112 research outputs found

    Improving Aircraft Engines Prognostics and Health Management via Anticipated Model-Based Validation of Health Indicators

    Get PDF
    The aircraft engines manufacturing industry is subjected to many dependability constraints from certification authorities and economic background. In particular, the costs induced by unscheduled maintenance and delays and cancellations impose to ensure a minimum level of availability. For this purpose, Prognostics and Health Management (PHM) is used as a means to perform online periodic assessment of the engines’ health status. The whole PHM methodology is based on the processing of some variables reflecting the system’s health status named Health Indicators. The collecting of HI is an on-board embedded task which has to be specified before the entry into service for matters of retrofit costs. However, the current development methodology of PHM systems is considered as a marginal task in the industry and it is observed that most of the time, the set of HI is defined too late and only in a qualitative way. In this paper, the authors propose a novel development methodology for PHM systems centered on an anticipated model-based validation of HI. This validation is based on the use of uncertainties propagation to simulate the distributions of HI including the randomness of parameters. The paper defines also some performance metrics and criteria for the validation of the HI set. Eventually, the methodology is applied to the development of a PHM solution for an aircraft engine actuation loop. It reveals a lack of performance of the original set of HI and allows defining new ones in order to meet the specifications before the entry into service

    Load allocation for optimal risk management in systems with incipient failure modes

    Get PDF
    The development and implementation challenges associated with a proposed load allocation paradigm for fault risk assessment and system health management based on uncertain fault diagnostic and failure prognostic information are investigated. Health management actions are formulated in terms of a value associated with improving system reliability, and a cost associated with inducing deviations from a system's nominal performance. Three simulated case study systems are considered to highlight some of the fundamental challenges of formulating and solving an optimization on the space of available supervisory control actions in the described health management architecture. Repeated simulation studies on the three case-study systems are used to illustrate an empirical approach for tuning the conservatism of health management policies by way of adjusting risk assessment metrics in the proposed health management paradigm. The implementation and testing of a real-world prognostic system is presented to illustrate model development challenges not directly addressed in the analysis of the simulated case study systems. Real-time battery charge depletion prediction for a small unmanned aerial vehicle is considered in the real-world case study. An architecture for offline testing of prognostics and decision making algorithms is explained to facilitate empirical tuning of risk assessment metrics and health management policies, as was demonstrated for the three simulated case study systems.Ph.D

    A hybrid prognostics approach for MEMS: From real measurements to remaining useful life estimation

    Get PDF
    This paper presents a hybrid prognostics approach for Micro Electro-Mechanical Systems (MEMS). This approach relies on two phases: an offline phase for the MEMS and its degradation modeling, and an online phase where the obtained degradation model is used with the available data for prognostics. In the online phase, the particle filter algorithm is used to perform online parameters estimation of the degradation model and predict the Remaining Useful Life (RUL) of MEMS. The effectiveness of the proposed approach is validated on experimental data related to an electro-thermally actuated MEMS valv

    Bayesian Network Analysis for Diagnostics and Prognostics of Engineering Systems

    Get PDF
    Bayesian networks have been applied to many different domains to perform prognostics, reduce risk and ultimately improve decision making. However, these methods have not been applied to military field and human performance data sets in an industrial environment. Methods frequently rely on a clear understanding of causal connections leading to an undesirable event and detailed understanding of the system behavior. Methods may also require large amount of analyst teams and domain experts, coupled with manual data cleansing and classification. The research performed utilized machine learning algorithms (such as Bayesian networks) and two existing data sets. The primary objective of the research was to develop a diagnostic and prognostic tool utilizing Bayesian networks that does not require the need for detailed causal understanding of the underlying system. The research yielded a predictive method with substantial benefits over reactive methods. The research indicated Bayesian networks can be trained and utilized to predict failure of several important components to include potential malfunction codes and downtime on a real-world Navy data set. The research also considered potential error within the training data set. The results provided credence to utilization of Bayesian networks in real field data – which will always contain error that is not easily quantified. Research should be replicated with additional field data sets from other aircraft. Future research should be conducted to solicit and incorporate domain expertise into subsequent models. Research should also consider incorporation of text based analytics for text fields, which was considered out of scope for this research project

