implementation of a bus abstraction layer on UltraZed/Ultra96 plat-
forms [PPV+19]. The bus adaptor is implemented as a module binary and stitched to the
system at run-time by partial reconfiguration. The adaptor is a partial module that in turn inter-
faces to other partial modules. This technique helps users avoid re-compiling the modules but
pays extra area overhead of the implemented bus adaptor.

.

.

.

.

.

.

1

2

n

1

2

n

1

2

n

.

.

.

.

.

.

1

2

n

1

2

n

1

2

n

OS ShellFPGA App. OS ShellFPGA App.

Figure 4.8: I/O FPGA virtual pins: physical connections from FPGA application to OS shell
are fixed while the OS shell can be implemented variously to adapt to the new I/O layouts.

application, and different shell regions are constrained to act as fixed virtual pins, such that

the module can be relocated to different locations and still be fully functional as it accesses

modules using the same wires with respect to its module bounding boxes. Moreover, inside

shells, those virtual pins can be connected to different FPGA I/O pins to adapt to different PCB

layouts.

In the second case, long physical wires, which are hardly used in practice to implement

76 CHAPTER 4. DECOUPLED COMPILATION FLOW

A
R

M
 C

o
rtex-A

53

Q
u

ad
-co

re

F1
Sh

e
ll

P
R

 SLO
Ts

Gigabit
transceiver

Gigabit
transceiver

C
h

ip
-2

-ch
ip

co

m
m

u
n

ica
tio

n

co
re

P
R

 SLO
Ts

P
R

 SLO
Ts

a
)

b
)c)

Figure
4.9:

Im
plem

entation
of

the
I/O

virtualisation
technique

on
Z

C
U

102.
(a)

is
the

im
plem

ented
F1

shell,in
w

hich
the

static
com

m
unication

signals
crossing

the
PR

slots
in

an
orderly

and
regular

m
anner

using
horizontally

12-long
w

ires
(yellow

for
transm

itting
signals

and
red

for
receiving

signals);(b)
is

a
tem

plate,in
w

hich
allhorizontally

12-long
w

ires
used

by
the

static
com

m
unication

signals
are

pre-occupied
(see

red
dotted

lines)
to

im
plem

entthe
relocatable

accelerators;
(c)

is
the

im
plem

entation
of

the
M

ichelsen
accelerator

using
the

tem
plate

to
generate

a
single

partialbitstream
forallPR

slots
in

the
Q

FD
B

-based
system

.

4.3. MODULE COMPILATION 77

the module, were reserved to carry out the communication crossing a partial module region.

To this Xilinx Zynq MPSoC system, horizontally 12-long wires such as EE12_* and WW12_*,

which route 6 switch matrices far per East/West direction, were deliberately exploited to carry

the static communication signals for both directions of transmitting and receiving data from the

10-Gigabit transceiver. However, we reserved those wires in a way that routing could only be

implemented in a straight channel through the reconfigurable region. These constraints were

implemented by sparing out tunnels in the GoAhead-generated blocker hard-macros [BKT12],

which were placed in the boundaries of the reconfigurable part and the static part to avoid

unwanted routing from each part violating onto the other so that only reserved physical 12-

long wires could be used for routing of the static communication signals. Those 12-long wires,

which start from switch matrices close to the vertical boundary of the static part and PR part,

would end in switch matrices inside the PR part. Therefore, additional constraints must be

placed inside the PR part to force the static communication signals to continue with the pre-

defined routing pattern, as shown in Fig. 4.9a.

The module was then not allowed to use those horizontally 12-long wires as they belong

logically to the static system. Indeed, we pre-occupied the EE12_* and WW12_* wires, which

were being used by the static communication signals, and hence, force the module implemen-

tation not to use them, as shown in Fig. 4.9b. Therefore, we can place reconfigurable modules

in regions that contain static routing paths without interference. In fact, modules left a more

extensive set of possible long wires unused such that there was no interference regardless at

which PR region the module is placed. With this, we allowed static signals crossing the recon-

figurable regions while still supporting module relocation, as shown in Fig. 4.9c.

This approach is well-suited to Xilinx UltraScale+ FPGAs that provide in each switch

matrix 8 12-long distance wires. This means that each horizontal CLB row provides 48 long

distance wires per direction (48× 60 = 2880 wires per East/West direction in total per clock

region). We can therefore anticipate that reserving a few hundred wires will have little impact

on routability.

4.3 Module Compilation

This section introduces the compilation flow for hardware modules which could be de-

ployed on top of the proposed shells at run-time. The hereby compilation flow is a direct

result of the proposed design methodology and analogous to software compilation, as shown

in Figure 4.1. This decoupled compilation flow has been verified in several publications such

as [PVVK18, PPV+19, HSPK17, PHK+18] in multiple FPGA platforms including Zybo, Zed-

Board (Zynq-7000 family), ZCU102, UltraZed, and Ultra96 (Zynq UltraScale+ family).

78 CHAPTER 4. DECOUPLED COMPILATION FLOW

a)

b)

Hard-macro
Interface

Module TOP

Static to Partial

Partial to Static

PR
Wrapper

OpenCL
Kernel

OOC Module
BLACK BOX

Hard-macro
Interface

Module TOP

Static to Partial

Partial to Static

PR
Wrapper

OpenCL
Kernel

OOC Module

Figure 4.10: a) is hardware module synthesis, and b) is hardware module implementation.

4.3.1 Overview of Module (Role) Design

The module design starts with either high level language (HLL) source codes (C/C++, OpenCL)

or hardware descriptions (RTL/netlist). If HLL source codes are used, they will go through

High Level Synthesis (HLS) step [CLN+11, CCA+13] to generate the RTL source codes. One

further step of Design Space Exploration (DSE) might be conducted based on the allocated

resources to the module to optimise the module throughput as presented in [MMRL17]. This

optimisation step will generate different versions of the same kernel (i.e. design alternatives

with different resource-performance trade-offs) by choosing the appropriate pragma options

in the Vivado HLS tool. The resulted RTL source codes will be out-of-context (OOC) syn-

thesised. This process is well established by various industry tools [Xil14, Alt10], and the

contribution of this PhD project is to integrate them in an automated design flow for building

partially reconfigurable systems to offer users a software-centric compilation experience for

the first time.

The PR Wrapper templates are used to create a minimal top-level placeholder for the mod-

ule implementation. This temporary placeholder acts as sink/source connection points and

substitute the surrounding static system. The module OOC netlists are integrated to this place-

holder for synthesis and placement stages.

Blockers will be generated based on TCL routing constraints to oblige all partial module’s

4.3. MODULE COMPILATION 79

primitives and routing resources according to strict implementation rules as mentioned in Sec-

tion 4.1. These blockers will be placed around the selected area, therefore, acting as a wall to

implement hard module bounding box constraints. Routing tunnels are included for the com-

munication to and from the temporary placeholder. The position of these tunnels match exactly

the tunnels as used in the static design to implement the communication between static and

partial areas.

As a module is implemented in a separated design from the static system, the final result

generated by Vivado is a full configuration bitstream. This bitstream is passed on to BitMan

that cuts out the configuration data that corresponds to the module only. BitMan can also

include header information starting metadata such as maximum clock frequency and the exact

resources used. We repeat these steps for all modules to compose a hardware module library. At

run-time, BitMan manipulates those partial bitstreams to relocate modules to a desired position

inside a partial region of the static system.

4.3.2 Module Synthesis

After selecting the minimum number of resource slots according to available primitives per

slot as in Table 4.2, the RTL code (produced by Vivado HLS or manually instantiated by

the user) is compiled all the way to the final partially reconfigurable bitstream without any

manual intervention. To allow a module to be integrated into the static system, the accelerator

modules have to be implemented with exactly the same physical interface as being used by

the static system. This correspondence of static system and partial module interface is the

key for encapsulating the partial module compilation. The implementation of this flow for the

module is accomplished by a TCL script that synthesises the hardware accelerator as an Out-

Of-Context (OOC) module, i.e. a module without external connection pins, synthesised as a

standalone module.

In practice, to keep user interaction to a minimum, we intend to provide compilation tem-

plates for different sized modules (e.g., a 1-slot, 2-slot, 3-slot version). It is believed in this

thesis that only a rather small number of slots will be available in the here assumed reconfig-

urable systems. This is contrary to previous approaches such as ReCoBus-Builder [KBT08]

that aimed to accommodate many tens of modules with fine adjustable bounding boxes. How-

ever, with the progressing towards HLS and DSE, the problem of internal fragmentation of

a resource slot (described in a previous research in [Koc12]) is actually solved by a HLS

tool [Xil19b] that can optimise performance for a given resource target.

Before synthesising the OOC module, an accelerator TOP design is synthesised containing

only a black box (a module containing only the description of its I/O signals, with no informa-

tion about its function) to host the OOC module and the interface between the module and the

whole system. This approach detaches the OOC module from the TOP design, allowing the

80 CHAPTER 4. DECOUPLED COMPILATION FLOW

Table 4.2: Available resources for 1 slot of on the ZCU102 platform and the UltraZed &
Ultra96 platforms. The version on ZCU102 has 4 slots in total while the other platforms provide
3 slots in total.

Resources on Number of resources Slot utilisation Total utilisation
ZCU102 (1 slot) (%) (%)

CLB LUTs 32640 11.70 46.80
CLB Regs. 65280 11.90 47.60

BRAMs 108 12.10 48.40
DSPs 336 13.30 53.20

Resources on Number of resources Slot utilisation Total utilisation
UltraZed & Ultra96 (1 slot) (%) (%)

CLB LUTs 17760 25.17 75.51
CLB Regs. 35520 25.17 75.51

BRAMs 60 27.78 83.33
DSPs 96 26.67 80

utilisation of the RTL folder generated by Vivado HLS with no manual intervention. The OOC

is then integrated by the synthesis tool into standardised PR wrappers and to the hierarchically

higher level of the hardware accelerator design, as shown in Figure 4.10a. The resulting de-

sign checkpoint (a proprietary file from Xilinx), containing the module kernel connected to

the interface, is saved to be used by the implementation phase. As we use the Xilinx Vivado

toolchain in this step, there is no extra overhead compared to the default vendor synthesis. Note

that all these tools specific details are hidden from the user by Makefile-like compilation scripts

for providing a user experience similar to software compilation.

4.3.3 Module Implementation

The first step of the hardware module implementation is merging the design checkpoint con-

taining the accelerator top-level design to the OOC module containing the module synthesised

core, as shown in Figure 4.10b. After that, a TCL script, which uses the fixed bounding box

coordinates according to how many slots are chosen, is executed to:

• define the partially reconfigurable area for the OOC positioning;

• translates the geometric bounding box information to be used by GoAhead [BKT12] or

TedTCL library [Ves18];

• generates the coordinates used by BitMan [PHK17] to extract the partial region used by

the accelerator module from the full bitstream at the end of the Vivado implementation

and bitstream generation.

4.3. MODULE COMPILATION 81

Module
wrapper

Instantiate synthesised
module

Design optimisation
Placement

Placing blocker macros

Design routing

Final design
checkpoint

Module
wrapper

Placing blocker macros
Instantiate synthesised

module

Design optimisation
Placement

Design routing

Final design
checkpoint

Blocker
templates

a) b)

New application?

Yes

New application?

Yes

Figure 4.11: Physical module implementation flow; (a) is the conventional implementation
flow, versus (b) is using blocker checkpointing.

Table 4.3: The overheads of two implementation options on the ZCU102 and UltraZed/Ul-
tra96 platforms. Option 1 is to insert blockers through TCL scripts, as shown in Figure 4.11a).
Option 2 is to insert blockers through design checkpoints, as shown in Figure 4.11b).

No. of slots Module Option 1 Option 2 Speed-up

on ZCU102 t1 (seconds) t2 (seconds)

1 SPMV 622 379 1.64×
2 Sobel Filter 1788 1076 1.66×
4 MM 3151 1476 2.13×

No. of slots Module Option 1 Option 2 Speed-up

on Ultra96 t1 (seconds) t2 (seconds)

1 SPMV 624 357 1.75×
2 Sobel Filter 1323 658 2.01×
3 DCT 1863 724 2.57×

82 CHAPTER 4. DECOUPLED COMPILATION FLOW

The next step is the placement and routing of the interface. This is a critical step due to

the fact that the interface wires must match exactly the same relative physical positions of the

interface defined in the static design. Otherwise, the partial bitstream will not function because

communication with the AXI interconnect cannot be carried out, or the whole system may

even freeze. The implementation script is used to route the interface sets an attribute to keep

the routing in fixed positions, even when the tool starts routing the remainder of the design.

Moreover, the horizontally 12-long wires are pre-occupied for I/O virtualisation if necessary,

as explained in Section 4.2.3.

GoAhead/TedTCL is then executed to generate blockers around the partially reconfigurable

area to prevent any signals from the hardware accelerator to use wires outside the partial area.

The only exceptions to this rule are the pre-routed interface wires and the pre-occupied long

wires for I/O virtualisation. This step in module implementation is almost identical to the step

in static shell implementation mentioned in Section 4.2.1. The differences are that in this step,

we are blocking routing of the reconfigurable module (role) to go out of the defined bounding

box rather than blocking static routing to violate the reconfigurable part as in the static shell

implementation.

However, we have realised that the TCL scripts of blocker hard-macros generated by GoA-

head/TedTCL take a subtantial amount of time to be fully placed into a Vivado design, so it adds

an extra overhead into the already lengthy implementation process. Even worse, this overhead

is repeated when we need to compile a new module. Therefore, we have improved the proposed

implementation process by placing the blocker macros into the empty module wrapper to create

a fence around the area given to the module. These pre-generated blocker macros are provided

for modules in the form of design checkpoints and automatically added by our compilation

scripts, as shown in Figure 4.11b. Hence, the revised implementation process has improved

significantly, as experiments taken on a Windows 7 machine with Intel Core i7-4930K CPU

at 3.4GHz, 64GB RAM and 512GB SSD have shown in Table 4.3. This improvement has

boosted up an implementation by up to 2.57× than the conventional one. Moreover, the bigger

the module is, the more we save.

Ultimately, a module can be built independently from other modules and from shell, and

then can be deployed on top of shell at run-time in a hot plug-and-play manner by exploiting the

partial reconfiguration feature on FPGA devices. In contrast, state-of-the-art FPGA-virtualised

approaches [YB18, AGV+17, WBP13, WPAH16, BSB+14, KLP+18, CSZ+14] are still suf-

fering in lengthy module compilation overhead. For example, a recent approach may take

several weeks to compile a set of 30 applications [KLP+18]. Therefore, the decoupled module

compilation boosts up design productivity dramatically in an analogous way of the software

compilation approach which compiles software applications independently from each other.

Moreover, as long as the interface between shell and the slot as well as the slot resource foot-

prints remain, shell is free to change without affecting the built modules.

4.3. MODULE COMPILATION 83

“grep” command –
partial module

“translate” command –
partial module

Figure 4.12: Physical implementation designs of "grep" and "translate" Linux bash commands
as partial modules. All modules were implemented on the Zybo platform with the decoupled
compilation flow [HSPK17].

4.3.4 Hardware Module Library

The decoupled compilation flow has been verified with different designs in various domains

on multiple platforms with several FPGA families ranging from the Xilinx Zynq-7000 SoCs (on

Zybo and ZedBoard platforms) to the Zynq UltraScale+ MPSoCs (on ZCU102, UltraZed and

Ultra96 boards). For example, Figure 4.12 show the implementation of partially reconfigurable

modules with the grep and translate Linux bash commands on the Zybo platform.

Figure 4.13 shows implemented designs of OpenCL applications: Discrete Cosine Trans-

form (DCT), Finite Impulse Response (FIR) filter, 3D Normal Estimation, Sparse Matrix-

Vector Multiplication (SPMV), Histogram and Sobel filter applications from the Spector bench-

mark [GAPK16] as well as Black Scholes application from an academic project [MMRL17].

Moreover, Matrix Multiplication was further optimised to achieve better throughput. Note that

the Sobel filter is a 2-slot version and that Matrix Multiplication has 1-slot and 4-slot variants,

while DCT has 2-slot and 4-slot variants and other applications have 1-slot version only. This

optimisation is done by using design space exploration (DSE) and HLS pragma keywords to

generate the corresponding RTL versions of an application.

Figure 4.14 shows designs including signal processing (DCT and FIR filter), data analytics

(Histogram and Black Scholes), machine learning (SPMV), security (AES and SHA-3), and

arithmetic (VADD, Mandelbrot set, and MM) on the UltraZed and Ultra96 platforms. Note

that the SHA-3 source code is in RTL [PHK+18], the Mandelbrot set is written in C, while

the remaining are provided in OpenCL from the academic benchmarks [GAPK16, MMRL17].

84 CHAPTER 4. DECOUPLED COMPILATION FLOW

Table 4.4: The compilation flow’s bitstream XML keyword description.

XML keywords Descriptions

〈hw〉〈/hw〉 Name of the hardware module

〈target〉〈/target〉 FPGA device on which the hardware module
will be placed

〈resource_string〉 〈/resource_string〉 Resource String for resource footprint veri-
fication

〈size〉〈/size〉 Number of slots are occupied by the hard-
ware module

〈n_args〉〈/n_args〉 Number of hardware module registers

〈o f f set_address_X〉 〈/o f f set_address_X〉 Address Offset of register X

〈clk_ f req〉〈/clk_ f req〉 Maximum clock frequency of the hardware
module

〈length〉〈/length〉 Length of the bitstream in 32-bit words

〈bitstream〉〈/bitstream〉 Bitstream of the hardware module

Mmult – 4 slots

Mmult – 1 slots

Spmv – 1 slots

DCT – 4 slots

DCT – 2 slots

FIR filter – 1
slots

Normal est. – 1
slots

Histogram – 1
slots Sobel filter – 2

slots

Black Sholes –
1 slots

Figure 4.13: Physical implementation designs of Matrix Multiplication, Discrete Cosine
Transform (DCT), Finite Impulse Response (FIR) filter, 3D Normal Estimation, Sparse Matrix-
Vector Multiplication (SPMV), Histogram, Sobel filter, and Black Scholes. All modules were
implemented on the ZCU102 platform with the decoupled compilation flow [PVVK18].

4.3. MODULE COMPILATION 85

AES – 1 slot

DCT – 3 slots

FIR filter – 1 slot Histogram – 1 slot

Mandelbrot – 1 slot

MM – 2 slots

Normal est. – 1 slot

SHA-3 – 1 slot

SPMV – 1 slotVADD – 1 slot

Sobel filter – 2 slots

Black Scholes –
1 slot

Figure 4.14: 11 designs, which are written various design languages such as RTL, OpenCL,
and C, are physically implemented by the decoupled compilation flow on UltraZed and Ultra96
boards [PPV+19].

As a distinct feature of the proposed methodology (i.e. I/O virtualisation as described in Sec-

tion 4.2.3), both UltraZed and Ultra96 shells can host exactly the same partial bitstream, hence

allowing cross-deploying of accelerator modules without re-compilation of the same module

for different platforms, which is common in state-of-the-art approaches [Xil18c].

The full bitstream generated during the module implementation phase is used by BitMan

to cut-out a region containing the implemented kernel along with its interface. The hardware

module will get its partial bitstream wrapped in an XML file which contains necessary meta

information such as the accelerator name, target device, and resource string, as described in

Table 4.4. The module name in the XML file is managed by the hardware task scheduler (see

Section 5.3). This XML file generation is automatically done by this decoupled compilation

flow and an example containing metadata for run-time resource management and the module

partial bitstream is given in Listing 4.1. Finally, a collection of XML files for various hardware

modules comprise a hardware module library.

