132 research outputs found

    Impact of local energy markets integration in power systems layer: A comprehensive review

    Get PDF
    In recent years extensive research has been conducted on the development of different models that enable energy trading between prosumers and consumers due to expected high integration of distributed energy resources. Some of the most researched mechanisms include Peer-to-Peer energy trading, Community Self-Consumption and Transactive Energy Models. To ensure the stable and reliable delivery of electricity as such markets and models grow, this paper aims to understand the impact of these models on grid infrastructure, including impacts on the control, operation, and planning of power systems, interaction between multiple market models and impact on transmission network. Here, we present a comprehensive review of existing research on impact of Local Energy Market integration in power systems layer. We detect and classify most common issues and benefits that the power grid can expect from integrating these models. We also present a detailed overview of methods that are used to integrate physical network constraints into the market mechanisms, their advantages, drawbacks, and scaling potential. In addition, we present different methods to calculate and allocate network tariffs and power losses. We find that financial energy transactions do not directly reflect the physical energy flows imposed by the constraints of the installed electrical infrastructure. In the end, we identify a number of different challenges and detect research gaps that need to be addressed in order to integrate Local Energy Market models into existing infrastructure

    Modelling and Simulation Approaches for Local Energy Community Integrated Distribution Networks

    Get PDF
    Due to the absence of studies of local energy communities (LECs) where the grid is represented, it is very difficult to infer implications of increased LEC integration for the distribution grid as well as for the wider society. Therefore, this paper aims to investigate holistic modelling and simulation approaches of LECs. To conduct a quantifiable assessment of different control architectures, LEC types and market frameworks, a flexible and comprehensive LEC modelling and simulation approach is needed. Modelling LECs and the environment they operate in involves a holistic approach consisting of different layers: market, controller, and grid. The controller layer is relevant both for the overall energy management system of the LEC and the controllers of single components in a LEC. In this paper, the different LEC modelling approaches in the reviewed literature are presented, several multilayered concepts for LECs are proposed, and a case study is presented to illustrate a holistic simulation where the different layers interact.Modelling and Simulation Approaches for Local Energy Community Integrated Distribution NetworkspublishedVersio

    Fusion of Model-free Reinforcement Learning with Microgrid Control: Review and Vision

    Get PDF
    Challenges and opportunities coexist in microgrids as a result of emerging large-scale distributed energy resources (DERs) and advanced control techniques. In this paper, a comprehensive review of microgrid control is presented with its fusion of model-free reinforcement learning (MFRL). A high-level research map of microgrid control is developed from six distinct perspectives, followed by bottom-level modularized control blocks illustrating the configurations of grid-following (GFL) and grid-forming (GFM) inverters. Then, mainstream MFRL algorithms are introduced with an explanation of how MFRL can be integrated into the existing control framework. Next, the application guideline of MFRL is summarized with a discussion of three fusing approaches, i.e., model identification and parameter tuning, supplementary signal generation, and controller substitution, with the existing control framework. Finally, the fundamental challenges associated with adopting MFRL in microgrid control and corresponding insights for addressing these concerns are fully discussed.Comment: 14 pages, 4 figures, published on IEEE Transaction on Smart Grid 2022 Nov 15. See: https://ieeexplore-ieee-org.utk.idm.oclc.org/stamp/stamp.jsp?arnumber=995140

    A Fuse Saving Scheme for DC Microgrids with High Penetration of Renewable Energy Resources

    Get PDF

    Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods

    Get PDF
    In view of scarcity of traditional energy resources and environmental issues, renewable energy resources (RERs) are introduced to fulfill the electricity requirement of growing world. Moreover, the effective utilization of RERs to fulfill the varying electricity demands of customers can be achieved via demand response (DR). Furthermore, control techniques, decision variables and offered motivations are the ways to introduce DR into distribution network (DN). This categorization needs to be optimized to balance the supply and demand in DN. Therefore, intelligent algorithms are employed to achieve optimized DR. However, these algorithms are computationally restrained to handle the parametric load of uncertainty involved with RERs and power system. Henceforth, this paper focuses on the limitations of intelligent algorithms for DR. Furthermore, a comparative study of different intelligent algorithms for DR is discussed. Based on conclusions, quantum algorithms are recommended to optimize the computational burden for DR in future smart grid

    Blockchain and artificial intelligence enabled peer-to-peer energy trading in smart grids

    Get PDF
    Peer-to-peer (P2P) energy trading allows smart grid-connected parties to trade renewable energy with each other. It is widely considered a scheme to mitigate the supplydemand imbalances during peak-hour. In a P2P energy trading system, users (e.g., prosumers, Electric Vehicles (EV)) increase their utility by trading energy securely with each other at a lower price than that of the main grid. However, three challenges hinder the development of secured P2P energy trading systems. First, there is a lack of implicit trust and transparency between trading participants because they do not know each other. Second, P2P energy trading systems cannot offer an intelligent trading strategy that could maximize users’ (agents’) utility. This is because the agents may lack previous trading experience data that enable them to select an optimal trading strategy. Third, the current energy trading platforms are mainly centralized, which makes them vulnerable to malicious attacks and Single point of failure (SPOF). This may interrupt the transaction validation mechanism when the system is compromised, and the central database is unavailable. [...

    A Generalized hierarchical transactive energy management framework for residential microgrids

    Full text link
    This work develops a transactive energy management system in order to automate the operation and efficiently utilize the energy generated from the solar PV unit and BESS in a single house as well as in the microgrid and provides cost-benefit analysis

    Smart Grid Enabling Low Carbon Future Power Systems Towards Prosumers Era

    Get PDF
    In efforts to meet the targets of carbon emissions reduction in power systems, policy makers formulate measures for facilitating the integration of renewable energy sources and demand side carbon mitigation. Smart grid provides an opportunity for bidirectional communication among policy makers, generators and consumers. With the help of smart meters, increasing number of consumers is able to produce, store, and consume energy, giving them the new role of prosumers. This thesis aims to address how smart grid enables prosumers to be appropriately integrated into energy markets for decarbonising power systems. This thesis firstly proposes a Stackelberg game-theoretic model for dynamic negotiation of policy measures and determining optimal power profiles of generators and consumers in day-ahead market. Simulation results show that the proposed model is capable of saving electricity bills, reducing carbon emissions, and increasing the penetration of renewable energy sources. Secondly, a data-driven prosumer-centric energy scheduling tool is developed by using learning approaches to reduce computational complexity from model-based optimisation. This scheduling tool exploits convolutional neural networks to extract prosumption patterns, and uses scenarios to analyse possible variations of uncertainties caused by the intermittency of renewable energy sources and flexible demand. Case studies confirm that the proposed scheduling tool can accurately predict optimal scheduling decisions under various system scales and uncertain scenarios. Thirdly, a blockchain-based peer-to-peer trading framework is designed to trade energy and carbon allowance. The bidding/selling prices of individual prosumers can directly incentivise the reshaping of prosumption behaviours. Case studies demonstrate the execution of smart contract on the Ethereum blockchain and testify that the proposed trading framework outperforms the centralised trading and aggregator-based trading in terms of regional energy balance and reducing carbon emissions caused by long-distance transmissions
    • …
    corecore