    Multi-Objective Control Strategies and Prognostic-Based Lifetime Extension of Utility-Scale Wind Turbines

    Get PDF
    Windenergie wird zunehmend als erneuerbare Energiequellen attraktiv, da Wind nachhaltig genutzt werden kann. In vielen Ländern gibt es umfangreiche Anstrengungen, die Produktion von elektrischer Energie aus Wind zu steigern. Im Vergleich zu anderen erneuerbaren Energiequellen wie Sonne, Gezeiten, Wasserkraft o.ä. ist die Energiegewinnung aus Wind technologisch ausgereifter. Daher ist die Energiegewinnung aus Wind stärker gewachsen ist als andere Technologien. Windkraft verursacht weniger nachteilige Auswirkungen auf die Umwelt als konventionelle Energiequellen. Aufgrund der vergleichsweise hohen Investitions-, Betriebs- und Wartungskosten sind trotz einer weltweit starken Verbreitung von Windenergieanlagen die Produktionskosten von Windenergie im Vergleich mit anderen alternativen Energiequellen hoch. Um die wachsende Nachfrage nachWindkraft zu befriedigen, werdenWindkraftanlagen in Größe und Leistung zunehmend skaliert. Bei zunehmender Größe dominieren die strukturellen Lasten der Turbine. Dies führt vermehrt zu Materialermüdung und Ausfällen. Ein weiterer Schwerpunkt in der Entwicklung von Windtechologie ist die Forderung nach Senkung der Produktionskosten, um einen Wettbewerbsvorteil gegenüber anderen alternativen Energiequellen zu schaffen. Im Bereich der Steuerung können niedrigere Produktionskosten durch den Betrieb der Windturbine am/oder in der Nähe der optimalen Energieeffizienz im Teillastbetrieb erreicht werden. Dies erhöht die Zuverlässigkeit durch Verringerung des Verschleißes und die erzeugte Nennleistung auf ihrem Nennwert im hohen Windregime. Häufig ist es schwierig, einen Steueralgorithmus zu realisieren, der sowohl Effizienz als auch Zuverlässigkeit gewährleistet, da diese beiden Ziele widersprechen. In dieser Arbeit werden Mehrzielsteuerungsstrategien sowohl für den Teillastbereich als auch für hohe Windgeschwindigkeits bereiche vorgestellt. Im Bereich geringer Windgeschwindigkeiten ist eine Steuerungsstrategie so zu konzipieren, dass die Stromerzeugung sowie die strukturelle Belastung im Sinne einer Balance zwischen maximalen Stromproduktion und verlängerter Lebensdauer der Windturbine optimal ist. Für den Bereich hoher Windgeschwindigkeiten wird ein multivariates Steuerungsverfahren vorgeschlagen, um das Verhältnis von Leistung/Geschwindigkeit und struktureller Lastreduzierung zu optimieren. Es wird ein Regler zur Einzelblattverstellung entworfen, um sowohl die unausgewogene Strukturlasten als auch durch die Variation des Windgeschwindigkeit verursachte Rotorscheibe, vertikale Windscherung und Gierversatz fehler zu reduzieren. Um die Zuverlässigkeit derWindturbine zu gewährleisten, ist ein Online-Schadensbewertungsmodell in den Hauptwindturbinenregelkreis integriert, so dass die Windturbine entsprechend ihres aktuellen Verschleißzustandes betrieben wird. In Abhängigkeit von der akkumulierten Schadenshöhe werden Regler zur Einzelblattverstellung mit unterschiedlichen Lastreduktionen und Kompromissen bei der Stromerzeugung eingesetzt, um zwischen den beiden Zielen verlängerte Lebensdauer und Leistungsregelung einen geeigneten Kompromiss zu erzielten. Aufgrund der Herausforderungen die mit Offshore-Windpark Standorten verbunden sind, ist diese Art von prognose-basierter Regelung im Windturbinenbetrieb vor allem im Offshore-Einsatz vorteilhaft. Insbesondere im Kontext output-basierter Vertragsformen z.B. power purchase agreement (PPA) kann dieser Ansatz zur Optimierung der Wartungsplanung genutzt werden. Die Ergebnisse zeigen, dass die vorgeschlagenen Strategien die Auflast auf Windturbinen reduzieren kann ohne sich auf andere Ziele wie die Leistungsoptimierung und Leistung/Drehzahlregelung auszuwirken. Es konnte außerdem gezeigt werden, dass eine prognostisch basierte Steuerung effektiv die Lebensdauer von Windenergieanalagen verlängern kann, ohne das Ziel