To evaluate the efficiency of this decoupled compilation flow, we have compared against the

Xilinx PR flow [Xil18c]. As the Xilinx PR flow requires compiling both static and accelerator

designs together, performing place and route (P&R), and generating a dedicated bitstream for

each slot, it introduces additional latency. In our decoupled compilation flow, we first generate

a full bitstream for the compiled accelerator, and then, a relocatable partial bitstream for all

slots using BitMan. To quantify this latency, we used accelerators with increasing resource

utilisation: AES, Normal Estimation (Normal Est.), and Black Scholes. The utilisation of

each is reported in Table 4.5 for ZCU102 and Ultra96 platforms. Implementation of the Black

86 CHAPTER 4. DECOUPLED COMPILATION FLOW

Relocated at
run-time via
BitMan API

Relocated at
run-time via
BitMan API

(a) Xilinx PR compilation flow result (b) Decoupled compilation flow (FOS) result

Figure 4.15: Implemented results of the Black Scholes accelerator [MMRL17] on ZCU102
(top) and Ultra96 (bottom) for the Xilinx PR flow and the decoupled compilation flow.

Scholes accelerator is shown as an example in Figure 4.15 with comparisons with the designs

generated by the Xilinx PR flow. As the decoupled compilation flow is integrated to a novel

FPGA Operation System (FOS) [VPPK20], we will call the flow FOS for short in this Figure

and the below comparison table. Note that FOS uses BitMan [PHK17] to generate a relocatable

bitstream, which is copied to the other PR slots at run-time.

Table 4.5 shows the latency breakdown for place and route (P&R) and bitstream generation

for both the Xilinx PR flow and the decoupled compilation flow on ZCU102 and Ultra96. The

results show that the average P&R latency per region is higher for the decoupled compilation

flow as it adds additional constraints for supporting relocatability, as presented in this chapter.

However, when compiling for multiple regions (i.e. four for ZCU102 platform and three for

Ultra96 platform), our flow outperforms the Xilinx PR flow (by up to 2.34×) by duplicating a

single slot accelerator. Especially, the latency of bitstream generation from our flow is up to 3×
faster than from the Xilinx PR flow, as the latter will generate all partial bitstreams for all slots.

Overall, when the number of slots increases, the latency of the decoupled compilation flow

stays constant, whereas the latency of the Xilinx PR flow increases linearly. This relationship

turns into an exponential increase in compilation time when compiling several applications

with the state-of-the-art Xilinx PR flow, as it needs to compile each module for every slot.

4.4. CHAPTER SUMMARY 87

4.4 Chapter Summary

In this chapter, the design and implementation methodology to build up FPGA-virtualised sys-

tems, including FPGA shells and the hardware module libraries deployed on top of shells,

has been introduced. Shell and its corresponding hardware module libraries are built indepen-

dently, so they can be modified with limited side effects to the whole system thanks to the

decoupled compilation flow. The hardware module library consists of a number of hardware

modules compiled from the HLS source codes to the partially reconfigurable module by a novel

module compilation path, a process that originally required very specific FPGA domain knowl-

edge. Moreover, the decoupled compilation circumvents the lengthy module implementation

overhead, which is a major obstacle of state-of-the-art FPGA-virtualised approaches. Various

FPGA-virtualised case studies have been implemented and deployed on top of multiple FPGA

platforms featuring different FPGA device families by utilising the proposed design method-

ology. The following Chapter 5 will discuss the system run-time management, and Chapter 6

evaluate the resulting systems against targeting goals and requirements of FPGA virtualisation.

Note that the proposed methodology has also been applied to introduce an extended custom

design flow which enables the partially reconfigurable capability for the Xilinx Isolation Design

Flow on Xilinx 7-Series FPGAs. This flow combined for the first time partial reconfiguration

capabilities of FPGAs with the isolation requirements [NIS01] for building secure systems on

FPGAs (see Appendix A for details).

88 CHAPTER 4. DECOUPLED COMPILATION FLOW

Table
4.5:

Place
and

route
(P&

R
),bitstream

generation,
and

total
latency

for
A

E
S,N

orm
al

E
stim

ation
(N

orm
al

E
st.)

[G
A

PK
16],

and
B

lack
Scholes

[M
M

R
L

17]accelerators
using

the
X

ilinx
PR

flow
and

the
decoupled

com
pilation

flow
,called

FO
S

in
the

table
forshortas

the
flow

is
an

integralpartofFO
S

(FPG
A

O
peration

System
[V

PPK
20]).

N
ote

thatthe
acceleratorsare

com
piled

forallfour
slotson

Z
C

U
102

and
allthree

slotson
U

ltra96
using

the
X

ilinx
PR

flow
;w

hereasthe
accelerators

are
com

piled
forone

sloton
Z

C
U

102
and

one
sloton

U
ltra96

using
the

decoupled
com

pilation
flow

(see
Figure

4.15).
T

he
evaluation

is
conducted

using
V

ivado
2018.2.1

on
an

Intelcore
i7-4930K

C
PU

running
at3.4

G
H

z
w

ith
64

G
B

ofR
A

M
and

512G
B

SSD
.

A
pplications

SlotU
tilisation

P&
R

(seconds)
B

itgen
(seconds)

Total(seconds)

(on
Z

C
U

102)
X

ilinx
FO

S
Speed-up

X
ilinx

FO
S

Speed-up
X

ilinx
FO

S
Speed-up

A
E

S
16%

978.45
700.70

1
.39×

403.81
157.15

2
.57×

1382.26
857.85

1.61×
N

orm
alE

st.
33%

1421.50
822.59

1
.73×

438.85
163.09

2
.69×

1860.35
985.68

1.89×
B

lack
Scholes

48%
1826.11

936.07
1
.95×

483.17
168.15

2
.87×

2309.28
1104.22

2.09×

A
pplications

SlotU
tilisation

P&
R

(seconds)
B

itgen
(seconds)

Total(seconds)

(on
U

ltra96)
X

ilinx
FO

S
Speed-up

X
ilinx

FO
S

Speed-up
X

ilinx
FO

S
Speed-up

A
E

S
33%

429.40
284.18

1
.51×

176.19
64.06

2
.75×

605.59
348.24

1.74×
N

orm
alE

st.
63%

747.75
387.41

1
.93×

201.21
70.09

2
.87×

948.96
457.50

2.07×
B

lack
Scholes

81%
1296.26

574.56
2
.26×

231.27
77.11

2
.99×

1527.53
651.67

2.34×

4.4. CHAPTER SUMMARY 89

Listing 4.1: An XML snippet of a 2-slot DCT module targeting the ZCU102 featuring the

XCZU9EG FPGA. Metadata in the header part will be used for run-time resource management.

<?xml version="1.0" encoding="utf-8"?>

<data>

<header>

<hw> DCT </hw>

<target> XCZU9EG </target>

<resource_string>

ImsLMsLRsLMsDMsLMsLRsLMsDMsLMsDMsLMsLRsLMsDMsLMsLRsLMsDMsLMsDMsLMsL

</resource_string>

<size> 2 </size>

<n_args> 8 </n_args>

<offset_address_0> 0x00 </offset_address_0>

<offset_address_1> 0x28 </offset_address_1>

<offset_address_2> 0x30 </offset_address_2>

<offset_address_3> 0x38 </offset_address_3>

<offset_address_4> 0x40 </offset_address_4>

<offset_address_5> 0x44 </offset_address_5>

<offset_address_6> 0x4c </offset_address_6>

<offset_address_7> 0x50 </offset_address_7>

<clk_freq> 100 <clk_freq>

</header>

<body>

<length> 144586 </length>

<bitstream>

FFFFFFFF FFFFFFFF 000000BB 11220044

FFFFFFFF AA995566 20000000 20000000

30002001 000C0000 30008001 00000001

20000000 20000000 30004000 5006C24F

...

30008001 00000005 30002001 07FC0000

30008001 00000007 30008001 0000000D

20000000 20000000 20000000 20000000

</bitstream>

</body>

</data>

Chapter 5

Run-time Management

A ship in harbour is safe, but that is not what ships

are built for.
John A. Shedd

This chapter presents the run-time management what mainly provides the deployment ab-

straction such that the modules compiled by the proposed design methodology in Chapter 4

can be deployed on top of a shell (also designed by the same methodology as described in

Section 4.2). The run-time management consists of a configuration controller, a hardware task

scheduler, a module device driver, a memory management to orchestrate the user applications

and the available resources of heterogeneous CPU+FPGA computing systems dynamically and

transparently from user’s point of view. The configuration controller is an original contribution

of this PhD thesis as an application of BitMan API, while other components are provided from

other MPhil and PhD students (K. Paraskevas and A. Vaishnav) but reproduced here for the

sake of completeness.

5.1 Workflow Overview

As described in Chapter 4, a library of XML files containing the partial bitstreams of hardware

modules is compiled from HLS source code by using the proposed compilation flow. The

metadata in the final XML files (that replace the original Xilinx configuration bitstreams in

the .bit/bin format, as shown in Listing 4.1) are used by the run-time execution to manage

the deployment of each hardware module by a user application (e.g., the mapping of control

registers that will be used by the HLS kernel or the potentially fastest clock frequency).

When the hardware task scheduler receives a function call from the user application, it

looks for the hardware module in the hardware library and requests a module placement to

the configuration controller. If the module placement is successful, the scheduler dispatches

90

5.2. CONFIGURATION CONTROLLER 91

Synthesis

HLS
Application

High Level
Synthesis

HW Module
Library

Implementation

Bitstream
Assemble

HW Task
Scheduler

Configuration
Controller

FPGA fabric

PartialReconfiguration

Module
Placement

User App

Module Device
Driver

Runtime
Execution

HW Module
Compilation

RTL/netlist
Application

Figure 5.1: Hardware (HW) module compilation steps and the run-time execution environ-
ment for hardware modules.

acceleration tasks to the hardware module via the module device driver. Otherwise, the fail-

safe execution scheme to run the application task on CPUs will be deployed. Note that any

components in the run-time execution can be changed for higher efficiency or additional func-

tionalities by users, if necessary. The roles of module compilation and the run-time execution

phases are summarised in Figure 5.1 while the components of the run-time management is

illustrated in Figure 5.2.

5.2 Configuration Controller

5.2.1 Overview

The configuration controller is in charge of the physical hardware module placement on the

FPGA fabric at run-time. It uses a subset of the functionality that is available in the BitMan

tool and API [PHK17]. The configuration controller receives requests from the hardware task

scheduler and sends commands to the configuration port driver as well as to the bus traffic

control drivers to place an accelerator kernel to the system without interfering with the rest

of the AXI buses. This is a sensitive operation and therefore automated, because without bus

decoupling a module reconfiguration could potentially corrupt the bus protocol or interfere with

other running bus transactions, and hence, freeze the entire system including the ARM SoC.

In our FPGA-virtualised systems, either the Processor Configuration Access Port (PCAP) or

the Internal Configuration Access Port (ICAP) can be utilised to write configuration data to the

FPGA fabric. In the case of using PCAP for reconfiguration, the software implementation is

more trivial as we can exploit the built-in Xilinx FPGA Manager [Xile] to deliver bitstreams

to the FPGA fabric, whereas we need a custom kernel driver in the case of ICAP. Bus traffic

92 CHAPTER 5. RUN-TIME MANAGEMENT

Hardware Task
Scheduler

Configuration Controller

Kernel’s XML File and Placing Location

Configuration Port
Driver

Final Partial Bitstream

PCAP/ICAP

User
Space

Kernel
Space

CPU Side

FPGA Side

Bus Traffic Control
Driver

Memory Management
Driver

SMMU

Module Device Driver

FPGA fabric

User App

Figure 5.2: Run-time execution and management. Components in the blue colour are contri-
butions of this PhD project.

control is implemented by means of Xilinx PR Decoupler IP core [Xil16b] which essentially

multiplexes/de-multiplexes AXI bus signals when requested. The role of the configuration

controller and the bus traffic controller/decoupler are illustrated in Figure 5.2.

5.2.2 Hardware Module Placement Process

When the configuration controller receives a request from the hardware task scheduler with

an XML file name and a placement position as arguments, the configuration controller will

extract the hardware module information such as how many slots will be needed. With this

information, the configuration controller will check if there are enough available PR slots to

host the hardware module. The next step is to verify if the resource footprint of the hardware

module matches the footprint of the PR slot. This checks if the relative layout of primitive

columns (slices, BRAMs, and DSPs) correspond to the resources found at the target position

on the FPGA fabric.

As the present system uses un-encrypted, no-CRC partial bitstreams for module relocation,

5.2. CONFIGURATION CONTROLLER 93

there is a chance that a user may try to corrupt configuration data in the non-assigned regions,

such as shell or other user running roles, with malicious data. This can be done by deliberately

providing either a partial bitstream with more configuration data than necessary for a slot or

reports an incorrect number of slots in the metadata. For example, in the metadata, the module

informs it has only one slot, but the attached partial bitstream actually contains configuration

data for two slots. However, as the bounding boxes of slots in a shell are pre-defined, the valid

number of configuration data for each slot is known. Therefore, the configuration controller

parses the partial bitstream to check if the actual amount of configuration data is valid as well

as if the actual number of slots shows a mismatch within the metadata.

Another important step automatically done by the configuration controller is to update the

bitstream of a partially reconfigurable module if there is any relocation needed. As mentioned

earlier, a hardware module can be implemented in any slot (for example Slot 1) and be placed in

the same slot or any other slot (for example Slot 2). In the case of placing to a different slot, we

automatically perform module relocation. Placing a module incorporates two manipulations

that will be done through the BitMan API:

1. updating address information inside the bitstream according to the target position on the

FPGA;

2. modifying the clock configuration data of the module according to the targeting loca-

tion1.

Before loading the configuration data onto the FPGA fabric, the communication between

the targeting slot(s) and the shell needs to be disabled to prevent any unexpected interference

with the rest of the system bus, which may corrupt other bus transactions and/or freeze the

whole system. This communication disabling can be done via the bus traffic controller/de-

coupler and orchestrated by the configuration controller. After that, the configuration data is

loaded to the targeting slot, and then, the communication is enabled again. Finally, the status of

all slots in the FPGA is updated for the purpose of resource management. The whole module

placement flow is summarised in Figure 5.3.

5.2.3 Configuration Overhead

ICAP theoretical throughput is up to 800MB/s and PCAP throughput is measured at 256MB/s,

while the software overhead for the scheduler to call the configuration controller and the con-

figuration controller process is measured at 13ms on average.

1Unless module relocation is performed, the configuration controller is using a feature provided in
BitMan that prevents the clock configuration data from being changed. This reflects the requirements of
complex real-world systems that use a plurality of clock networks on the FPGA (e.g. for various periph-
eral controllers). With this, each clock region or each slot on shell can have its own clock configuration
while still allowing to place modules freely.

94 CHAPTER 5. RUN-TIME MANAGEMENT

Slot available?
Module

Placement
request

Resource Strings
matching?

Y Y

N N

Return
base_address of

the Slot

Return ERROR
of inappropriate

resources

Return ERROR
of unavailable

resource

Module
relocation?

N

Disable Module
communication

Update Module
bitstream

Y

Update resource
status

Place Module
onto specified

Slot

Re-enable
Module

communication

Bounding box
checking?

N

Return ERROR
of invalid bitstream

Y

Figure 5.3: The configuration controller’s hardware module placement process.

5.3 Hardware Task Scheduler

5.3.1 Overview

The hardware task scheduler is responsible for managing accelerators on the FPGA-virtualised

systems and is provided as a daemon running under PetaLinux (the Xilinx distribution of Linux

kernel). An application user can send acceleration jobs to that daemon in the same way (using

an identical API) as used for Xilinx SDSoC systems. The scheduling of kernels is performed

using a first-come-first-serve (round-robin, RR) scheduler as the default implementation, which

internally maintains the state of the FPGA occupancy along with a waiting queue of the ker-

nels and their status. The default scheduler dynamically selects the accelerators based on the

number of slots available at run-time. This feature allows the scheduler to maximise the utili-

sation of the FPGA and improves the execution time of kernels based on run-time conditions,

as evaluated in Section 6.1.

Moreover, thanks to the aforementioned abstractions provided by this PhD project, other

advanced scheduling policies such as resource elastic scheduling (RES) [VPKG18] and, espe-

cially, heterogeneous resource elastic scheduling (HRES) [VPK19] are enabled on our FPGA-

virtualised systems. With resource elasticity, we refer to the ability of a task to change its

resource allocation dynamically and transparently from the user, while the actual resource

allocation is decided by the scheduler. When combined with a data-parallel threaded program-

ming model (for example, the OpenCL programming model [KHR]), the scheduler is able to

take into account the resources available (FPGA resources only in the case of RES, or all the

compute resources including CPUs and FPGAs in the case of HRES), the accelerators available

in the module library and estimated remaining execution times, as summarised in Figure 5.4.

The latter one ensures that reconfiguration is only performed if it pays off due to a possible

speed-up of the reaming jobs available in the system. Overall dynamic resource allocation al-

lows scheduling of accelerators in both the time domain and the spatial domain to maximise

5.4. MODULE DEVICE DRIVER 95

...

task A,∞ task B,60 task C,30 task D,10

1
2
3
4

...A A A A A A
B B B B B

C C C
D

1
2
3
4

...A
D

C C C
B

B B
...
...
...

A A
B B

A A

A
B

A AB

a)

b)

P
R

 s
lo

t

1
2

4
5

reconfiguration compute load

3

CPU E

CPU E ...

task E,40

6

P
R

 s
lo

t

1
2
3
4

...A
D

C C C
B

B B
...
...
...

A A
B B

A A

A
B

A AB

c)

1
2

4
5

3

CPU EA ...6

P
R

 s
lo

t

Figure 5.4: Resource allocation for tasks (A-E) in time when using a) run-to-completion
scheduling, b) resource-elastic scheduling (RES) [VPKG18], and c) heterogeneous resource-
elastic scheduling (HRES) [VPK19] on a CPU+FPGA architecture. The circled events high-
light cases where resources accommodate newly arriving tasks (1, 2, 3, 6) or cases where tasks
complete (4, 5).

the utilisation and system performance, as evaluated in Section 6.2.

This hardware task scheduler and its corresponding scheduling policies are the work of A.

Vaishnav and are briefly reproduced here to show the benefit of the system implementation.

5.3.2 Scheduling Overhead

The overhead of the Round Robin scheduler is 1µs while the HRES takes 2.9µs on the

UltraZed board when using a Quad-core ARM Cortex-A53 CPU at 1.5GHz and 2GB of DDR4

memory [PPV+19]. This time needed for taking a scheduling decision is much less than the

configuration time which is in range of milliseconds for a slot on our targeting platforms.

5.4 Module Device Driver

Interaction with the accelerator is performed using a module device driver which provides APIs

for accessing the accelerator status and issuing threads for execution given the memory address

96 CHAPTER 5. RUN-TIME MANAGEMENT

 SMMU
Register
interface

Main memory
Translation tables

Manager
device

PR Slot 0
(Client Device)

PR Slot 1
(Client Device)

PR Slot n
(Client Device)

...

Figure 5.5: The implementation of the ARM SMMU in the memory system. Client devices
in the PR slots are connected through the memory interconnect to the SMMU in the upstream
bus. The connection between the SMMU and the rest of the memory system is the downstream
bus. When the SMMU is set, the client devices agnostically issue transaction requests to the
SMMU. After a successful translation, the SMMU performs the memory access and returns a
valid response, or faults otherwise.

where the kernel is mapped. The driver usage is hidden from the user when using the default

scheduler but if the user wishes to implement their own schedulers or gain more direct control

of the kernel execution, it can also be accessed from the user code using standard C #include

functionality rather than installation of driver in the operating system.

This module device driver is implemented by A. Vaishnav. However, a contribution of this

project is integrating the module device driver in the run-time management.

5.5 Memory Isolation/Management

5.5.1 Overview

As the FPGA interface is capable of addressing the entire memory space of a system, the

memory isolation should be provided in a multi-tenancy computing environment and be able

to guarantee non-interference between virtual address spaces of user applications. Access

control has been an important aspect for FPGAs that are to be deployed in cloud systems

5.5. MEMORY ISOLATION/MANAGEMENT 97

for security and management purposes and is often addressed with various ring level priv-

ileges for stakeholders provided by Virtual Machine Monitors (VMMs) and run-time sys-

tems [WBP13, WPAH16, BSB+14], and hence, we embrace the technique in our FPGA-

virtualised systems, as shown in Figure 5.5.

Memory isolation is achieved by utilising the System Memory Management Unit (SMMU)

IP core which is an industrial standard of the Input-Output Memory Management Unit (IOMMU)

developed by ARM [ARMb] and available in the hardened CPU core (i.e. Processing Element

or PS for short in Zynq UltraScale+ terminology). As all memory references pass through

that SMMU core, it provides a common view on the memory to all system components and

takes care of all memory management issues including caching, translation of virtual memory

addresses to physical addresses as well as providing memory protection and isolation when

configured. If left unconfigured, no checks are performed and the SMMU is essentially by-

passed. To use the SMMU, we have built and integrated the following memory management

framework onto the run-time execution and management.

This memory management work is contributed by K. Paraskevas and briefly reproduced

here for the sake of completeness. The memory management work is also integrated into the

here presented run-time management.

5.5.2 Memory Management Framework for FPGA:

The framework consists of two components: the kernel driver and the user-space library. The

kernel driver can be called by the wider application flow to allocate memory resources to the

application, virtual machine, or container that the accelerators can access, while the user-space

library provides a user-friendly pre-processed interface.

Kernel Driver: The kernel driver is responsible for:

• Associating new Stream IDs or invalidating existing entries in the Stream Match Regis-

ters (SMR) registers of the SMMU.

• Configuring the Page Table pointer of a particular SMMU context to point to the user-

space application page table.

• Setting the appropriate cacheability attributes for the user page table.

• Flushing the Page Table Entries from the CPU cache, due to lack of memory coherence

support.

Usually during the SoC design process, IOMMU implementations such as the SMMU on

the Zynq UltraScale+ MPSoC utilise a non-coherent Page Table Walker (PTW). This decision

98 CHAPTER 5. RUN-TIME MANAGEMENT

Table 5.1: The overhead of using the SMMU. In the first iteration of a DMA transfer, DMA
read was completed in 90 cycles (900 ns) on average, where all following iterations took 20
cycles (200 ns) to complete. When SMMU is not used, the completion times are identical, but
the anomaly of the first iteration is absent. (This Table is adopted from [PPV+19]).

With SMMU (ns) Without translation (ns)
First iteration ∼900 ∼200
Next iterations ∼200 ∼200

is usually taken to save resources on the die as the coherency mechanisms require additional

complexity in the cache to implement a coherent interconnect. In addition, memory regions

accessed via the IOMMU are usually static and long-lived in (e.g., kernel allocated ring buffers

for devices). Additionally, memory regions committed to the accelerators are usually non-

cacheable, and therefore, coherency of the PTW is deemed unnecessary. This poses a challenge

when providing accelerator access to user-space memory where allocations can be dynamic

during the life cycle of the application. To overcome this we provide the user-space with an

API for page table management, such as flushing.

User-space library: The user-space library binds to the endpoint created by the driver and

wraps a number of system calls to provide an abstraction to the user to:

• Create handles that are used to associate the user’s page table and accelerators with the

SMMU.

• Allocate memory and pin it to RAM so it can be used by user accelerators.

• Free and de-associate user-space memory and accelerators.

5.5.3 Memory Management Overhead

The total overhead of the procedure of registering an application to the SMMU by using

the driver is measured at 1.3ms, where the driver function of page table flushing takes up the

significant portion of 1.26ms. Given the fact that page table flushing takes place only once

before any translation occurs, we consider that this is outside the critical path of the overhead.

The overhead of using the SMMU was determined in two experiments by measuring the

number of clock cycles in the FPGA logic for the read part of a DMA transfer. In the first

experiment, the DMA uses virtual addresses and the SMMU is configured to translate, where

in the second run, the SMMU was set to bypass and physical DMA addresses were used. The

results that are shown in Table 5.1. The increased latency of the first iteration (“cold miss")

5.6. CHAPTER SUMMARY 99

can be attributed to the initial page table miss from the TLBs of the SMMU and the subsequent

fetching operation by the PTW.

5.6 Chapter Summary

This chapter introduces run-time management, the last component of FPGA-virtualised sys-

tems, which is in charge of abstracting the deployment of applications. With this, modules

developed by the proposed methodology in Chapter 4 can be deployed in various execution

scenarios on top of the resulting shells to maximise the resource utilisation and the system

throughput. Chapter 6 provides experiments showing the benefits of infrastructure abstraction,

development abstraction, and deployment abstraction in CPU+FPGA heterogeneous comput-

ing systems.

Chapter 6

System Evaluation

Work hard in silence, let your success be your noise.

Frank Ocean

In this chapter, five showcases are presented to evaluate our systems against the objectives

of FPGA virtualisation mentioned in Chapter 1. Case Study 1 shows how the infrastructure,

development and deployment abstractions were used to improve design productivity and flex-

ibility in module deployment, hence, enable the multi-tenancy support as well as to achieve

better resource utilisation and higher system throughput, while Case Study 2 discusses how

clever and sophisticated hardware task scheduling policies can achieve even much better re-

source utilisation and system throughput. The cost of multi-tenancy support to provide flexi-

bility and security in terms of bus virtualisation and memory isolation is analysed in Case Study

3. Case Study 4 demonstrates how the proposed approach improves fault tolerance, resilience,

and maintenance in a small multi-node system with 8 Zynq UltraScale+ MPSoCs. Finally, in

Case Study 5, we examine the proposed approach in a large scale multi-node system (with 64

MPSoCs and 1TB memory in total) in terms of scalability and energy efficiency.

The results presented in the first four showcases were a collaboration effort with the PhD

student A. Vaishnav who provided the different schedulers and run-time application drivers,

while the author of this PhD project provided the hardware platform and low-level FPGA

abstractions [PVVK18, VPKG18, VPK18b, VPK19, PPV+19]. Moreover, the experimental

results presented in the last case study have been conducted by K. Georgopoulos, A. Ioannou,

and P. Malakonakis from the ECOSCALE project, whereas the author of this PhD thesis pro-

vided the shell designs including workarounds of the Vivado PR flow, and the implemented

accelerators [GBM+19].

100

6.1. DESIGN PRODUCTIVITY AND DEPLOYMENT FLEXIBILITY 101

6.1 Case Study 1: Design Productivity and Deployment
Flexibility [PVVK18]

In this case study, we implement and execute Matrix Multiplication (MM) and Discrete

Cosine Transform (DCT) OpenCL kernels in various instantiation scenarios. MM has two

implemented variants which occupy 1-slot and 4-slot FPGA resources while DCT has 2-slot

and 4-slot variants, as shown in Figure 4.13. This demonstration has been conducted on Xilinx

ZCU102 Evaluation Board [Xilh].

The static shell design was implemented using Vivado 2017.4 (see Section 4.2) is explicitly

decoupled from the hardware module designs (roles), which were deliberately compiled using

Vivado 2016.2 (see Section 4.3). Note that users are free to use any Vivado version that is

2016.1 or later to implement their hardware modules. To the best of the author’s knowledge,

despite of providing users much more flexibility to utilise their available EDA tools, this feature

is not supported by other state-of-the-art works [Alt17, Xil18c, KLP+18].

Moreover, users can use standard HLS optimisation methods to tune an OpenCL kernel’s

throughput and area for generating different RTL source codes for module variants. For exam-

ple, performing vectorisation, loop unrolling and increasing work-group size (batch size) on the

DCT kernel results in 3.68× throughput at twice the resource consumption. This means that at

the resource cost of the large DCT kernel, we could host two small DCT ones. However, the

large DCT kernel provides almost double the throughput of the aggregated small kernels, which

we refer as super-linear speed-up with regard to the resource usage. This super-linear speed-up

is achieved by micro-architectural optimisation, resource sharing, and reusing of intermediate

values amongst computing elements in the kernel. Ultimately, this case study supports imple-

mentation variants to provide the entire best module layout possible towards the super-linear

speed-up, as shown in Table 6.1. The different module variants can be implemented by the

provided TCL templates.

6.1.1 Analysis of Design Productivity

The compile latency of the 1-slot, 2-slot and 4-slot module variants are 379, 1076 and 1476

seconds respectively by using our decoupled compilation flow, as reported in Table 6.1. Note

that to provide the same level of flexibility in module deployment as in our approach, the state-

of-the-art vendor PR flows [Xil18c, Alt17] have to implement all permutations of module and

placing slots, since building relocatable modules is not officially supported in these vendor

toolflows, as discussed and evaluated in Section 4.3.4.

A recent approach suggests to implement all permutations of deploying applications to

102 CHAPTER 6. SYSTEM EVALUATION

Table 6.1: Matrix Multiplication (MM) and Discrete Cosine Transform (DCT) show cases.

Application
Matrix Multiplica-
tion (MM)

Implemented variant 1-slot 4-slot

Compilation time (seconds) 379 1476

Bitstream size (MBytes) 1.7 6.8

Instantiation scheme (No. of instantiations× No. of
slots per instantiation)

1×1 4×1 1×4

Compute throughput (MBps) 0.067 0.268 0.339

Compute throughput speed-up 1× 4× 5.06×
Time to maximum throughput tT MT (ms) 21.24 84.96 45.96

Application
Discrete Cosine
Transform (DCT)

Implemented variant 2-slot 4-slot

Compilation time (seconds) 1076 1476

Bitstream size (MBytes) 3.4 6.8

Instantiation scheme (No. of instantiations× No. of
slots per instantiation)

1×2 2×2 1×4

Compute throughput (MBps) 1.37 2.74 5.04

Compute throughput speed-up 1× 2× 3.68×
Time to maximum throughput tT MT (ms) 29.48 58.96 45.96

6.1. DESIGN PRODUCTIVITY AND DEPLOYMENT FLEXIBILITY 103

achieve high resource utilisation and system throughput [KLP+18]. However, the whole im-

plementation process of 30 applications may take weeks in a workstation machine, and a single

modification in any of applications will force this lengthy process restarted, as this ArmophOS

work is built upon the Xilinx PR flow. In addition, any change in the static shell infrastructure

also results in the same restart of module implementation. Thus, it is important to adopt a scal-

able and decoupled compilation flow when targeting multiple applications and shell versions,

which are common in high-performance and cloud computing environments, as discussed in

Section 4.3.4.

6.1.2 Analysis of Configuration Overhead

In order to quantify configuration overhead, which may vary because we have various alterna-

tives to configure accelerators on the FPGA, we introduced the concept of Time to maximum

throughput (tT MT). tT MT summarises the entire configuration time and software overhead that

is needed to load the maximum number of accelerators to the FPGA. tT MT is, therefore, an

upper bound and can be estimated by Equation 6.1, where n is the number of instantiations,

tcon f is the time in which PCAP partially reconfigures the FPGA fabric, and tsw is the software

overhead for the scheduler to call the configuration controller and the configuration controller

process. PCAP throughput was measured at 256 MB/sec while the tsw is measured at 13ms on

average, as reported in Section 5.2.3. For n instantiations, the time to maximum throughput is:

tT MT = n× (tcon f + tsw) (6.1)

The time, tT MT , was measured on average to be 45.96ms for 4 slots when using PCAP to

partially reconfigure the FPGA fabric (see also Table 6.1).

6.1.3 Analysis of Deployment Flexibility and System Completion
Time

In the experimental scenario, a long-running MM task starts at the time zero for a workload of

400 work-groups while DCT arrives at an arbitrary time. Various module instantiation schemes

(Instantiations × slots per variant) are deployed and evaluated to demonstrate how flexible

the proposed approach can support executing multiple kernels simultaneously, as shown in

Figure 6.1. Figure 6.1a shows the scheme in which MM has occupied 1 slot, therefore when

DCT arrives it can occupy 2 available slots and start executing to completion without delay. In

Figure 6.1b, 1-slot MM has been instantiated twice to occupy 2 slots, but DCT can still get the

other available slots for its execution and hence, minimise its waiting time. Further, 1-slot MM

has been instantiated 4 times to occupy all 4 slots, so DCT must wait to get enough resources,

104 CHAPTER 6. SYSTEM EVALUATION

Configuration: tconf

1
2
3

sl
o

t
4

A MM

a)

Software overhead: tsw

DCT

DCT

1
2
3

sl
o

t MM

4

d) DCT

1
2
3

sl
o

t

4

c)

MM
DCT

MM
MM

MM
DCT

1
2
3

sl
o

t

4

b)

MM
MM

DCT

Figure 6.1: Various instantiation and execution schemes for Matrix Multiplication (MM) and
Discrete Cosine Transform (DCT) kernels.

24.2

12.1

9.2

6.6

0 0

4.71 4.55

0

5

10

15

20

25

a)

Ti
m

e
(s

)

Makespan Max wait time

b) c) d)

Figure 6.2: Completion time in various execution schemes in Figure 6.1.

as shown in Figure 6.1c. In Figure 6.1d, the biggest and fastest variants of MM and DCT

have been used to achieve the highest throughput and the shortest makespan (i.e. end-to-end

execution time) at 6.6 seconds .

The last scenario is indeed the best for performance (3.67× in performance) but is not good

for fairness as the wait time of the second application (DCT application in this case) is the sec-

ond longest among the four scenarios, as shown in Figure 6.2. Although the makespan metric

6.2. RESOURCE UTILISATION AND SYSTEM PERFORMANCE 105

is critical to most of high-performance computing applications, the fairness metric is equally

important in the scenario of multi-tenant clould computing systems, in which applications from

different users are competing to get the necessary resources to execute.

6.1.4 Summary

This case study demonstrates how the development abstraction enables the decoupled im-

plementation of the static shell and the application roles in order to enhance the design produc-

tivity. Moreover, the flexibility of application deployment improves the resource utilisation and

system completion time (i.e. makespan) beyond what the state-of-the-art approaches can offer

thanks to the deployment abstraction, which is a major contribution from this PhD project. The

next case study will show how the techniques enabled in this PhD project can help to utilise

available resources on a heterogeneous computing system in terms of CPUs and FPGAs to

further enhance the resource utilisation and reduce the overall completion time.

6.2 Case Study 2: Resource Utilisation and System Per-
formance [VPKG18, VPK19]

This case study shows how the flexibility of module deployment (i.e. deployment abstrac-

tion) enabled by the proposed approach combining with the OpenCL programming model and

the cooperative scheduling utilises the resources in a heterogeneous computing system even

higher, and hence, provides the whole system a further significant performance improvement.

Four OpenCL applications including a Finite Impulse Response (FIR) filter, a Discrete

Cosine Transformation (DCT), a 3D Normal Estimation (eNormal) and a Matrix Multiplication

(MM) (see Section 4.3) are deployed on top of the shell, which is built for a Xilinx ZCU102

development board (see Section 4.2). Note that on one hand, eNormal is CPU favoured where

it can run 4× faster on CPU than on FPGA, and on the other hand, the FIR filter is FPGA

favoured with a 3.4× boost up over CPU implementation. Moreover, DCT is an interesting

case where the DCT implementation on CPU is slightly faster (1.18×) than the 2-slot FPGA

DCT and considerable slower (3×) than the 4-slot one. The implementation difference between

2-slot or 4-slot DCT modules is based on larger buffer sizes and loop unrolling for better data

reuse. In particular, depending on the scheduler’s decision, it may be CPU favoured or FPGA

favoured. Finally, 4-slot FPGA MM is 3.8× faster than its CPU counterpart.

The following arrival times are considered for the sake of simplicity: eNormal at 0ms,

DCT at 100ms, FIR at 200ms and MM at 300ms. Moreover, five different execution scenarios

106 CHAPTER 6. SYSTEM EVALUATION

24868

6028 6032

3185 2797

2583 2525

6 20 20
0

500

1000

1500

2000

2500

3000

0

5000

10000

15000

20000

25000

CPU RC CPU+static
FPGA accel.

CPU+FPGA
RRH

FPGA RES CPU+FPGA
HRES

Makespan Max wait time

M
ak

e
sp

an
 (

m
s)

M
ax

 w
ai

t
ti

m
e

(m
s)

Figure 6.3: Comparison of makespan (total execution time of the entire benchmark) and
maximum wait time for different scenarios including software execution only (CPU RC),
static accelerators (CPU+static FPGA accel.), round-robin scheduling(CPU+FPGA RRH), re-
source elastic scheduling (FPGA RES), and the heterogeneous resource elastic scheduling
(CPU+FPGA HRES), which uses FPGA and CPU resources in orchestration for acceleration.

according to different scheduling policies are examined as following:

1. Kernels are deployed only on CPUs (using POCL [JdLLS+15], an OpenCL run-time

API);

2. On CPU and using one static FPGA accelerator (similar to Xilinx SDSoC [Xild] using

FPGA drivers) where the FPGA accelerator is MM (biggest kernel);

3. On CPU and FPGA using Round-Robin scheduling (RR-H) (similar to the Case Study

1 in Section 6.1);

4. Only on FPGA using resource elastic scheduling (RES) [VPKG18];

5. on CPU and FPGA using heterogeneous RES (HRES) [VPK19].

In this case study, we use makespan (total execution time of the entire benchmark) as the

metric to illustrate the system performance and maximum wait time as the metric of fairness.

6.3. COST OF MULTI-TENANCY SUPPORT 107

6.2.1 Analysis of Resource Utilisation and Performance

Figure 6.3 shows comparison of makespan (total execution time of the entire benchmark) and

maximum wait time for the aforementioned execution scenarios. As compared to a reconfig-

urable run-to-completion model using full reconfiguration (which is the model used by the

Xilinx SDSoC run-time), our RES approach is reducing the total execution time of the bench-

mark from over 6000ms down to 3185ms (1.88× in performance). Moreover, using HRES

can take full advantage of the heterogeneous resources available in Zynq UltraScale+ FPGAs

by scheduling to FPGA and CPU resources simultaneously, which reduces makespan even

further down to 2797ms (i.e. the speed-up at 2.15×). It is important to understand that this

performance boost come entirely from a more competent scheduling without the need of an

application developer to change anything in the application or any accelerator kernel module.

However, our scheduler can take advantage of implementation alternatives (which are modules

implementing the same functionality, but with different micro-architectures in order to trade

resources for computational throughput). Therefore, an application developer can help the re-

source elastic scheduler by providing corresponding accelerator implementation alternatives

with an assist from a Design Space Exploration (DSE) approach [MMRL17].

6.2.2 Summary

In this case study, the available computing resources in a heterogeneous system in terms of

CPUs and FPGAs are fully utilised to speed-up the system performance by up to 2.15×. This

improvement is enabled by using resource elastic scheduling policies such as RES and HRES

which are only feasible because of the development abstraction (via implementation variants,

as discussed in Section 4.3.4 and the Case Study 1) and the deployment abstraction (via the

dynamic and flexible resource allocation), as introduced in this PhD thesis.

6.3 Case Study 3: Cost of Flexibility and Security for
Multi-tenancy Support [PPV+19]

Multi-tenancy support is a useful feature of any FPGA-virtualised system yet difficult to

achieve as various users may come with their own requirements of module designs and de-

ployment schemes. For example, as the proposed shell is designed with the default 128-bit

AXI4 Master interface for modules to fetch data from the main memory, a user module with

other AXI interfaces, such as AXI Stream, or different data-width, such as 32- or 64-bit, will

need a bus adaptor to be integrated to our shell instead of re-designing the module itself or the

108 CHAPTER 6. SYSTEM EVALUATION

shell. Moreover, multi-tenancy support requires a basic level of logical isolation between users,

which is provided in the proposed approach by means of memory virtualisation, as presented

in Section 5.5.