der Leistungsregelung einzuschränken.Wind energy is one of the rapidly growing renewable sources of energy due to the fact that wind is abundantly available and unlikely to be exhausted like fossil fuel. Additionally, there are deliberate effort to sensitize many countries to develop polices that support production of electrical power from wind. Maturity of wind energy technology has made power production from wind grow significantly compared to other renewable energy sources such as solar, tidal, hydro among others. Like many other renewable energy sources, production of power from wind has less adverse effects on the environment. Despite the growth of global cumulative installed wind capacity, its cost of production is still higher compared to other alternative energy sources due to high initial investment cost and high operation and maintenance (O&M) costs. To meet the growing demand of wind power, wind turbines are being scaled up both in size and power rating. However, as the size increases, the structural loads of the turbine become more dominant, causing increased fatigue stress on the turbine components and consequent loss of functionality before the end of lifetime. Another area of focus in wind power production is lowering its production cost; hence, making it more competitive compared to other alternative power sources. From the control point of view, low production cost of wind energy can be achieved by operating wind turbine at/or near the optimum power efficiency during partial load regime, regulating generated power to its rated value in the high wind regime as well as mitigating structural loads so as to guarantee extended lifetime. Often, it is difficult to realize a control algorithm that can effectively guarantee both efficiency and reliability because these two aspects involve conflicting objective. Therefore, it is important to optimize the trade-off between these competing control objectives. In this thesis, multi-objective control strategies for both the partial load region and high wind speed region are presented. During low wind speed, a control strategy that optimizes power production as well as mitigating structural load is designed to balance between power production maximization and extended lifetime of wind turbine. On the other hand, a multivariate control method to balance between power/speed regulation and structural load reduction is proposed for high wind speed region. More specifically, an individual blade pitch controller is designed to eliminate the unbalanced deterministic structural loads across rotor disc caused by variation in wind speed, vertical wind shear, and yaw misalignment error. To guarantee reliability in wind turbine, an online damage evaluation model is also integrated into the main wind turbine control loop such that wind turbine is operated accordance to its structural health status in order to tolerate fault or to extend its service lifetime by a given period of time. Depending on the accumulated damage level, individual pitch controllers with different degrees of load reduction and power production compromise are employed to balance between extended lifetime and power regulation objective. This kind of prognostic-based control is useful in wind turbine operation, especially in offshore application due to challenges associated with offshore wind farm sites. Additionally, in wind farms that are managed through output-based contracts such as power purchase agreement (PPA), this approach can be utilized to optimize maintenance scheduling to avoid unscheduled downtime. The results demonstrated that the proposed multi-objective control strategies can reduce structural load on wind turbine without adversely affecting other objectives of power optimization and power/speed regulation. It has also be shown that a prognostic-based control can be effectively used to extend the lifetime of wind turbine without sacrificing the objective of power regulation