6.3.1 Analysis of Resource and Performance Overhead

Although the bus adaptor approach provides more flexibility for module development and de-

ployment, logic overhead of the bus adaptor is inevitable, as reported in Section 4.2.2.

To evaluate run-time system overhead of bus and memory virtualisation, we use a memory

bound application rather than compute bound application as the performance of a compute

bound application is primarily tied to the logic resources and not to the run-time overhead

caused by the shell. To this advent we use an application example with probably the most

common access pattern of 2 read operations and 1 write operation: vector addition (VADD).

We evaluated the system with 32-bit, 64-bit, and 128-bit data-width memory bound VADD

accelerators, over memory accesses of 512kB and 1 MB and numbers of users ranging from 1

to 3, which access the system DDR memory concurrently. In this scenario, we use the same

application type to identify and quantify the worst-case overhead caused by the communication

interface and the memory virtualisation.

The end-to-end time of module operation includes overheads of the hardware scheduler,

configuration controller, memory management, and the module execution itself, as summarised

in Equation 6.2:

ttotal = tsched + tcon f + tmem + texe (6.2)

The overhead of the hardware scheduler, tsched , is the time to make its decision of which

hardware module is selected to launch. tsched ranges from 1µs to 2.9µs, as mentioned in Sec-

tion 5.3.2. However, this tsched is marginal for the total overhead. tcon f summarises the config-

uration time and software overhead to load a hardware module to the FPGA. The throughput

of the Processor Configuration Access Port (PCAP) was measured at 256MB/s while the soft-

ware overhead is measured at 13ms on average, as shown in Section 5.2.3. Because these

overheads are the same on all experimental cases, we omit them in the final comparison. tmem

is the penalty we pay to integrate the memory isolation stack into the run-time management

layer. The overhead of registering a new application was measured at 1.3ms (see Section 5.5.3)

while the overhead of using SMMU is 0.9µs for the first iteration is negligible, as mentioned in

Section 5.5.3. The module execution time, texe, is measured from fetching the processing data

to its completion.

As mentioned above, VADD computation is lightweight but memory intensive. Thus, by

using the 32-bit communication bus-width instead of the default 128-bit one, a reduction of

3.15× in performance was observed. This reduction includes the penalty for the memory

6.3. COST OF MULTI-TENANCY SUPPORT 109

128-bit VADD 64-bit VADD 32-bit VADD

0

10

20

30

40

50

60

Execution latency

Virtual memory
overhead

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1MB 512kB 1MB 512kB 1MB 512kB

La
te

n
cy

 (m
s)

No. of users

Payload

Figure 6.4: The Vector Addition (VADD) design which has 2 inputs and 1 output (i.e. con-
ducting 2 operand reads and 1 operand write at a time) is being used for this experiment. The
experiment is conducted on the Ultra96 platform [AVN19].

isolation, which is required for guaranteeing the security and robustness of a system. The

reason why the reduction is not 4× (as we reduced the bus-width by 4×) is because the 128-bit

version cannot saturate the full memory bandwidth. The exact benchmarking results are shown

in Figure 6.4.

6.3.2 Summary

In this case study, the cost for a flexible and secure multi-tenant support on heterogeneous

computing systems is analysed. The here proposed bus adaptor technique along with the de-

coupled compilation flow plays an essential role to provide the flexibility of this multi-tenant

support.

110 CHAPTER 6. SYSTEM EVALUATION

6.4 Case Study 4: Fault Tolerance/Resilience, and Main-
tenance of Multi-node Systems [VPK18b]

We have examined our proposed approach against multiple objectives for FPGA virtuali-

sation of a single-node system as presented in previous sections. For example, it was shown

how flexibility in module deployment enables the proposed approach to speed up the whole

system performance as well as to utilise a significant amount of available computing resources,

as had been discussed in Section 6.1 and Section 6.2. However, modern data centres consist

of a great number of FPGA systems, therefore, fault tolerance, maintenance and high avail-

ability of FPGA acceleration services are highly recommended [MPL+16]. Hence, application

migration is necessary for large-scale multi-node systems for following reasons:

• Fault tolerance: In case of a fault, an application needs to be migrated to another node

where it can resume execution from the last known consistent state (possible by using

established techniques such as check-pointing).

• Maintenance: Consider a scenario where a node needs a hardware/software upgrade

but is currently executing a long running application. With the help of migration, the

application can be temporarily moved to a remote node while the upgrade is performed

transparently.

• Resource management: Migration permits dynamic load-balancing to redistribute works

across a network as the workload changes.

In this section, we discuss how the here developed platform helps improve the fault toler-

ance, resilience, and maintainability of multi-node heterogeneous computing systems. Let us

consider a multi-node system in which a number of Zynq UltraScale+ MPSoCs are used, as

shown in Figure 6.5b. As before in Section 6.2, we assume the here presented system running

OpenCL workload where large jobs are decomposed into small jobs (called work-groups) that

run-to-completion and that can be dispatched to the compute resources in the system in any

arbitrary order.

A master hardware task scheduler can be deployed on top of the system to monitor and or-

chestrate running applications for a unified CPU+FPGA computing resource pool, as illustrated

in Figure 6.5a. Given the ability to perform context switching between applications across var-

ious computing resources and the data-parallel nature of the application’s execution model (for

example, the OpenCL execution model [KHR]), we can migrate a running application between

nodes without disrupting its execution by overlapping the module execution on the target node

with the one in the source node. This overlapping is possible as the execution order of differ-

ent work-groups (a group of threads in the OpenCL terminology) are undefined, as shown in

6.4. RESILIENCE AND MAINTENANCE OF MULTI-NODE SYSTEMS 111

a) b)

Figure 6.5: a) is an example of the live migration process of FPGA accelerators across com-
puting nodes and b) is the experimental setup with eight Xilinx ZCU102 platforms [Xilh].

Figure 6.6. For interested readers, we suggest to read the paper [VPK18b] for more details.

6.4.1 Mitigation Scenarios for Fault Tolerance/Resilience

The proposed approach provides support for fault tolerance at node level in which a running

application of a faulty node can be migrated and continue its execution on another healthy

node without any interruption from the user’s point of view. The fault scenario may occur due

to a software bug, a hardware fault (e.g. power failure), or problems in the local operating

system which requires the node to be rebooted. Since the main bottleneck for migration is the

data transfer of kernels’ partial bitstreams across the multi-node system, as discussed in the

paper [VPK18b], the relocatable partial bitstreams are highly desired to save the number of

bitstreams needed to be transferred.

Migration for fault tolerance can be combined with load-balancing algorithms to redis-

tribute workloads across multiple nodes to get a high utilisation for large-scale systems, as

briefly illustrated in Figure 6.5a. To achieve this objective, the ability to merge multiple adja-

cent PR regions to host modules with various resource requirements, which is also supported

by the proposed approach, is essential.

Moreover, this migration can actively happen while the system infrastructure (a.k.a shell)

is maintained or upgraded. Note that such kind of system upgrade usually requires not only

the whole system to be shutdown but also all application modules to be rebuilt, as discussed in

Section 2.2. In contrast, the proposed approach can perform the shell update at run-time, and

hence, cause limited side-effects in the execution of user applications.

112 CHAPTER 6. SYSTEM EVALUATION

Execution at
Source

Input Data Transfer

Bitstream Transfer

Execution at Target

Data Merging at
Target

Source Output Data
Transfer

Execution at
Source

Input & Output
Data Transfer

Bitstream Transfer

Execution at Target

b)

c)

Time

Execution at
Source

a) Execution Completion

Figure 6.6: Execution trace of an accelerator in different scenarios of data movement. (a) is
the case of no migration; (b) is the case of accelerator migration without overlapping of data
movement; and (c) is the case of accelerator migration with overlapping of data movement.
Note that these run-time data management schemes are the contribution of A. Vaishnav but
reproduced here for completeness [VPK18b].

Table 6.2: Shell update latency breakdown.

Phase Latency (ms)

Write-to-SD-Card + Migration to Temp. Node 852

Shutdown Period 600

Boot-up Period 29420

Static Logic Reconfiguration 104

Run-time Initialisation 2010

Migration to Source 278

Total Time Taken 33264

6.4. RESILIENCE AND MAINTENANCE OF MULTI-NODE SYSTEMS 113

6.4.2 Analysis of System Maintenance

To update a shell at run-time in our demonstrating system, the following steps need to be

performed:

1. A new Linux image with updated static logic needs to be written to SD-Card of the

source node while in parallel the migration to another node is performed. This is re-

quired to allow the ARM core on the Zynq UltraScale+ chip to boot correctly with the

new device tree information which is needed if hardware components change.

2. A reboot sequence needs to be initiated on the source node using the new booting image

in the SD-Card.

3. Migrating back the applications to the source node.

The latency of each of these steps for the Matrix Multiplication benchmark using 4-slot

through replication is shown in Table 6.2. The total latency for the shell update is 33.26 sec-

onds, the majority of which corresponds to the Linux boot up period at 29.42 seconds (about

88.45% total latency). In terms of the total execution time of the Matrix Multiplication bench-

mark, the overhead represents 13.25% of the total execution time. During this period live mi-

gration can allow continuous provisioning of acceleration service by moving to another node

without pausing the kernel execution.

6.4.3 Summary

This case study demonstrates novel techniques of fault tolerance/resilience and system

maintenance for a multi-node heterogeneous system with limited side-effects on other running

applications in the system. The here presented techniques are infeasible without the support of

module relocation (i.e. deployment abstraction), which helped to reduce the bitstream transfer

latency as only a single bitstream is needed, and the decoupled compilation flow (i.e. de-

velopment abstraction), which helped to reduce the overall system update latency. Both the

deployment abstraction and the development abstraction are original contributions of this PhD

thesis.

114 CHAPTER 6. SYSTEM EVALUATION

6.5 Case Study 5: Scalability and Energy Efficiency of
Multi-node Systems

In this case study, we examine the deployment of the proposed abstractions on a large

scale multi-node heterogeneous system with 64 FPGAs and 1TB memory in total. Moreover,

to achieve the requirement of energy efficiency for high-performance computing with large

data-sets [oE10], we have adopted the approach of moving compute towards data instead of

the conventional approach of moving data by leveraging partial reconfiguration.

This case study uses Quad-Daughter FPGA Board (QFDB) which is a custom multi-

FPGA board including 4 Xilinx ZU9EG MPSoCs and provides a very dense, tightly con-

nected FPGA placement [KAB+18, CIK+19], as illustrated in Fig 6.7a. In addition, the

QFDB was constructed with UNIMEM (Unified Memory) [MGF+16] and its successor UNI-

LOGIC [GBM+19] in mind, which provides a uniform partitioned global memory address

space (PGAS) and virtualised access of reconfigurable logic across multiple HPC nodes. Fur-

ther, multiple QFDBs can be connected to form up a large pool of computing resources with

a low power budget. Together, the QFDB cluster and the UNILOGIC architecture provide a

foundation to deploy FPGA applications at large scale.

A cluster of QFDBs is used as the testing platform in this case study. This cluster is de-

signed to scale for low-power, high-performance computing consists of 64 Xilinx ZU9EG Zynq

MPSoCs, tightly connected together by 10-Gigabit Ethernet connections, as shown in Fig 6.7b.

Each MPSoC is attached to 16GBs of ECC-protected DDR4 memory, and the DDR controller

is configured to run at DDR4-PC2133 speed. Each QFDB has a master node (known as F1) re-

sponsible for the management and work-offload to other slave nodes (F2-F4). The management

layer executes on the CPU cores of F1 with Linux kernel at its base. In contrast, the CPU cores

of F2-F4 operate in a bare-metal mode for high performance and energy efficiency. The FPGA

fabric in each node has four partial regions (labelled slots 0 to 3 in Fig 6.7a) and adopt the

FPGA Operating System (FOS) shell [VPPK20] by adding UNIMEM and UNILOGIC to the

static system infrastructure. In this system, UNIMEM and UNILOGIC are offering a unified

address scheme for memory, CPUs, and the reconfigurable fabric of FPGAs, as if they were

connected to the same bus.

The high-level connectivity between these QFDBs to form a bigger cluster is established

via the F1 node on each board. Figure 6.7b shows an upscaled cluster with 64 MPSoCs in

which only one F1 node is boot up with the Linux kernel acting as the cluster master node.

For such a large scale system, to minimise the energy consumption, we need to:

1. limit the amount of data transfer between nodes in the cluster; and

2. reduce the configuration overhead when switching accelerators as much as possible.

6.5. SCALABILITY AND ENERGY EFFICIENCY 115

a)
b
)

G
T

H
2

G
TH

0

G
TH

1

A
R

M
 C

or
te

x-
A

5
3

Q

u
ad

-c
or

eP
R

 S
LO

T
 3

P
R

 S
LO

T
2

P
R

 S
LO

T
1

G
T

H
3

P
R

 S
LO

T
 0

D
D

R
 M

em
o

ry

F1
SH

EL
L

U
N

IL
O

G
IC

/U
N

IM
EM

+
C

H
IP

-2
-C

H
IP

+
IC

A
P

 C
o

n
tr

o
lle

r

A
R

M
 C

or
te

x-
A

5
3

Q

u
ad

-c
or

eP
R

 S
LO

T
3

P
R

 S
LO

T
2

P
R

 S
LO

T
1

P
R

 S
LO

T
0

D
D

R
 M

em
o

ry

F3
SH

EL
L

U
N

IL
O

G
IC

/U
N

IM
EM

+
C

H
IP

-2
-C

H
IP

+
IC

A
P

 C
o

n
tr

o
lle

r

A
R

M
 C

or
te

x-
A

5
3

Q

ua
d

-c
or

eP
R

 S
LO

T
3

P
R

 S
LO

T
 2

P
R

 S
LO

T
 1

P
R

 S
LO

T
0

D
D

R
 M

em
o

ry

F2
SH

EL
L

U
N

IL
O

G
IC

/U
N

IM
EM

+
C

H
IP

-2
-C

H
IP

+
IC

A
P

 C
o

n
tr

o
lle

r

G
TH

2

A
R

M
 C

or
te

x-
A

5
3

Q

ua
d

-c
or

eP
R

 S
LO

T
3

P
R

 S
LO

T
2

P
R

 S
LO

T
1

P
R

 S
LO

T
0

D
D

R
 M

em
o

ry

F4
SH

EL
L

U
N

IL
O

G
IC

/U
N

IM
EM

+
C

H
IP

-2
-C

H
IP

+
IC

A
P

 C
o

n
tr

o
lle

r

G
TH

0

G
TH

1

O
S

O
S

Fi
gu

re
6.

7:
A

cl
us

te
r

of
Q

FD
B

(Q
ua

d-
D

au
gh

te
r

FP
G

A
B

oa
rd

)
fe

at
ur

in
g

X
ili

nx
Z

U
9E

G
Z

yn
q

M
PS

oC
s.

(a
)

cl
us

te
r

ar
ch

ite
ct

ur
e

in
cl

ud
in

g
th

e
no

de
s

F1
(t

he
m

as
te

r/
ne

tw
or

k
no

de
),

F2
,F

3,
an

d
F4

ac
tin

g
as

sl
av

e
no

de
s;

(b
)l

ar
ge

sc
al

e
te

st
pl

at
fo

rm
w

ith
16

Q
FD

B
s

(6
4

FP
G

A
s

an
d

1T
B

R
A

M
)

co
nn

ec
te

d
to

ge
th

er
,w

hi
le

th
er

e
is

on
ly

on
e

F1
no

de
ru

nn
in

g
th

e
fu

ll
L

in
ux

ke
rn

el
,m

ar
ke

d
by

th
e

ye
llo

w
ci

rc
le

.

116 CHAPTER 6. SYSTEM EVALUATION

Figure 6.8: The ECOSCALE platform with 16 QFDBs (64 FPGAs and 1TB RAM) is used in
this case study.

For the first requirement, we have adopted the approach of moving compute accelerators

towards nodes where data are located, as the size of an accelerator (i.e. an FPGA bitstream) is

in the range of a few MBs compared to the typical range of GBs of the data-set to be processed.

For the second requirement, in this case study, we have chosen to use the Internal Configuration

Access Port (ICAP), integrated inside the FPGA fabric of the MPSoC, instead of the processor-

based reconfiguration port (i.e. PCAP), as ICAP has better throughput (800 MB/s for ICAP

and 256 MB/s for PCAP). Moreover, as ICAP is located in the FPGA fabric of the MPSoC, it

can be connected directly to the UNILOGIC infrastructure for (remote) chip-to-chip bitstream

transfer. Therefore, using ICAP introduces less software-stack overhead than using PCAP,

which is about 13ms (see Section 5.2.3).

However, using ICAP is lacking of support from both vendor design tool and software

API. For providing ICAP configuration, we adopted the work in [VF14b] to our system and

clocked it at maximum frequency at 200MHz. In addition, our custom ICAP was able to

manipulate partial bitstreams to relocate an accelerator to various targeting PR slots, as inspired

by [KLPR05]. With this, the resulting throughput of intra-chip configuration reached 770.27

MB/s (8.64× improvement compared to the Xilinx HWICAP IP [Xil16a]) while the throughput

of inter-chip configuration reached 482.23 MB/s (6.76× improvement) with the loss of 59.73%

due to the network latency, as reported in Table 6.3. The higher network latency compared to

the Xilinx IP is due to the network latency becoming a more significant bottleneck when the

configuration throughput is improved.

In two out of four MPSoCs, static signals need to be routed across the slots to access

the physical 10-Gigabit transceiver primitives for chip-to-chip communication, as illustrated

in Figure 6.7a. Since the MPSoCs have the same FPGA fabric but with different I/O layouts,

existing approaches would have different static system flooplans which, in turn, require differ-

ent static system-specific accelerator module implementations. We targeted the diversity of I/O

layouts by providing individual shell for each FPGA in a QFDB (i.e. infrastructure abstrac-

tion) to offer a unified application development process and deployment framework for users

by leveraging the methodology proposed in Section 4.2.3. Consequently, users do not need to

6.5. SCALABILITY AND ENERGY EFFICIENCY 117

Table 6.3: Throughput of ICAP-based controller in intra- and inter-chip configuration.

Type of Configuration HWICAP [Xil16a]
(MB/s)

Custom ICAP
(MB/s)

Speed-up

Intra-chip (local) 89.13 770.27 8.64×
Inter-chip (remote) 71.3 482.23 6.76×
Network overhead 25% 59%

deal with every single FPGA with different I/O layouts to develop their applications, which is

infeasible with other state-of-the-art design methodologies [Alt17, Xil18c, KLP+18]. More-

over, the I/O virtualisation technique introduced in Section 4.2.3 was incorporated to provide

more flexibility and to reduce the amount of data transfer as a single partial bitstream of an

application is executable across the platform.

6.5.1 Analysis of Scalability and Energy Efficiency

The accelerators implementing the Michelsen algorithm [IMG+19] were used to demonstrate

and evaluate the system. The Michelsen algorithm is widely used in the field of oil-reservation

simulation to predict oil and gas flows, and hence, its hardware accelerators represents a com-

plex real-world application. In this case study, an optimised version of the Michelsen algo-

rithm with higher parallelism for FPGAs was compiled directly from its OpenCL source code

to a single partial bitstream using the decoupled compilation flow (see Section 4.3). The im-

plemented Michelsen accelerator has used 40630 LUTs, 57 BRAMs, and 176 DSPs in the

targeting ZU9EG FPGA (2 slots).

The decoupled compilation process took 55 minutes using Vivado 2018.2.1 on Intel Core

i7-4930K CPU running at 3.4 GHz with 64 GB of RAM due to high utilisation of available

resources and routing congestion, as shown in Figure 4.9. Note that this Michelsen accelerator

needed to be compiled only once and were able to be deployed across the entire platform thanks

to supporting module relocation and replication at the bitstream level. The implementation of

the same Michelsen accelerator using Vivado PR flow on the same machine took 336 minutes

for all possible slots in a QFDB, i.e. it took 6× longer than our approach.

To evaluate the system performance and energy consumption, we used a data set of earth

substrate analysis with 240 million grid points. This data set, which was about 1.5GBs in total,

was solved by the Michelsen algorithm deploying on different computing platforms, including:

1. CPU-based platform with Intel Core i7 at 3.4GHz and 64GB RAM,

2. GPU-based platform equipped with an Nvidia GTX980,

118 CHAPTER 6. SYSTEM EVALUATION

CPU
(core i7 @ 3.4 GHz)

GPU
 (GTX 980)

QFDB*
(240 cores)

QFDB**
(128 cores)

Data movement/
configuration
overhead (s)

Computation
overhead (s)

Total energy
consumption (J)

Ti
m

e
 (

s)

E
n

er
gy

 (
J)

* Flatterned static design with full configuration
** Modular design with partial reconfiguration (this work)

1

10

100

1000

0.01

0.1

1

10

Figure 6.9: Execution latency and energy consumption of Michelsen on different deploying
platforms.

3. QFDB-based platform with Michelsen accelerators statically integrated (240 cores) us-

ing full configuration,

4. QFDB-based platform with Michelsen accelerators built as a partially reconfigurable

module and deployed on the platform using intra- and inter-chip partial reconfiguration

(128 cores in total).

The total execution time, including configuration overhead, computation overhead, and en-

ergy consumption per platform, is reported in Figure 6.9. For this highly parallel application,

the QFDB-based deployments outperformed the other software-based deployments (28.1 sec-

onds and 2389 Joules for the CPU-based platform, and 3.6 seconds and 1008 Joules for the

GPU-based platform) as expected. The interesting comparison was performed between the

QFDB-based deployments themselves with and without utilising partial reconfiguration.

In the deploying case without partial reconfiguration, the Michelsen accelerators were stat-

ically integrated to the system and hence, the final system implementation was better optimised

to deploy a higher number of cores. This led to faster computation at 0.179 seconds. However,

the data-set (1.5GB) needs to be transferred across the platform, and the full configuration for

each node needs to be performed when switching the applications. Therefore, the configura-

tion and data movement (of 1.5GB of the data-set) overhead was at 0.194 seconds, and the

total energy consumption was 121.5 Joules resulting in performance to per kilo Joules ratio of

13.17.

6.6. CHAPTER SUMMARY 119

In the case with utilising partial reconfiguration, the Michelsen accelerators were built as

a relocatable partial bitstream and launched on the deploying platform at run-time thanks to

the reconfiguration infrastructure developed in this work. Moreover, the data-set is manually

partitioned across the platform. Hence, the FPGA partial bitstream of the Michelsen accelerator

(5.7MB) is the only data that needs to be transferred across the platform, which is two order

of magnitudes less than the previous case. Therefore, the longest data movement (of 5.7MB

of the partial bitstream) and configuration overhead was at 0.031 seconds in the case of remote

reconfiguration. However, this approach caused more resource overhead in the static part of

each FPGA as one floorplan was used for all FPGAs. This disadvantage led to fewer resources

being available for the accelerators and lower number of deploying cores. It took 0.23 seconds

to finish the computation and consumed an energy of 85.4 Joules resulting in performance to

per kilo Joules ratio of 18.74 (42% improvement). This improvement means that in this case

study, remote partial reconfiguration and I/O virtualisation were beneficial even with some

resource overhead, because it reduced the need for time-consuming data movement.

6.5.2 Summary

To enhance the system throughput and reduce the energy consumption, it is essential to

limit the amount of data transfer. Therefore, in this case study, we adopted the approach of

moving the compute accelerator (in range of a few MBs) towards the data (in ranges of a

few GBs) by utilising partial reconfiguration. For such a complex multi-node heterogeneous

computing system, the infrastructure abstraction was used to virtualise the underlying FPGAs

with diversified I/O layouts via implemented shells to provide a transparent process of applica-

tion development. Further, an I/O virtualisation technique in the decoupled compilation flow

(i.e. development abstraction) was utilised to build a single partial bitstream of the accelerator

which can be deployed in different FPGAs across the system.

6.6 Chapter Summary

Five examples have been discussed to evaluate the resulting systems against the overall objec-

tives of FPGA virtualisation mentioned in Chapter 1. Objectives including: 1) design produc-

tivity and flexibility (discussed in Section 6.1); 2) resource management and performance (in

Section 6.2); 3) multi-tenancy, isolation, and security (in Section 6.3); 4) fault tolerance/re-

silience, and maintenance/upgradability (in Section 6.4); and 5) scalability and energy effi-

ciency (in Section 6.5); have been achieved. The next chapter is concluding this PhD thesis as

well as provisioning future works which are enabled by this PhD project.

Chapter 7

Conclusion

‘Why so hard?’ the charcoal once said to the diamond; ‘for are

we not close relations?’

‘Why so soft? O my brothers’, thus I ask them: ‘for are you not

my brothers?’
Friedrich Nietzsche

This chapter summarises contributions of this PhD project and discusses future research

directions enabled by this PhD project.

7.1 Summary of Contributions

7.1.1 A Model of FPGA Virtualisation on Heterogeneous Comput-
ing Platforms

Based on the rigorous examination of state-of-the-art FPGA virtualisation trends and tech-

niques, this thesis has proposed a model of FPGA virtualistion on heterogeneous computing

platforms that the FPGA resources in heterogeneous systems should be abstracted, man-
aged, and virtualised in an analogous way as the way that is known from software op-
erating systems (OSs). This model should essentially provide multiple level of abstractions

including 1) infrastructure abstraction, 2) development abstraction, and 3) deployment abstrac-

tion, as introduced in Chapter 1.

7.1.2 A Tool and API for Bitstream Abstraction

Partial reconfiguration [Koc12] can be utilised to provide the aforementioned abstractions for

the proposed model of FPGA virtualisation. However, the state-of-the-art design toolchains

120

7.2. FUTURE WORKS 121

and techniques have several significant limitations that prevents us to achieve our goals, as

pointed out in a recent survey of partial reconfiguration [VF18]. Among the limitations, the

ability of design adaptation at binary (bitstream) level for latest FPGA devices is the crucial

missing. Therefore, this PhD project has provided a tool and API, called BitMan [PHK17],

to deliver this ability of bitstream adaptation on latest Xilinx FPGAs. The BitMan tool can

be used at the design phase to merge multiple FPGA designs together (a.k.a hardware linking)

while the BitMan API can be utilised to relocate hardware modules at run-time, as discussed

in Chapter 3.

7.1.3 Design Methodology and System Implementation

A novel design methodology for FPGA virtualisation is proposed to utilise academic de-

sign tools, including BitMan [PHK17], GoAhead [BKT12] and TedTCL [Ves18], and vendor

toolflow such as Xilinx Vivado [Xil14] in order to implement FPGA systems which follow the

proposed model to achieve the goals of FPGA virtualisation. Moreover, the detailed imple-

mentation of the static infrastructure (shell) and the compilation flow of the hardware modules

(roles) have been discussed in Chapter 4.

7.1.4 System Prototype and Evaluation

The system run-time management which is in charge of abstracting module deployment has

been discussed in Chapter 5. This run-time management includes multiple components such

as a configuration controller, a hardware task scheduler, a module device driver, and a memory

management framework. Furthermore, five case studies have been presented to evaluate the

resulting systems against the aforementioned goals of FPGA virtualisation in Chapter 6.

7.2 Future Works

7.2.1 Security for Multi-tenancy FPGA-virtualised Systems

Integrating FPGA resources into data centres and cloud computing systems along with CPUs

and GPUs is opening a new surface of attack which has not been fully studied. Especially in

the multi-tenancy environment where many users are sharing the same FPGA fabric, protect-

ing data privacy of all users or preventing a user to shutdown the system is a new challenge.

Although this PhD project has provided some basic services such as bounding box check-

ing, memory management, and physical module isolation (see Appendix A), more intensive

researches need to be conducted to fully support secure multi-tenancy FPGA-virtualised sys-

tems.

122 CHAPTER 7. CONCLUSION

Bitstream verification to mitigate electrical-level threats on multi-tenancy com-
puting environments: Sharing configuration bitstreams rather than netlists is a very desir-

able feature to protect IP or to share IP without long CAD tool times and it can potentially re-

move the need to run CAD tools at all in a hardware app ecosystem. However, that comes with

security concerns including side-channel attacks for leaking information, denial-of-service at-

tacks for impacting proper execution of a system, or even triggering FPGA aging or damaging

effects. A security mechanism is required to tackle most of the existing malicious circuits di-

rectly at the bitstream level, as recently mentioned in [KGT19]. With a detailed understanding

of architecture and bitstream format of Xilinx UltraScale+ FPGAs (which are being widely

deployed in data centres and cloud computing systems [MPL+16, Ama]) provided by BitMan,

we could intensively explore more possible malicious circuits as well as provide a truly pro-

tecting mechanism on large-scale data centres and cloud computing systems. This research is

being conducted in an ongoing research project called rFAS - reconfigurable FPGA Accelerator

Sandboxing.

7.2.2 High-speed Configuration Infrastructure

Reconfiguring FPGAs may take tens to hundreds of milliseconds depending on the size of the

partial bitstream which is unacceptable in many applications. To overcome this issue, several

techniques have been proposed before such as overclocking the configuration port [HKT11],

on-chip buffering the configuration data [VF14b], and compressing the bitstream [KBT07]. We

are going to deploy the combination of these existing techniques on the Xilinx UltraScale+ de-

vices [Xil17b] to examine how much configuration throughput we can achieve. Moreover, with

the introduction of multi-die FPGAs [Xilg] in which several identical FPGAs are integrated on

the same chip, the possibility of utilising the physically existing configuration ports for parallel

configuration will be explored.

7.2.3 Vendor-independent FPGA Platforms for Education and Re-
search Purposes

With the current progresses of academic open-source FPGA design toolflows [LGW+14, VVS17,

SHW+19, VVS19, GGNW19], users can synthesise, implement their FPGA designs, and then,

generate bitstreams without using vendor toolflows. Such kind of academic toolchains help

remove the burden to install, maintain and operate heavy FPGA vendor tools, and hence, these

toolchains could be utilised for building lightweight self-contained out-off-the-box education

and research solutions which essentially allow users to experiment and test their FPGA designs

on real hardware. This aligns with the PYNQ initiative from Xilinx that is a Python-based

educational platform for SoC design [Xilb]. Our initial work in this research direction is the

7.2. FUTURE WORKS 123

EFCAD toolflow [PVKH19] which integrated Yosys+nextpnr [SHW+19], GoAhead [BKT12],

BitMan [PHK17], and ZUCL framework [PVVK18]. The next step will be the integration

of PYNQ and EFCAD to provide an entire stack of vendor-independent FPGA platforms for

education and research purposes.

Bibliography

[AGV+17] M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne. Virtualized Execu-

tion run-time for FPGA Accelerators in the Cloud. IEEE Access, 5, 2017.

[Alt09] Altera. AN 567: Quartus II Design Separation Flow. 2009.

[Alt10] Altera. Introduction to the QuartusÂő II Software. https://www.altera.

com/content/dam/altera-www/global/en_US/pdfs/literature/manual/intro_to_

quartus2.pdf, 2010.

[Alt17] Altera. Partial Reconfiguration. https://www.altera.com/products/

design-software/fpga-design/quartus-prime/features/partial-reconfiguration.

html, 2017.

[Ama] Amazon. Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/

instance-types/f1/.

[AOC+17] U. Aydonat, S. O’Connell, D. Capalija, A. Ling, and G. Chiu. An

OpenCLTMDeep Learning Accelerator on Arria 10. In FPGA, 2017.

[ARMa] ARM Ltd. AMBA Specifications. https://www.arm.com/products/system-ip/

amba-specifications.

[ARMb] ARM Ltd. System Memory Management Units. https://developer.arm.com/

ip-products/system-ip/system-controllers/system-memory-management-unit.

[AS03] M. Abramovici and C. Stroud. BIST-Based Delay-Fault Testing in FPGAs. Jour-

nal of Electronic Testing, 2003.

[AVN19] AVNET. Ultra96-V2 Development Board. http://zedboard.org/product/

ultra96-v2-development-board, 2019.

[BCB18] J. Bishop, J. Chareau, and F. Bonavitacola. Implementing 5G NR Features in

FPGA. In EuCNC, 2018.

124

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/intro_to_quartus2.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/intro_to_quartus2.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/intro_to_quartus2.pdf
https://www.altera.com/products/design-software/fpga-design/quartus-prime/features/partial-reconfiguration.html
https://www.altera.com/products/design-software/fpga-design/quartus-prime/features/partial-reconfiguration.html
https://www.altera.com/products/design-software/fpga-design/quartus-prime/features/partial-reconfiguration.html
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://www.arm.com/products/system-ip/amba-specifications
https://www.arm.com/products/system-ip/amba-specifications
https://developer.arm.com/ip-products/system-ip/system-controllers/system-memory-management-unit
https://developer.arm.com/ip-products/system-ip/system-controllers/system-memory-management-unit
http://zedboard.org/product/ultra96-v2-development-board
http://zedboard.org/product/ultra96-v2-development-board

BIBLIOGRAPHY 125

[BKT10] C. Beckhoff, D. Koch, and J. Torresen. Short-Circuits on FPGAs Caused by

Partial Runtime Reconfiguration. In FPL, 2010.

[BKT11] C. Beckhoff, D. Koch, and J. Torresen. The Xilinx Design Language (xdl): Tu-

torial and Use Cases. In ReCoSoC, 2011.

[BKT12] C. Beckhoff, D. Koch, and J. Torresen. GoAhead: A Partial Reconfiguration

Framework. In FCCM, 2012.

[BKT14] C. Beckhoff, D. Koch, and J. Torresen. Design Tools for Implementing Self-

Aware and Fault-Tolerant Systems on FPGAs. TRETS, 2014.

[BRM99] V. Betz, J. Rose, and A. Marquardt, editors. Architecture and CAD for Deep-

Submicron FPGAs. Kluwer Academic Publishers, Norwell, MA, USA, 1999.

[BSB+14] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow. FPGAs in the

Cloud: Booting Virtualized Hardware Accelerators with OpenStack. In FCCM,

2014.

[CCA+13] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,

S. Brown, and J. Anderson. LegUp: An Open-source High-level Synthesis Tool

for FPGA-based Processor/Accelerator Systems. ACM Trans. Embed. Comput.

Syst., 2013.

[CCP+16] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman,

S. Heil, M. Humphrey, P. Kaur, J. Y. Kim, D. Lo, T. Massengill, K. Ovtcharov,

M. Papamichael, L. Woods, S. Lanka, D. Chiou, and D. Burger. A cloud-scale

acceleration architecture. In MICRO, 2016.

[CIK+19] F. Chaix, A. Ioannou, N. Kossifidis, N. Dimou, G. Ieronymakis, M. Marazakis,

V. Papaefstathiou, V. Flouris, M. Ligerakis, G. Ailamakis, T. Vavouris, A. Dami-

anakis, M. Katevenis, and I. Mavroidis. Implementation and impact of an ultra-

compact multi-fpga board for large system prototyping. In 2019 IEEE/ACM

International Workshop on Heterogeneous High-performance Reconfigurable

Computing (H2RC), pages 34–41, 2019.

[CLN+11] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. High-

Level Synthesis for FPGAs: From Prototyping to Deployment. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, 2011.

[CSPJ03] S. Choi, R. Scrofano, V. Prasanna, and J. Jang. Energy-efficient Signal Process-

ing Using FPGAs. In FPGA, 2003.

126 BIBLIOGRAPHY

[CSZ+14] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and K. Wang. En-

abling FPGAs in the Cloud. In CF, 2014.

[DPP02] M. Dyer, C. Plessl, and M. Platzner. Partially Reconfigurable Cores for Xilinx

Virtex. In Manfred Glesner, Peter Zipf, and Michel Renovell, editors, FPL, 2002.

[EMHK16] M. Eckert, D. Meyer, J. Haase, and B. Klauer. Operating System Concepts for

Reconfigurable Computing: Review and Survey. International Journal of Re-

configurable Computing, 2016, 2016.

[FVS15] S. A. Fahmy, K. Vipin, and S. Shreejith. Virtualized FPGA Accelerators for

Efficient Cloud Computing. In CloudCom, Nov 2015.

[GAPK16] Q. Gautier, A. Althoff, Pingfan Meng, and R. Kastner. Spector: An OpenCL

FPGA benchmark suite. In FPT, 2016.

[GBLV12] L. Gantel, M. E. A. Benkhelifa, F. Lemonnier, and F. Verdier. Module reloca-

tion in Heterogeneous Reconfigurable Systems-on-Chip using the Xilinx Isola-

tion Design Flow. In ReConFig, 2012.

[GBM+19] K. Georgopoulos, K. Bakanov, I. Mavroidis, I. Papaefstathiou, A. Ioannou,

P. Malakonakis, K. Pham, D. Koch, and L. Lavagno. A Novel Framework for

Utilising Multi-FPGAs in HPC Systems, pages 153–170. Taylor and Franchis

Group, 2019.

[GGNW19] D. Glick, J. Grigg, B. Nelson, and M. Wirthlin. Maverick: A Stand-Alone CAD

Flow for Partially Reconfigurable FPGA Modules. In FCCM, 2019.

[GK15] N. Grigore and D. Koch. Placing Partially Reconfigurable Stream Processing

Applications on FPGAs. In FPL, 2015.

[Gli20] D. Glick. Maverick: A Stand-Alone CAD Flow for Partially Reconfgurable

FPGA Modules. PhD thesis, Brigham Young University, 2020.

[GLS99] S. Guccione, D. Levi, and P. Sundararajan. JBits: Java based Interface for Re-

configurable Computing. In MAPLD, 1999.

[GPK18] B. Gottschall, T. Preusser, and A. Kumar. Reloc - An Open-Sourced Vivado

Workflow for Generating Relocatable, Out-Of-Context End-User Configuration

Tiles. https://github.com/bgottschall/reloc, 2018.

https://github.com/bgottschall/reloc

BIBLIOGRAPHY 127

[Gra18] Grand View Research, Inc. Field Programmable Gate Array (FPGA) Mar-

ket Analysis By Technology (SRAM, EEPROM, Antifuse, Flash), By Appli-

cation (Consumer Electronics, Automotive, Industrial, Data Processing, Mil-

itary & Aerospace, Telecom), And Segment Forecasts, 2018 - 2024. https:

//www.grandviewresearch.com/industry-analysis/fpga-market, 2018.

[GRE18] I. Giechaskiel, K. Rasmussen, and K. Eguro. Leaky Wires: Information Leakage

and Covert Communication Between FPGA Long Wires. In ASIACCS, 2018.

[HKT11] S. G. Hansen, D. Koch, and J. Torresen. High Speed Partial Run-Time Reconfig-

uration Using Enhanced ICAP Hard Macro. In IPDPS, 2011.

[HLK02] E. Horta, J. Lockwood, and S. Kofuji. Using PARBIT to Implement Partial Run-

Time Reconfigurable Systems. In FPL, 2002.

[HNH15] T. Haroldsen, B. Nelson, and B. Hutchings. RapidSmith 2: A Framework for

BEL-level CAD Exploration on Xilinx FPGAs. In FPGA, 2015.