    Review of Health Prognostics and Condition Monitoring of Electronic Components

    Get PDF
    To meet the specifications of low cost, highly reliable electronic devices, fault diagnosis techniques play an essential role. It is vital to find flaws at an early stage in design, components, material, or manufacturing during the initial phase. This review paper attempts to summarize past development and recent advances in the areas about green manufacturing, maintenance, remaining useful life (RUL) prediction, and like. The current state of the art in reliability research for electronic components, mainly includes failure mechanisms, condition monitoring, and residual lifetime evaluation is explored. A critical analysis of reliability studies to identify their relative merits and usefulness of the outcome of these studies' vis-a-vis green manufacturing is presented. The wide array of statistical, empirical, and intelligent tools and techniques used in the literature are then identified and mapped. Finally, the findings are summarized, and the central research gap is highlighted

    Health-aware predictive control schemes based on industrial processes

    Get PDF
    Aplicat embargament des de la data de defensa fins el dia 30 de desembre de 2021The research is motivated by real applications, such as pasteurization plant, water networks and autonomous system, which each of them require a specific control system to provide proper management able to take into account their particular features and operating limits in presence of uncertainties related to their operation and failures from component breakdowns. According to that most of the real systems have nonlinear behaviors, it can be approximated them by polytopic linear uncertain models such as Linear Parameter Varying (LPV) and Takagi-Sugeno (TS) models. Therefore, a new economic Model Predictive Control (MPC) approach based on LPV/TS models is proposed and the stability of the proposed approach is certified by using a region constraint on the terminal state. Besides, the MPC-LPV strategy is extended based on the system with varying delays affecting states and inputs. The control approach allows the controller to accommodate the scheduling parameters and delay change. By computing the prediction of the state variables and delay along a prediction time horizon, the system model can be modified according to the evaluation of the estimated state and delay at each time instant. To increase the system reliability, anticipate the appearance of faults and reduce the operational costs, actuator health monitoring should be considered. Regarding several types of system failures, different strategies are studied for obtaining system failures. First, the damage is assessed with the rainflow-counting algorithm that allows estimating the component’s fatigue and control objective is modified by adding an extra criterion that takes into account the accumulated damage. Besides, two different health-aware economic predictive control strategies that aim to minimize the damage of components are presented. Then, economic health-aware MPC controller is developed to compute the components and system reliability in the MPC model using an LPV modeling approach and maximizes the availability of the system by estimating system reliability. Additionally, another improvement considers chance-constraint programming to compute an optimal list replenishment policy based on a desired risk acceptability level, managing to dynamically designate safety stocks in flowbased networks to satisfy non-stationary flow demands. Finally, an innovative health-aware control approach for autonomous racing vehicles to simultaneously control it to the driving limits and to follow the desired path based on maximization of the battery RUL. The proposed approach is formulated as an optimal on-line robust LMI based MPC driven from Lyapunov stability and controller gain synthesis solved by LPV-LQR problem in LMI formulation with integral action for tracking the trajectory.Esta tesis pretende proporcionar contribuciones teóricas y prácticas sobre seguridad y control de sistemas industriales, especialmente en la forma maten ática de sistemas inciertos. La investigación está motivada por aplicaciones reales, como la planta de pasteurización, las redes de agua y el sistema autónomo, cada uno de los cuales requiere un sistema de control específico para proporcionar una gestión adecuada capaz de tener en cuenta sus características particulares y limites o de operación en presencia de incertidumbres relacionadas con su operación y fallas de averías de componentes. De acuerdo con que la mayoría de los sistemas reales tienen comportamientos no lineales, puede aproximarse a ellos mediante modelos inciertos lineales politopicos como los modelos de Lineal Variación de Parámetros (LPV) y Takagi-Sugeno (TS). Por lo tanto, se propone un nuevo enfoque de Control Predictivo del Modelo (MPC) económico basado en modelos LPV/TS y la estabilidad del enfoque propuesto se certifica mediante el uso de una restricción de región en el estado terminal. Además, la estrategia MPC-LPV se extiende en función del sistema con diferentes demoras que afectan los estados y las entradas. El enfoque de control permite al controlador acomodar los parámetros de programación y retrasar el cambio. Al calcular la predicción de las variables de estado y el retraso a lo largo de un horizonte de tiempo de predicción, el modelo del sistema se puede modificar de acuerdo con la evaluación del estado estimado y el retraso en cada instante de tiempo. Para aumentar la confiabilidad del sistema, anticipar la aparición de fallas y reducir los costos operativos, se debe considerar el monitoreo del estado del actuador. Con respecto a varios tipos de fallas del sistema, se estudian diferentes estrategias para obtener fallas del sistema. Primero, el daño se evalúa con el algoritmo de conteo de flujo de lluvia que permite estimar la fatiga del componente y el objetivo de control se modifica agregando un criterio adicional que tiene en cuenta el daño acumulado. Además, se presentan dos estrategias diferentes de control predictivo económico que tienen en cuenta la salud y tienen como objetivo minimizar el daño de los componentes. Luego, se desarrolla un controlador MPC económico con conciencia de salud para calcular los componentes y la confiabilidad del sistema en el modelo MPC utilizando un enfoque de modelado LPV y maximiza la disponibilidad del sistema mediante la estimación de la confiabilidad del sistema. Además, otra mejora considera la programación de restricción de posibilidades para calcular una política ´optima de reposición de listas basada en un nivel de aceptabilidad de riesgo deseado, logrando designar dinámicamente existencias de seguridad en redes basadas en flujo para satisfacer demandas de flujo no estacionarias. Finalmente, un enfoque innovador de control consciente de la salud para vehículos de carreras autónomos para controlarlo simultáneamente hasta los límites de conducción y seguir el camino deseado basado en la maximización de la bacteria RUL. El diseño del control se divide en dos capas con diferentes escalas de tiempo, planificador de ruta y controlador. El enfoque propuesto está formulado como un MPC robusto en línea optimo basado en LMI impulsado por la estabilidad de Lyapunov y la síntesis de ganancia del controlador resuelta por el problema LPV-LQR en la formulación de LMI con acción integral para el seguimiento de la trayectoria.Postprint (published version