[HSPK17] E. Horta, X. Shen, K. Pham, and D. Koch. Accelerating Linux Bash Commands

on FPGAs Using Partial Reconfiguration. In FSP, 2017.

[Huf] J. Huffstetler. Intel Processors and FPGAs – Better Together. https://

itpeernetwork.intel.com/intel-processors-fpga-better-together/#gs.vaugnk.

[HW13] E. Hung and S. Wilton. Towards Simulator-like Observability for FPGAs: A

Virtual Overlay Network for Trace-buffers. In FPGA, 2013.

[IMG+19] A. Ioannou, P. Malakonakis, K. Georgopoulos, I. Papaefstathiou, A. Dollas, and

I. Mavroidis. Optimized fpga implementation of a compute-intensive oil reser-

voir simulation algorithm. In D. Pnevmatikatos, M. Pelcat, and M. Jung, editors,

Embedded Computer Systems: Architectures, Modeling, and Simulation, pages

442–454, Cham, 2019. Springer International Publishing.

[JCP+10] S. Jin, J. Cho, X. D. Pham, K. M. Lee, S. Park, M. Kim, and J. W. Jeon. FPGA

Design and Implementation of a Real-Time Stereo Vision System. IEEE Trans-

actions on Circuits and Systems for Video Technology (TCSVT), 20(1):15–26, Jan

2010.

[JdLLS+15] P. Jääskeläinen, C. de La Lama, E. Schnetter, K. Raiskila, J. Takala, and H. Berg.

POCL: A Performance-Portable OpenCL Implementation. International Journal

of Parallel Programming, 43(5):752–785, Oct 2015.

[JRHK15] M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner. RIFFA 2.1: A Reusable

Integration Framework for FPGA Accelerators. TRETS, 8(4), 2015.

https://www.grandviewresearch.com/industry-analysis/fpga-market
https://www.grandviewresearch.com/industry-analysis/fpga-market
https://itpeernetwork.intel.com/intel-processors-fpga-better-together/#gs.vaugnk
https://itpeernetwork.intel.com/intel-processors-fpga-better-together/#gs.vaugnk

128 BIBLIOGRAPHY

[KAB+18] M. Katevenis, R. Ammendola, A. Biagioni, P. Cretaro, O. Frezza, F. Lo Cicero,

A. Lonardo, M. Martinelli, P. Paolucci, E. Pastorelli, F. Simula, P. Vicini, G. Taf-

foni, J. Pascual, J. Navaridas, M. Lujan, J. Goodacre, B. Lietzow, A. Mouzakitis,

N. Chrysos, M. Marazakis, P. Gorlani, S. Cozzini, G. Brandino, P. Koutsourakis,

J. van Ruth, Y. Zhang, and M. Kersten. Next generation of exascale-class sys-

tems: Exanest project and the status of its interconnect and storage development.

Microprocessors and Microsystems, 61:58 – 71, 2018.

[KBL13] D. Koch, C. Beckhoff, and G. Lemieux. An Efficient FPGA Overlay for Portable

Custom Instruction Set Extensions. In FPL, 2013.

[KBT07] D. Koch, C. Beckhoff, and J. Teich. Bitstream Decompression for High Speed

FPGA Configuration from Slow Memories. In FPT, 2007.

[KBT08] D. Koch, C. Beckhoff, and J. Teich. Recobus-builder - A Novel Tool and Tech-

nique to Build Statically and Dynamically Reconfigurable Systems for FPGAs.

In FPL, 2008.

[KGS17] O. Knodel, P. Genssler, and R. Spallek. Virtualizing Reconfigurable Hardware to

Provide Scalability in Cloud Architectures. Reconfigurable Architectures, Tools

and Applications, 2, 2017.

[KGT19] J. Krautter, D. Gnad, and M. Tahoori. Mitigating Electrical-level Attacks To-

wards Secure Multi-Tenant FPGAs in the Cloud. ACM Trans. Reconfigurable

Technol. Syst., 12(3), August 2019.

[KHR] KHRONOS Group. OpenCL Overview. https://www.khronos.org/opencl.

[KLP+18] A. Khawaja, J. Landgraf, R. Prakash, M. Wei, E. Schkufza, and C. Rossbach.

Sharing, Protection, and Compatibility for Reconfigurable Fabric with AMOR-

PHOS. In OSDI, 2018.

[KLPR05] H. Kalte, G. Lee, M. Porrmann, and U. Ruckert. Replica: A bitstream manipu-

lation filter for module relocation in partial reconfigurable systems. In IPDPS,

2005.

[Koc12] D. Koch. Partial Reconfiguration on FPGAs: Architecture, Tools, and Applica-

tions. 2012.

[KS16] A. Kulkarni and D. Stroobandt. How to Efficiently Reconfigure Tunable Lookup

Tables for Dynamic Circuit Specialization. International Journal of Reconfig-

urable Computing, 2016, 2016.

https://www.khronos.org/opencl

BIBLIOGRAPHY 129

[KVS+16] A. Kulkarni, E. Vansteenkiste, D. Stroobandt, A. Brokalakis, and A. Nikitakis.

A Fully Parameterized Virtual Coarse Grained Reconfigurable Array for High

Performance Computing Applications. In IPDPS, 2016.

[LAB+05] D. Lewis, E. Ahmed, G. Baeckler, V. Betz, M. Bourgeault, D. Cashman, D. Gal-

loway, M. Hutton, C. Lane, A. Lee, P. Leventis, S. Marquardt, C. McClin-

tock, K. Padalia, B. Pedersen, G. Powell, B. Ratchev, S. Reddy, J. Schleicher,

K. Stevens, R. Yuan, R. Cliff, and J. Rose. The Stratix II Logic and Routing

Architecture. In FPGA, 2005.

[LBM+06] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford. Invited Paper:

Enhanced Architectures, Design Methodologies and CAD Tools for Dynamic

Reconfiguration of Xilinx FPGAs. In FPL, 2006.

[LGW+14] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk, M. Nasr,

S. Wang, T. Liu, N. Ahmed, K. Kent, J. Anderson, J. Rose, and V. Betz. VTR

7.0: Next Generation Architecture and CAD System for FPGAs. ACM Trans.

Reconfigurable Technol. Syst., 7(2), July 2014.

[LK18] C. Lavin and A. Kaviani. RapidWright: Enabling Custom Crafted Implementa-

tions for FPGAs. In FCCM, 2018.

[LMW+07] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,

R. Raghuraman, and J. Luo. NetFPGA–An Open Platform for Gigabit-Rate Net-

work Switching and Routing. In MSE, June 2007.

[LPL+14] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, B. Hutchings, and

M. Wirthlin. RAPIDSMITH - A Library for Low-level Manipulation of Partially

Placed-and-Routed FPGA Designs. Technical report, Brigham Young University,

2014.

[MGF+16] M. Marazakis, J. Goodacre, D. Fuin, P. Carpenter, J. Thomson, E. Matus,

A. Bruno, P. Stenstrom, J. Martin, Y. Durand, and I. Dor. Euroserver: Share-

anything scale-out micro-server design. In DATE, 2016.

[MLG+20] K. Matas, T. La, N. Grunchevski, K. Pham, and D. Koch. Invited tutorial: Fpga

hardware security for datacenters and beyond. In The 2020 ACM/SIGDA Interna-

tional Symposium on Field-Programmable Gate Arrays, FPGA’20, pages 11–20,

New York, NY, USA, 2020. Association for Computing Machinery.

[MMRL17] F. B. Muslim, L. Ma, M. Roozmeh, and L. Lavagno. Efficient FPGA Implemen-

tation of OpenCL High-Performance Computing Applications via High-Level

Synthesis. IEEE Access, 5:2747–2762, 2017.

130 BIBLIOGRAPHY

[MPL+16] I. Mavroidis, I. Papaefstathiou, L. Lavagno, D. Nikolopoulos, D. Koch,

J. Goodacre, I. Sourdis, V. Papaefstathiou, M. Coppola, and M. Palomino.

ECOSCALE: Reconfigurable Computing and Runtime System for Future Ex-

ascale Systems. In DATE, 2016.

[MTAB07] M. Majer, J. Teich, A. Ahmadinia, and C. Bobda. The Erlangen Slot Machine:

A Dynamically Reconfigurable FPGA-based Computer. The Journal of VLSI

Signal Processing Systems for Signal, Image, and Video Technology, 47(1):15–

31, Apr 2007.

[NIS01] NIST. Security Requirements for Cryptographic M. https://csrc.nist.gov/

publications/detail/fips/140/2/final, 2001.

[NK16] T. Nguyen and A. Kumar. Prfloor: An automatic floorplanner for partially re-

configurable fpga systems. In Proceedings of the 2016 ACM/SIGDA Interna-

tional Symposium on Field-Programmable Gate Arrays, FPGA’16, pages 149–

158, New York, NY, USA, 2016. Association for Computing Machinery.

[NR08] J. Note and E. Rannaud. From the Bitstream to the Netlist. In FPGA, 2008.

[oE10] U. S. Department of Energy. The opportunities and challenges of exascale com-

puting. Technical report, 2010.

[PA12] O. Pell and V. Averbukh. Maximum Performance Computing with Dataflow

Engines. Computing in Science Engineering, 14(4):98–103, July 2012.

[PCC+14] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Constantinides, J. Demme,

H. Esmaeilzadeh, J. Fowers, G. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,

A. Hormati, J. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,

P. Xiao, and D. Burger. A Reconfigurable Fabric for Accelerating Large-scale

Datacenter Services. In ISCA, 2014.

[PHK17] K. D. Pham, E. Horta, and D. Koch. BITMAN: A Tool and API for FPGA

Bitstream Manipulations. In DATE, 2017.

[PHK+18] K. D. Pham, E. L. Horta, D. Koch, A. Vaishnav, and Thomas Kuhn. IPRDF:

An Isolated Partial Reconfiguration Design Flow for Xilinx FPGAs. In MCSoC,

2018.

[PPV+19] K. D. Pham, K. Paraskevas, A. Vaishnav, A. Attwood, M. Vesper, and D. Koch.

ZUCL 2.0: Virtualised Memory and Communication for ZYNQ UltraScale+ FP-

GAs. In FSP, 2019.

https://csrc.nist.gov/publications/detail/fips/140/2/final
https://csrc.nist.gov/publications/detail/fips/140/2/final

BIBLIOGRAPHY 131

[PVKH19] K. D. Pham, M. Vesper, D. Koch, and E. Hung. EFCAD – An Embedded FPGA

CAD Tool Flow for Enabling On-chip Self-Compilation. In FCCM, 2019.

[PVVK18] K. D. Pham, A. Vaishnav, M. Vesper, and D. Koch. ZUCL: A ZYNQ UltraScale+

Framework for OpenCL HLS Applications. In FSP, 2018.

[QRDC+15] H. Quinn, D. Roussel-Dupre, M. Caffrey, P. Graham, M. Wirthlin, K. Morgan,

A. Salazar, T. Nelson, W. Howes, E. Johnson, J. Johnson, B. Pratt, N. Rollins,

and J. Krone. The Cibola Flight Experiment. TRETS, 2015.

[Red09] K. Red. Single Event Upsets in SRAM FPGA based readout electronics for the

Time Projection Chamber in the ALICE experiment. PhD thesis, The University

of Bergen, Bergen, Norway, 2009.

[RFG16] J. Rettkowski, K. Friesen, and D. Goehringer. RePaBit: Automated Generation

of Relocatable Partial Bitstreams for Xilinx Zynq FPGAs. In ReConFig, 2016.

[RPD+18] C. Ramesh, S. Patil, S. Dhanuskodi, G. Provelengios, S. Pillement, D. Holcomb,

and R. Tessier. FPGA Side Channel Attacks without Physical Access. In FCCM,

2018.

[RS02] A. Raghavan and P. Sutton. JPG - A Partial Bitstream Generation Tool to Support

Partial Reconfiguration in Virtex FPGAs. In IPDPS, 2002.

[SAFW11] A. A. Sohanghpurwala, P. Athanas, T. Frangieh, and A. Wood. OpenPR: An

Open-Source Partial-Reconfiguration Toolkit for Xilinx FPGAs. In IPDPSW,

2011.

[SFK+17] P. Swierczynski, M. Fyrbiak, P. Koppe, A. Moradi, and C. Paar. Interdiction in

practice—Hardware Trojan against a high-security USB flash drive. Journal of

Cryptographic Engineering, 7(3):199–211, Sep 2017.

[SHW+19] D. Shah, E. Hung, C. Wolf, S. Bazanski, D. Gisselquist, and M. Milanovic.

Yosys+nextpnr: An Open Source Framework from Verilog to Bitstream for Com-

mercial FPGAs. In FCCM, 2019.

[SVC+16] D. Stroobandt, A. L. Varbanescu, C. B. Ciobanu, M. Al Kadi, A. Brokalakis,

G. Charitopoulos, T. Todman, X. Niu, D. Pnevmatikatos, A. Kulkarni,

E. Vansteenkiste, W. Luk, M. D. Santambrogio, D. Sciuto, M. Huebner,

T. Becker, G. Gaydadjiev, A. Nikitakis, and A. J. W. Thom. EXTRA: Towards

the Exploitation of eXascale Technology for Reconfigurable Architectures. In

ReCoSoC, 2016.

132 BIBLIOGRAPHY

[Sym] SymbiFlow. Project X-Ray - Xilinx Series 7 Bitstream Documentation. https:

//github.com/SymbiFlow/prjxray.git.

[TLF+17] N. Tarafdar, T. Lin, E. Fukuda, H. Bannazadeh, A. Leon-Garcia, and P. Chow.

Enabling Flexible Network FPGA Clusters in a Heterogeneous Cloud Data Cen-

ter. In FPGA, 2017.

[Uni19] Princeton University. Princeton Reconfigurable Gate Array, 2019.

[Ves18] M. Vesper. Dynamic Stream Processing Pipelines on FPGAs Examplified on the

PostGreSQL DBMS. PhD thesis, The University of Manchester, 2018.

[VF14a] K. Vipin and S. A. Fahmy. DyRACT: A Partial Reconfiguration Enabled Accel-

erator and Test Platform. In FPL, 2014.

[VF14b] K. Vipin and S. A. Fahmy. ZyCAP: Efficient Partial Reconfiguration Manage-

ment on the Xilinx Zynq. IEEE Embedded Systems Letters, 2014.

[VF18] K. Vipin and S. A. Fahmy. FPGA Dynamic and Partial Reconfiguration: A

Survey of Architectures, Methods, and Applications. ACM Comput. Surv.,

51(4):72:1–72:39, July 2018.

[VFBS14] E. Vansteenkiste, B. A. Farisi, K. Bruneel, and D. Stroobandt. TPaR: Place

and Route Tools for the Dynamic Reconfiguration of the FPGA’s Interconnect

Network. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 33(3):370–383, 2014.

[VKP17] M. Vesper, D. Koch, and K. D. Pham. PCIeHLS: an OpenCL HLS framework.

In FSP, 2017.

[VKVF16] M. Vesper, D. Koch, K. Vipin, and S. A. Fahmy. JetStream: An Open-source

High-performance PCI Express 3 Streaming Library for FPGA-to-Host and

FPGA-to-FPGA Communication. In FPL, 2016.

[VOK17] A. Vaishnav, J. R. G. Ordaz, and D. Koch. A Security Library for FPGA Interlays.

In FPL, 2017.

[VPK18a] A. Vaishnav, K. D. Pham, and D. Koch. A Survey on FPGA Virtualization. In

FPL, 2018.

[VPK18b] A. Vaishnav, K. D. Pham, and D. Koch. Live Migration for OpenCL FPGA

Accelerators. In FPT, 2018.

[VPK19] A. Vaishnav, K. D. Pham, and D. Koch. Heterogeneous Resource-Elastic

Scheduling for CPU+FPGA Architectures. In HEART, 2019.

https://github.com/SymbiFlow/prjxray.git
https://github.com/SymbiFlow/prjxray.git

BIBLIOGRAPHY 133

[VPKG18] A. Vaishnav, K. D. Pham, D. Koch, and J. Garside. Resource Elastic Virtualiza-

tion for FPGAs using OpenCL. In FPL, 2018.

[VPMK19] A. Vaishnav, K. D. Pham, K. Manev, and D. Koch. The fos (fpga operating

system) demo. In FPL, pages 429–429, 2019.

[VPPK20] A. Vaishnav, K. D. Pham, J. Powell, and D. Koch. Fos: A modular fpga operating

system for dynamic workloads, 2020.

[VVS17] D. Vercruyce, E. Vansteenkiste, and D. Stroobandt. Liquid: High Quality Scal-

able Placement for Large Heterogeneous FPGAs. In FPT, 2017.

[VVS19] D. Vercruyce, E. Vansteenkiste, and D. Stroobandt. CRoute: A Fast High-Quality

Timing-Driven Connection-Based FPGA Router. In FCCM, 2019.

[vZ13] D. van den Heuvel and R. Zenden. Middleware Turns Zynq SoC into Dynami-

cally Reallocating Processing Platform. Xcell, 85, 2013.

[WAHH15] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf. Enabling FPGAs in

Hyperscale Data Centers. In UIC-ATC-ScalCom, Aug 2015.

[WBP13] W. Wang, M. Bolic, and J. Parri. pvFPGA: Accessing an FPGA-based Hardware

Accelerator in a Paravirtualized Environment. In CODES+ISSS, 2013.

[Wir15] M. Wirthlin. High-Reliability FPGA-Based Systems: Space, High-Energy

Physics, and Beyond. Proceedings of the IEEE, 2015.

[WPAH16] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner. Network-Attached FPGAs

for Data Center Applications. In FPT, 2016.

[Xila] Xilinx. PlanAhead Design and Analysis Tool. https://www.xilinx.com/products/

design-tools/planahead.html.

[Xilb] Xilinx. PYNQ. http://www.pynq.io.

[Xilc] Xilinx. SDAccel Development Environment. https://www.xilinx.com/products/

design-tools/software-zone/sdaccel.html.

[Xild] Xilinx. SDSoC Development Environment. https://www.xilinx.com/products/

design-tools/software-zone/sdsoc.html.

[Xile] Xilinx. Solution ZynqMP PL Programming. https://xilinx-wiki.atlassian.net/

wiki/spaces/A/pages/18841847/Solution+ZynqMP+PL+Programming.

https://www.xilinx.com/products/design-tools/planahead.html
https://www.xilinx.com/products/design-tools/planahead.html
http://www.pynq.io
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841847/Solution+ZynqMP+PL+Programming
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841847/Solution+ZynqMP+PL+Programming

134 BIBLIOGRAPHY

[Xilf] Xilinx. Xilinx Runtime (XRT) Architecture. https://xilinx.github.io/XRT/master/

html/index.html.

[Xilg] Xilinx. Xilinx Virtex UltraScale+ FPGA VCU118 Evaluation Kit. https://www.

xilinx.com/products/boards-and-kits/vcu118.html.

[Xilh] Xilinx. Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit. https://www.

xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html.

[Xil09] Xilinx. UG621 - Virtex 5 Libraries Guide for HDL Designs. 2009.

[Xil14] Xilinx. UG910 - Vivado Design Suite User Guide. 2014.

[Xil15a] Xilinx. UG470 - 7 Series FPGAs Configuration User Guide. 2015.

[Xil15b] Xilinx. UG570 - UltraScale Architecture Configuration User Guide. 2015.

[Xil16a] Xilinx. Axi hwicap v3.0: Logicore ip product guide, 2016.

[Xil16b] Xilinx. Partial Reconfiguration Decoupler v1.0. 2016.

[Xil16c] Xilinx. XAPP1222 - Isolation Design Flow for Xilinx 7 Series FPGAs or Zynq-

7000 AP SoCs (Vivado Tools). 2016.

[Xil16d] Xilinx. XAPP1256 - Zynq-7000 AP SoCs or 7 Series FPGAs Isolation Design

Flow Lab (Vivado Design Suite). 2016.

[Xil17a] Xilinx. Reconfigurable Acceleration in the Cloud. https://www.xilinx.com/

products/design-tools/cloud-based-acceleration.html#alibaba, 2017.

[Xil17b] Xilinx. Zynq ultrascale+ mpsoc data sheet: Overview. https://www.xilinx.com/

support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf,

2017.

[Xil18a] Xilinx. 7 Series FPGAs Clocking Resources - v1.14. 2018.

[Xil18b] Xilinx. UG908 - Vivado Design Suite User Guide: Programming and Debugging.

June 2018.

[Xil18c] Xilinx. UG909 - Vivado Design Suite User Guide Partial Reconfiguration. April

2018.

[Xil18d] Xilinx. UltraScale Architecture Clocking Resources - v1.8. 2018.

[Xil18e] Xilinx. Zynq-7000 soc: Technical reference manual. https://www.xilinx.com/

support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf, 2018.

https://xilinx.github.io/XRT/master/html/index.html
https://xilinx.github.io/XRT/master/html/index.html
https://www.xilinx.com/products/boards-and-kits/vcu118.html
https://www.xilinx.com/products/boards-and-kits/vcu118.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/design-tools/cloud-based-acceleration.html#alibaba
https://www.xilinx.com/products/design-tools/cloud-based-acceleration.html#alibaba
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

BIBLIOGRAPHY 135

[Xil19a] Xilinx. Versal: The first adaptive compute acceleration platform (acap). https://

www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf,

2019.

[Xil19b] Xilinx. Vivado High-Level Synthesis. https://www.xilinx.com/products/

design-tools/vivado/integration/esl-design.html, 2019.

[Xil20] Xilinx. Vitis: Unified software platform for all developers, 2020.

[YB18] S. Yazdanshenas and V. Betz. Interconnect Solutions for Virtualized Field-

Programmable Gate Arrays. IEEE Access, 6, 2018.

[YKL15] M. X. Yue, D. Koch, and G. G. F. Lemieux. Rapid Overlay Builder for Xilinx

FPGAs. In FCCM, 2015.

[ZHA+17] Q. Zhao, Hendarmawan, M. Amagasaki, M. Iida, M. Kuga, and T. Sueyoshi.

hCODE 2.0: An Open-source Toolkit for Building Efficient FPGA-enabled

Clouds. In FPT, 2017.

[ZNA+18] Z. Zhao, N. Nguyen, D. Agiakatsikas, G. Lee, E. Cetin, and O. Diessel. Fine-

Grained Module-Based Error Recovery in FPGA-Based TMR Systems. ACM

Trans. Reconfigurable Technol. Syst., 11(1), January 2018.

[ZXX+17] J. Zhang, Y. Xiong, N. Xu, R. Shu, B. Li, P. Cheng, G. Chen, and T. Moscibroda.

The Feniks FPGA Operating System for Cloud Computing. In APSys, 2017.

https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf
https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

Appendix A

IPRDF

Throughout this PhD project, we had been contacted by the company HTV Halbleiter-Test &

Vertriebs-GmbH, Bensheim, Germany to implement a secure reconfigurable system that fulfils

module isolation requirements [NIS01]. This was carried out by simply modifying the con-

straints generated by GoAhead [BKT12] to incorporate a fence and to ensure that no signals

will be routed through that fence except for direct connections between reconfigurable accel-

erator modules. These are just minor additional constraints to the compilation scripts used for

this PhD project but help to solve a real-world embedded system design problem. A distinct

feature of that system is that partially reconfigurable modules include I/O pins. This feature is

not supported in the Xilinx FPGA vendor toolchain [Xil18c] yet is essential in this demonstra-

tor to implement module encapsulation.

A.1 Introduction

There are strong needs to use FPGAs in other application domains such as in automotive,

aerospace, defense, cyber-security and in hazardous environments (e.g., in space [QRDC+15]

or high-energy physics [Red09]) which often require secure and safety-critical system imple-

mentations. However, these applications are challenging to implement with SRAM-based FP-

GAs. For instance, when FPGAs are working in space, an ionized particle hit can cause a

single-event upset (SEU), resulting in a bit-flip in one or more configuration cells or a commu-

nication signal and consequently in catastrophic behavior [Wir15]. Moreover, in information

assurance applications, hardware modules must be independently and solitarily implemented

in a single chip to satisfy isolation, reliability, and security concerns[Xil16c].

Finally, with the trend of using FPGAs as accelerators in cloud environments[BSB+14,

Xil17a], physical insulation of reconfigurable modules may become important for granting

136

A.1. INTRODUCTION 137

multiple users simultaneous access to the same FPGA device. For example, recent stud-

ies [GRE18, RPD+18] have demonstrated how side channel attacks using delays on long

wires can allow leaking information from FPGA cryptographic modules without physical ac-

cess. However, a physical isolation fence between wires of different modules can reduce side-

channel effects significantly [GRE18], and therefore can eliminate the risk of data leakage

through this sort of attack.

Xilinx, a major FPGA vendor, addresses these concerns by providing an Isolation Design

Flow (IDF)[Xil16c], which comprises the following requirements:

• Each hardware module has to be isolated and must be in its own level of hierarchy.

• A fence must be used to separate isolated hardware modules within a single chip. Fur-

ther, it is not allowed to use any primitive or routing resources in any directly adjacent

tile (e.g., a Configurable Logic Block (CLB) or Block RAM (BRAM)). Therefore, a

fence is at least one tile wide.

• Input/output buffers (IOBs) must be instantiated inside isolated modules for proper iso-

lation of the IOBs. Thus, having full control over the routing of the signals from IOBs

to the module is essential to establish off-chip trusted communications.

• On-chip communication between isolated hardware modules is achieved through the use

of Trusted Routing, which has to follow restrictions:

– There is no entry or exit point in the fence between isolated regions.

– There is one source and one destination for each routing path (only point-to-point

routing).

– The entry and the exit points must stay in the source and destination regions, re-

spectively.

– Its entirety stays contained in the source/destination regions

– It does not touch a fence tile from another isolation region.

Xilinx IDF supports the implementation of isolated modules which satisfy all mentioned

requirements as well as an automatic mechanism to verify module isolation using the Xilinx

Vivado Isolation Verifier (VIV). However, even the latest Vivado tool suite (version 2018.1)

does not provide any partial reconfiguration (PR) capability together with IDF.

Although isolation design is not possible with the Xilinx Partial Reconfiguration (PR) flow

as clocks and IOBs must remain in the static logic part[Xil18c] when using 7-Series and earlier

devices, the redundancy needed for safety-critical systems and the requirements in the physical

implementation of these systems would strongly benefit from partial reconfiguration (PR). For

138 APPENDIX A. IPRDF

Table
A

.1:
Isolation

D
esign

Flow
s’features

and
supports.

Features
X

ilinx
ID

F[X
il18c]

A
ltera

SD
F[A

lt09]
A

cadem
ic

C
ustom

ized
ID

F[G
B

LV
12,R

FG
16]

IP
R

D
F

FPG
A

fam
ilies

X
ilinx

A
ltera

X
ilinx

X
ilinx

Isolated
m

odules
3

3
3

3

Fences
betw

een
m

odules
3

3
3

3

IO
B

assignm
ents

autom
atic

autom
atic

?
m

anual

Secured
com

m
unication

3
3

3
3

Partialreconfiguration
7

7
3

3

Support
for

m
odule

reloca-
tion,m

ultiple
m

odule
instan-

tiation

7
7

3
3

D
irect

com
m

unication
betw

een
PR

m
odules

7
7

7
3

O
ff-chip

trusted
com

m
unica-

tions
in

PR
regions

7
7

7
3

A.1. INTRODUCTION 139

example, the fences around modules or the redundant instances of modules for TMR put more

pressure on resource utilization which can be in some cases mitigated with the help of PR.

Furthermore, cryptographic military systems often use multiple different cyphers (e.g., DES,

AES, Blowfish) in a round-robin fashion which can be implemented in a resource efficient

manner using PR. Moreover, PR is an effective countermeasure against single-event upsets

(SEUs) by correcting configuration swiftly. Therefore, by integrating a PR flow into IDF, we

are able not only to mask a SEU, but also to recover the malfunctioned area at run-time.

To implement this, we propose an alternnative flow, named Isolated Partial Reconfigura-

tion Design Flow (IPRDF), which applies partial reconfiguration (PR) design practices into

the isolation design flow (IDF). Moreover, we provide a design rule check to ensure that our

approach fulfills all requirements for a standard isolation design flow as specified in[Xil16c].

In addition to the Xilinx vendor IDF, systems designed by our flow are partially reconfigurable.

This enables designing self-aware and fault-tolerant mechanisms, which gives systems higher

probability to detect and mask errors by moving relocatable modules to other regions for alle-

viating defects in the FPGA fabric. Thus, systems designed by the proposed IPRDF use less

resources (i.e. are cheaper), are potentially less vulnerable, more reliable, and more suitable in

secure and safety-critical applications than static counterparts.

IPRDF includes several phases, which are realized by a combination of commercial Xilinx

Vivado[Xil18b], open source tools such as GoAhead[BKT12] and BitMan[PHK17] as well as

our own tools and scripts adding the isolation capability to reconfigurable systems. In detail,

placement and routing for static and partial designs are constrained by GoAhead, and are phys-

ically implemented by Vivado. Moreover, full bitstreams are generated by Vivado, but are later

manipulated by BitMan to compose relocatable partial bitstreams.

Additionally, we present two case studies: 1) an isolated Triple Modular Redundancy

(TMR) system and 2) a single-chip cryptographic (SCC) design that both run on a ZedBoard

using a Xilinx XC7Z020 FPGA to demonstrate capabilities of the proposed IPRDF tool flow.

The contributions of this work include:

• A design flow which guarantees isolated modules, trusted communication channels and

separated IOBs for partial reconfigurable modules (Section A.3).

• Trusted regions which are partially reconfigurable and able to host multiple relocatable

modules in time and space manners (Section A.3).

• Error detection and recovering techniques with considering isolation as required for

TMR (Section A.4).

• Two case studies on IPRDF (Section A.4 and Section A.5).

Further sections include an overview on related work in Section A.2 and a conclusion in

Section A.6.

140 APPENDIX A. IPRDF

A.2 Related Work

A.2.1 Isolation Design Flows

The major FPGA vendors have introduced proprietary isolation flows such as Xilinx Isolation

Design Flow (IDF)[Xil16c], and Altera Separation Design Flow (SDF)[Alt09]. However, as

mentioned in Section A.1, they lack partial reconfiguration capability.

Related research papers [GBLV12, RFG16] used Xilinx IDF to design relocatable modules.

Those works, however, are not targeting design isolation as needed to implement secure or

reliable systems. Instead, some IDF mechanisms were used to prevent static system routing to

cross partial regions. This property allowed those approaches to relocate modules. However,

none of those related approaches could support off-chip trusted communications for partial

regions.

Comparisons of the proposed IPRDF and other state-of-the-art tool flows are compared in

Table A.1. As we can realize, the limitation of IPRDF is that IOB assignment has to be carried

out manually1.

A.2.2 Partial Reconfiguration Tools

There are several partial reconfiguration (PR) design flows, available both from industry players

such as Xilinx[Xil18c], Altera[Alt17] and from academia, for instance, OpenPR[SAFW11],

and GoAhead[BKT12]. OpenPR and GoAhead can generate blocker macros that allow to

prohibit the Xilinx vendor router to use a defined set of wires only (e.g., this allows it to

implement an IDF conform fence around a module). When physically implementing a module,

blocker macros will occupy all possible connections to and from modules. However, we include

tunnels into these blockers to carry out the top-level routing. The here presented IPRDF is

a frontend for the GoAhead tool because it is the only academic PR tool that is currently

supporting latest FPGAs from Xilinx.

A.2.3 Designing for Reliability

Wirthlin in [Wir15] summarized common design practices for high reliable FPGA systems in-

cluding hardware redundancy, configuration scrubbing, error-correction coding, flip-flop miti-

gation, and system-level mitigation of FPGA single-event effects (SEEs). That work highlights

the importance of combinations of hardware redundancy, especially Triple-Modular Redun-

dancy (TMR), and configuration scrubbing as a recovering mechanism in systems being used

1However, this process is relatively easy to carry out and is normally done before the PCB design
(which implies that designing secure systems include aspects beyond the actual FPGA design).

A.3. THE IPRDF FLOW 141

Frontend Design

Logic synthesis

Floorplanning

Physical
Implementation

Configuration
Bitstream

Generation

Isolation
Floorplanning

Isolation
Constraint
Generation

Isolated System
Full & Partial
Bitstreams

FPGA Development Flow
(Vivado)

IPRDF Extras

Final
Design
Check
Point

VIV on Final
Design

Figure A.1: Isolated Partial Reconfiguration Design Flow (IPRDF).

in satellites [QRDC+15]. Moreover, Abramovici et al. proposed the idea of rotating functional

units via PR for testing and repairing in [AS03].

A.3 The IPRDF Flow

In Section A.4, we will demonstrate a combination of TMR, isolation design and partial recon-

figuration that can act as a recovering scheme for highly available and secure systems.

In this section, IPRDF is presented step-by-step. The flow is described in Subsection A.3.1.

Static and Partial designs are presented in Subsection A.3.2 and Subsection A.3.3.

A.3.1 Overview

We are using standard Xilinx Vivado for our front-end design and logic synthesis. This allows

us to take advantages from all input specification methods that are available in Vivado including

RTL, schematic entry, or even High Level Synthesis (HLS). IPRDF requires to carry out more

steps in the floorplanning stage which will consecutively affect physical implementation as

well as bitstream generation. The flow in comparison with the default Xilinx Vivado flow is

presented as in Figure A.1 from a developer’s point of view.

IPRDF’s steps are described as follows:

142 APPENDIX A. IPRDF

(a) (b)

Figure A.2: An example of a 16-bit bus for system communication when using physical
constraint generation shown in (a) GoAhead and in (b) after routing by Vivado. Note that red
signals are highlighting inputs while green signals are highlighting outputs.

• Isolation Floorplanning: based on the resource utilization retrieved from synthesis re-

ports, we define regions on the FPGA, either to host reconfigurable modules (in the

static system) or to implement reconfigurable modules (partial modules). In module

floorplanning, an automatic placement exploration[GK15] starts finding all possible po-

sitions. Bounding boxes according to all those positions are generated without user’s

operation. Static system’s floorplanning is done manually but assisted by our tool flow

by an automatic check that ensures that those regions provide the necessary number of

resources, even if some resources are not allowed to be used due to module isolation.

• Isolation Constraint Generation: position and bounding box information is then used

for static and partial designs. Physical constraints for placement and routing are gener-

ated by the GoAhead tool. These constraints are written into TCL files, which are then

used by Vivado to guide the physical implementation stage.

IPRDF adds rules to this process to match the IDF requirements (see Section A.1). This

is implemented through scripts that are written for GoAhead.

• Final Design Check Point: Design Check Points from previous steps will be ran through

the Xilinx Vivado Isolation Verifier (VIV) to ensure that our designs comply with the

isolation design rules.

• Configuration Bitstream Generation: IPRDF results in full bitstreams of static and

module designs. To compose partial bitstreams for modules, we use the tool BitMan [PHK17].

A.3.2 Static Design

The implementation of the static design starts with a floorplanning step where we define the

placement of the static system components, communication infrastructure and reserved areas

A.3. THE IPRDF FLOW 143

Partial
module

Blocker
macros

Communication
primitives

Tunnel

(a)

(b)

Figure A.3: Module placement, communication tunnels, and blockers for the selected partial
module in (a) GoAhead and in (b) after routing by Vivado. Note that green signals are high-
lighting module’s wires while yellow and red signals are highlighting blocker hard-macros.

for the partial modules. With these parameters, we instruct GoAhead to create top-level routing

and placement constraints as TCL scripts for Vivado.

The goal at this stage is to define a region which hosts partial modules. In order to leave

as many resources as possible for the actual application, we aim at maximizing this area. In

the case of using IPRDF for TMR systems, we define 3 regions of identical size (and to be

more precise, regions where the relative layout of primitive columns (e.g., CLBs, BRAMs) is

identical2). A blocker macro is then generated to prohibit any routing or logic resource to be

used by reconfigurable modules.

The blocker macro will prevent all FPGA primitives and routing resources to be used in the

selected partial region. Therefore, we will leave holes in the blocker macro (called tunnels) that

are used to constrain module interface signals to specific wire resources on the FPGA following

isolation rules. See Figure A.2 for a 16-bit bus example.

2It is not mandatory that all TMR regions are identical because it is possible to generate different
module implementations for each region. However, by using identical regions, we could even share the
place and route result including the final partial bitstream.

144 APPENDIX A. IPRDF

Figure A.4: Partial slots with various FPGA primitive slots such as MsM, BsM and MsD.
The left screenshot is from the Vivado and the right screenshot is taken from the GoAhead’s
floorplanning GUI.

A.3.3 Module Design

The implementation of the partial module design also starts with a floorplanning step which

includes placing communication primitives around the partial module. These macros act as

sink/source connection points and substitute the surrounding static system. Blockers will be

generated to prohibit all partial module’s primitives and routing resources. These blockers will

be placed around the selected area, hence, acting as a fence to implement strict module bound-

ing boxes as well as the isolation fence. Routing tunnels are included for the communication

to and from the primitives. The position of these tunnels match exactly the tunnels as used in

the static design to implement the communication between static and partial areas.

The result of this stage is shown in Figure A.3. As we can see, blockers are placed around

the partial module to ensure all primitives must be used inside the bounding box area.

As a module is implemented in a separated design from the static system, the final results

generated by Vivado is a full configuration bitstream. This data is passed on to BitMan that

cuts out the configuration data that corresponds to the module only. We repeat these steps for

all modules to build a partial module library.

At run-time, BitMan manipulates those partial bitstreams to relocate modules to a desired

position inside a partial region of the static system.

A.4 Case Study I: Triple Modular Redundancy

In this example, a TMR system, as in Figure A.5, will be designed on a ZedBoard to demon-

strate our IPRDF’s capability. This system includes 3 video background generators, 3 video

streaming channels, and a Quality Assurance Unit, which contains a Majority Voter and a

Configuration Controller. All these components are implemented isolated from each other by

physical fences.

Partial regions are tiled into multiple adjacent slots that are two resource columns (CLB,

BRAM, or DSP) wide. Modules are one or more slots wide. Implemented modules include a

A.4. CASE STUDY I: TRIPLE MODULAR REDUNDANCY 145

Video
Background
Generator

Majority
Voter

Channel 1

Channel 2

Channel 3

Video
Background
Generator

Video
Background
Generator

Configuration
Controller

Quality
Assurance Unit

Reconfiguration
Request

Module
1

Module
2

Module
n

...

Module
1

Module
2

Module
n

...

Module
1

Module
2

Module
n

...

Figure A.5: Block diagram of the TMR system.

video overlay generator, a DES encryption, and a SHA1 hash function. A module could have

multiple alternatives as it might be placed on different primitives (e.g., one alternative providing

a RAM column in the left and another providing RAM in the right half of the module). For

TMR operation, all channels must host the same modules in the same order to guarantee fully

redundant execution over all channels.

Outputs from video streaming channels will be routed to the Majority Voter inside the

Quality Assurance Unit. This Majority Voter will guarantee that any SEU in any channel would

not impact the final system’s output. Moreover, a single difference in a channel’s output will

trigger the Configuration Controller to dynamically partially reconfigure this specific channel

to mitigate any SEU effect with a low guaranteed latency. The Configuration Controller can

stay either on-chip by utilizing reconfigurable ports such as ICAP and PCAP, or off-chip in a

host machine and using JTAG port to reconfigure the FPGA fabric3. This redundant system

with repair mitigates against multiple upsets which may occur and potentially impact the TMR

outputs.

This case study has ultimately extended the system in [ZNA+18] with additional physical

isolation fences and trusted communication between modules. These implementation prac-

tices are essential as an SEU may otherwise impact two TMR instances at the same time with

eventually fatal consequences.

Specific information of this example’s implementation is provided in Subsection A.4.1.

Subsection A.4.2 describes how the error detection and recovering schemes work. In Sub-

section A.4.3, the fully implemented system is presented, and achieved goals for this isolated

design are discussed.

3In this case study, we are using the PCAP port that is controlled by the available ARM core only.
For full fault tolerant operation, it would need another port (e.g., JTAG) to remove a single point of
failure or a watchdog mechanism.

146 APPENDIX A. IPRDF

Table A.2: Available primitives on various resource slots and required elements for different
modules.

Resource Slot
Region Size Available Resources

Columns Rows LUTs BRAMs DSPs

MsM 2 46 736 0 0

BsM 2 46 368 8 0

MsD 2 46 368 0 16

Module
Module Size Required Resources

Columns Rows LUTs BRAMs DSPs

Video Overlay Generator 2 46 207 0 0

2-round DES in CRC mode [VOK17] 2 46 226 0 0

2-Stage SHA1 [VOK17] 2 46 235 0 0

3-Stage SHA1 [VOK17] 2 46 295 0 0

A.4.1 System Implementation

FPGA resources on the XC7Z020 device are aligned column-wise. We represent the relative

layout of primitive columns by a Resources String which is simply a string of symbols which

denote the particular column types, as introduced in Chapter 3. For example, starting from the

bottom left corner, we can model the FPGA with the device resource string MsM MsM BsM

MsD ..., as shown in Figure A.4, with:

• s: two switch matrices between primitives (any L M B or D type),

• L: a CLB column providing SLICE_L primitives (supports only logic and arithmetic),

• M: a CLB column providing SLICE_M primitives (supports logic, arithmetic, and dis-

tributed memory),

• B: a column providing BRAM primitives,

• D: a columns providing DSP48 primitives.

A resource slot (our smallest atomically reconfigurable unit) is defined by a primitive col-

umn followed by two switch matrices and another primitive column. To incorporate this in our

string matching abstraction, we model our resource slots with symbols like MsM or BsM or

MsD to indicate the different combinations of primitives that may exist for a resource slot, as

illustrated in Figure A.4. A partial module with the type MsM can only be loaded into MsM-

slots. Therefore, a logical module may need different implementations (e.g., MsM, BsM, or

A.4. CASE STUDY I: TRIPLE MODULAR REDUNDANCY 147

MsD-compatible versions) if relocation is used. In this case study, each channel provides 6

resource slots.

To establish horizontal fences, we have reserved one CLB row at the top and another at the

bottom of a resource slot. This action results in less available primitives within each resource

slot to host a module, and this is an expected overhead when using module insulation.

Numbers of FPGA primitives in various slots and the required resources for different func-

tional modules are listed in Table A.2.

As long as sufficient resources are found in the bounding box, horizontally physical fences

at the top and bottom of the module can be established without much effort. However, routing

of communication tunnels must be carefully analyzed and strictly constrained to a predefined

set of wires that will carry out the top-level module communication through the fence. A phys-

ical fence following IDF rules[Xil16c] must leave all logical and routing primitives unused.

This means that at least one resource column must be left totally empty at each side of

the module’s borders. Therefore, when creating the communication infrastructure, we will use

double-wires, which span a distance of 2 resource columns, or quad-wires, which jump from

the current column to another one that is 4 columns away.

This ensures that we can bypass the switch matrices of the fence while still implementing

all top-level signals. When using double-wires, this allows us to route up to four bit signals per

CLB row and respectively 3×4 bit signals in the case of quad-wires. Considering the usable

50−2 CLB rows, this allows wide interfaces of up to (50−2)× (4+3×4) = 768 bits in total

per signal direction for a module that is one clock region in height on a Xilinx Zynq FPGA.

The reconfiguration overhead per resource slot is measured at 0.4 ms on average while the

size of a partial bitstream is 59 kBytes and the PCAP throughput is 128 MBytes/second.

A.4.2 Error Detection and Recovering Schemes

At run-time, errors can be caused by SEUs or physical ageing and have to be mitigated differ-

ently. Therefore, we have developed two schemes to mask them, as shown in Figure A.6. In

this work, we used the Majority Voter as an error detection unit. It will detect any mismatch

happening over all channels’ outputs, specify the malfunctioning channel, and send requests

to the Configuration Controller for reconfiguration actions. These recovering schemes are im-

plemented as a software application on the embedded ARM CPU and PCAP is used for FPGA

reconfiguration.

SEU Recovering Scheme

In the first flow, as shown in Figure A.6a, any difference in a channel’s output is detected by

the Majority Voter and the error causing channel is recognized. A Mismatch counter will be

148 APPENDIX A. IPRDF

Output
Mismatch?

Scrubbing
Defect Region

Scrubbing
Counter for

Defect Region
+1

Scrubbing ≤

Threshold2
Mismatch

Counter Reset

Y

Y
Counters

Reset

N

N
Self-

Testing
Scheme

Mismatch ≤

Threshold1

Mismatch
Counter +1

NY

Start

(a)

Background
Majority

Voter

Channel 1

Background

Background

M1

1

M2

2

M3

3

=

4

Channel 2

M1

1

M2

2

M3

3

=

4

Channel 3

M1

1

M2

2

M3

3

=

4

=

1

M1

2

M2

3

M3

4

M1

1

=

2

M2

3

M3

4

M1

1

M2

2

=

3

M3

4

/

Result

Errors

Reconfiguration Sequence

Output Mismatch?

Remapping
Modules

Self-Testing
Scheme

N

Y

End

(b)

Figure A.6: Two different error detection and recovering schemes. (a) is to prevent impacts
from single-event upsets (SEUs), and (b) is to reduce impacts from permanently physical dam-
ages such as ageing or device imperfections.

A.4. CASE STUDY I: TRIPLE MODULAR REDUNDANCY 149

incremented. This allows distinguishing between SEUs on the datapath (transient errors) from

SEUs hitting configuration SRAM cells. Former issues can be mitigated by the majority result

from the Voter while later ones must be repaired by reconfiguring the modules of the impacted

channel.

However, permanent FPGA defects cannot be recovered by configuration scrubbing re-

gardless of reconfiguration efforts. Consequently, a Scrubbing counter for each defect channel

will be incremented until it reaches a threshold which in turn triggers the second flow, called

Self-Testing Scheme.

Self-Testing Scheme

The example in Figure A.6b shows three channels for TMR, each hosting three modules that

are one slot wide. Each channel provides one spare slot that is bypassed (symbolized with

‘=’). For Self-Testing, we generated a reconfiguration sequence such that the first configuration

bypasses the first slot, the second configuration bypasses the second slot, etc., until we find a

working sequence that is eventually recovering the defective slot.

Self-Testing is carried out for a single channel (e.g., channel 3 in Figure A.6b) while us-

ing the other channels as a reference for testing correct operation. The actual configurations

are composed by BitMan from relocatable modules which in some cases may involve imple-

mentation alternatives to deal with the heterogeneous layout of resource columns. Note that in

this case study, each channel has 6 slots, and Self-Testing is being conducted in parallel to the

operation of the system.

In general, the modules in the channels may have an internal state that would be out of

synchronization after partial reconfiguration and it needs somehow a mechanism to resynchro-

nize all TMR instances. In this case study working on a video stream, after each row of pixels

(in our case, 1024 pixels), all modules start with the same initial state. We therefore wait after

reconfiguration for at least this time before evaluating the Majority Voter output.

A.4.3 Result

Details of an implemented module designed by IPRDF are shown as in Figure A.7. The gen-

erated blocker macros ensure that all module primitives are placed inside the bounding box.

Ultimately, no routing violation was found by the Vivado Isolation Verifier (VIV) when using

our design methodology.

Moreover, with our design methodology, a module can be implemented in different re-

source slots. Thus, it is more flexible to place and relocate modules across the FPGA fabric in

order to mitigate physical vulnerabilities that may happen during its lifetime. Figure A.7 shows

implemented alternatives of the Video Overlay Generator in three resource slots providing dif-

ferent resource footprints. These three implemented alternatives are sufficient to place this two

150 APPENDIX A. IPRDF

(a) (b) (c)

Figure A.7: Implemented options of a Video Overlay Generator module, with (a) is the MsM-
compatible option, (b) is the MsD-compatible option, and (c) is the BsM-compatible option.

column-wide module to any slot inside any reconfigurable region of the system.

The whole demonstration system is designed with IPRDF and is shown in Figure A.8. The

static parts include the Video Background Generator and the Quality Assurance Unit which are

physically isolated from other partial regions and from each other. In addition, partial channels

are also separated by horizontal and vertical fences between system elements.

For recovering schemes, we tested the correctness of transient fault masking by injecting

errors into channels’ inputs via push buttons. Moreover, the mitigation technique from SEU

in configuration data was verified by flipping random bits from a LUT table through partial

reconfiguration.

Finally, to emulate permanent errors, we used a feature from BitMan that prohibits a de-

fined resource (a LUT for our experiments) from reconfiguration. Considering modules that

are one-slot wide and a channel which has s slots hosting m modules, the worst case time for

the Self-Testing procedure is: (
s
m

)
× (tcon f ig× s+ ttest),

with tcon f ig being the time to reconfigure one slot and ttest be the time for testing one configu-

ration of the test sequence.

In this case study, reconfiguration overhead per slot was 0.4 ms on average, and the testing

scheme took about 0.02 ms per configuration. The worst case was 14.5 ms, where resource

verification needed to be conducted for 6 slots per channel.

The whole error mitigation was running in bare-metal on the ARM using PCAP partial

reconfiguration. Please note that this case study cannot handle defects in the static system or

on the communication channels used to integrate partially reconfigurable modules. This can be

solved using the techniques described in [BKT14].

A.5. CASE STUDY II: SINGLE-CHIP CRYPTOGRAPHIC DESIGN 151

Video
Background
Generator

Quality
Assurance

Unit

Horizontal fence

Vertical fence

Trusted
route

Trusted
route

Trusted
route

Trusted
route

Trusted
route

Trusted
route

Trusted
route

Channel
1

Channel
2

Channel
3

Video
Background
Generator

Video
Background
Generator

Trusted
route

Trusted
route

Figure A.8: System layout of the TMR design implemented on a XC7Z020 FPGA. Each
channel, which has 6 resource slots and can host the modules from Table A.2, as long as their
resource primitives match the targeted resources. There are no wires in the horizontal fence
between the isolated regions and only trusted routes are crossing the vertical fence.

A.5 Case Study II: Single-chip Cryptographic Design

To directly compare our IPRDF against Xilinx IDF, we took the example of the Single-chip

Cryptographic (SCC) design from the Xilinx’s XAPP1256 application note for IDF [Xil16d].

We then implemented its modules not only isolated but also partially reconfigurable by using

our IPRDF methodology. The isolation of cryptographic modules satisfies information assur-

ance requirements while the partial reconfiguration enables hardware module replacement or

operation maintenance at run-time.

Keccak (ISO_K0)

Compare
(ISO_COMP)

Keccak (ISO_K1)

Control
(ISO_CTLR)

Configuration
Controller

External I/Os

External I/Os

External
I/Os

Figure A.9: The single-chip cryptographic (SCC) system’s block diagram.

152 APPENDIX A. IPRDF

The example design consists of two redundant Keccak cryptographic hash modules4 (ISO_K0

and ISO_K1), whose outputs are sent to a comparator (ISO_Compare) block, and a processor

control (ISO_Controller) module is used to supply clocks and resets, as shown in Figure A.9.

This case study is utilizing Double Module Redundancy (DMR) technique to guarantee sys-

tem’s functional correctness. Moreover, as the main difference to Case Study I in Section A.4,

it requires that module IOBs stay inside partially isolated partitions for off-chip communica-

tion, which is officially not supported for 7-Series devices according to the latest Xilinx PR

documentation [Xil18c] at the time of writing this work.

In addition to XAPP1256, we have developed SHA-2 and AES-based hash modules as

alternative solutions in order to demonstrate PR on this case study. These modules can be

loaded to change cryptographic algorithms without shutting down the whole system.

A.5.1 System Implementation

We have revised the Floorplan for the Xilinx IDF reference to reserve two partially recon-

figurable regions for Keccak cryptographic modules. One module, ISO_K0, is placed in the

top-right of the chip layout whereas the other, ISO_K1, is at the bottom-left corner. The

ISO_Controller and ISO_Compare stay in the static part of the system as shown in Figure A.10.

All IOBs for module off-chip communication are reserved inside the isolation partitions. IOBs

are connected directly to the modules for full control over the routing of the signals from IOBs

to the module.

Moreover, to partially reconfigure a 7-Series FPGA without interference its IOBs, Bit-

Man [PHK17] has been used to wrap up the partial bitstreams generated by this IPRDF in the

following steps:

1. asserts the GHIGH_B signal: places all interconnects in a High-Z state to prevent con-

tention when writing new configuration data;

2. writes new configuration data;

3. de-asserts the GHIGH_B signal: activates all interconnects.

A.5.2 Result

The final design is shown in Figure A.10. Physical fences are realized by our IPRDF methodol-

ogy. Moreover, trusted routing is used between isolated partitions for secured communication.

Off-chip inputs and outputs for each Keccak hash module are instantiated and assigned

into its isolated partition for trusted communication requirements. Moreover, they are recon-

figurable along with the partial modules, which is not feasible with Xilinx IDF and PR flow.

4Keccak is the superset of the SHA-3 standard.

A.6. CONCLUSION 153

ISO_K0

ISO_Compare

Horizontal fence

Vertical
fence

ISO_K1

IOBs

Trusted
route

Trusted
route

ISO_Controller

Figure A.10: System layout of the SCC design implemented on the XC7Z020 FPGA. There
are 2 partially reconfigurable regions ISO_K0 and ISO_K1 which could host Keccak hash mod-
ules, as in this example following the Xilinx’s XAPP1256 [Xil16d], or other cryptographic ones
at run-time.

This partially reconfigurable capability allows isolated partitions to host different cryptographic

algorithms at run-time. Table A.3 shows available resources of each partial region and sizes of

their partial bitstreams.

The outputs of modules in ISO_K0 and ISO_K1 are passed to the ISO_Compare module

for quality assurance purpose. Any difference in these outputs triggers an alarm.

This final design was verified successfully for isolation-compatibility by the Xilinx Vivado

Isolation Verifier (VIV). In addition, the demonstration of this partially reconfigurable SCC de-

sign could be seen on a YouTube video (https://www.youtube.com/watch?v=YsQGaTUy1pM).

A.6 Conclusion

In this work, we have proposed an alternative design flow, named IPRDF, to build fully isolated

and reconfigurable systems.

Two case studies have been presented to demonstrate details on how to use IPRDF for

implementing fully isolated designs. The first case study uses this to implement a safety-

critical TMR system that provides mitigation strategies for transient faults, configuration SEUs

as well as for permanent FPGA defects using partial reconfiguration. The second case study

enhances a single-chip cryptographic (SCC) system from [Xil16d] with partial reconfiguration

154 APPENDIX A. IPRDF

Table A.3: Available resources in ISO_K0 and ISO_K1 partial regions and size of partial
bitstream to reconfigure each region.

Partial Region Slice LUTs BRAMs DSPs IOBs Bitstream Size
(kBytes)

ISO_K0 13600 30 60 50 1375

ISO_K1 13248 31 42 50 1425

capabilities which would allow changing ciphers at low resource cost.

It should be mentioned that module insulation is a requirement for implementing modules

in certain security concerned systems (e.g., military applications) and that our entire tool flow

is generating physical constraints for the Xilinx vendor tools. As a consequence, no IP details

(neither code nor netlist) has to be presented to our tool flow, because our physical implemen-

tation scripts can be generated independently, even before the application development. This

means that the IPRDF is not adding any security threat to the already established insulation

flow for static only systems.

In practice, the security may be even higher as different modules are developed and phys-

ically implemented entirely separated from each other. With this, we enable partial reconfigu-

ration in secure and safety-critical systems including a cleaner and more secure design flow.

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Motivation and Aims
	Contributions
	FPGA Virtualisation Model for Heterogeneous Computing Systems
	Bitstream Abstraction
	Decoupled Compilation Flow for FPGA Virtualisation
	System Prototypes

	Thesis Structure
	Chapter 2 – Background and Related Works
	Chapter 3 – Bitstream Manipulation Tool and API
	Chapter 4 – Decoupled Compilation Flow for FPGA Virtualisation
	Chapter 5 – Run-time Management
	Chapter 6 – System Evaluation
	Chapter 7 – Conclusion

	Publications
	Open Source Releases

	Background and Related Works
	Overview
	Partial Reconfiguration (PR)
	FPGA Vendors' PR Design Flows
	Academic PR Development Tools
	Discussion

	Bitstream Manipulation
	Compilation Flows for HLS Applications
	Shell-based Systems
	Chapter Summary

	Bitstream Manipulation Tool and API
	Bitstream Investigation and BitMan Implementation
	Bitstream Format
	Module Placement and Relocation
	Bitstream Manipulation Tool

	Applications and Evaluation
	Run-time Adaptation
	Hardware Mapping and Linking for the Overlay Architecture
	Bitstream generation for Enabling On-chip Self-compilation

	Chapter Summary

	Decoupled Compilation Flow
	Design Methodology
	Overview
	Academic Tools for Routing Constraints Generation and Bitstream Manipulation

	Shell Design
	Implementation of the Shell
	Bus Virtualisation
	I/O FPGA Virtualisation

	Module Compilation
	Overview of Module (Role) Design
	Module Synthesis
	Module Implementation
	Hardware Module Library

	Chapter Summary

	Run-time Management
	Workflow Overview
	Configuration Controller
	Overview
	Hardware Module Placement Process
	Configuration Overhead

	Hardware Task Scheduler
	Overview
	Scheduling Overhead

	Module Device Driver
	Memory Isolation/Management
	Overview
	Memory Management Framework for FPGA:
	Memory Management Overhead

	Chapter Summary

	System Evaluation
	Design Productivity and Deployment Flexibility
	Analysis of Design Productivity
	Analysis of Configuration Overhead
	Analysis of Deployment Flexibility and System Completion Time
	Summary

	Resource Utilisation and System Performance
	Analysis of Resource Utilisation and Performance
	Summary

	Cost of Multi-tenancy Support
	Analysis of Resource and Performance Overhead
	Summary

	Resilience and Maintenance of Multi-node Systems
	Mitigation Scenarios for Fault Tolerance/Resilience
	Analysis of System Maintenance
	Summary

	Scalability and Energy Efficiency
	Analysis of Scalability and Energy Efficiency
	Summary

	Chapter Summary

	Conclusion
	Summary of Contributions
	A Model of FPGA Virtualisation on Heterogeneous Computing Platforms
	A Tool and API for Bitstream Abstraction
	Design Methodology and System Implementation
	System Prototype and Evaluation

	Future Works
	Security for Multi-tenancy FPGA-virtualised Systems
	High-speed Configuration Infrastructure
	Vendor-independent FPGA Platforms for Education and Research Purposes

	Bibliography
	IPRDF
	Introduction
	Related Work
	Isolation Design Flows
	Partial Reconfiguration Tools
	Designing for Reliability

	The IPRDF Flow
	Overview
	Static Design
	Module Design

	Case Study I: Triple Modular Redundancy
	System Implementation
	Error Detection and Recovering Schemes
	Result

	Case Study II: Single-chip Cryptographic Design
	System Implementation
	Result

	Conclusion