    Engineering Resilient Space Systems

    Get PDF
    Several distinct trends will influence space exploration missions in the next decade. Destinations are becoming more remote and mysterious, science questions more sophisticated, and, as mission experience accumulates, the most accessible targets are visited, advancing the knowledge frontier to more difficult, harsh, and inaccessible environments. This leads to new challenges including: hazardous conditions that limit mission lifetime, such as high radiation levels surrounding interesting destinations like Europa or toxic atmospheres of planetary bodies like Venus; unconstrained environments with navigation hazards, such as free-floating active small bodies; multielement missions required to answer more sophisticated questions, such as Mars Sample Return (MSR); and long-range missions, such as Kuiper belt exploration, that must survive equipment failures over the span of decades. These missions will need to be successful without a priori knowledge of the most efficient data collection techniques for optimum science return. Science objectives will have to be revised ‘on the fly’, with new data collection and navigation decisions on short timescales. Yet, even as science objectives are becoming more ambitious, several critical resources remain unchanged. Since physics imposes insurmountable light-time delays, anticipated improvements to the Deep Space Network (DSN) will only marginally improve the bandwidth and communications cadence to remote spacecraft. Fiscal resources are increasingly limited, resulting in fewer flagship missions, smaller spacecraft, and less subsystem redundancy. As missions visit more distant and formidable locations, the job of the operations team becomes more challenging, seemingly inconsistent with the trend of shrinking mission budgets for operations support. How can we continue to explore challenging new locations without increasing risk or system complexity? These challenges are present, to some degree, for the entire Decadal Survey mission portfolio, as documented in Vision and Voyages for Planetary Science in the Decade 2013–2022 (National Research Council, 2011), but are especially acute for the following mission examples, identified in our recently completed KISS Engineering Resilient Space Systems (ERSS) study: 1. A Venus lander, designed to sample the atmosphere and surface of Venus, would have to perform science operations as components and subsystems degrade and fail; 2. A Trojan asteroid tour spacecraft would spend significant time cruising to its ultimate destination (essentially hibernating to save on operations costs), then upon arrival, would have to act as its own surveyor, finding new objects and targets of opportunity as it approaches each asteroid, requiring response on short notice; and 3. A MSR campaign would not only be required to perform fast reconnaissance over long distances on the surface of Mars, interact with an unknown physical surface, and handle degradations and faults, but would also contain multiple components (launch vehicle, cruise stage, entry and landing vehicle, surface rover, ascent vehicle, orbiting cache, and Earth return vehicle) that dramatically increase the need for resilience to failure across the complex system. The concept of resilience and its relevance and application in various domains was a focus during the study, with several definitions of resilience proposed and discussed. While there was substantial variation in the specifics, there was a common conceptual core that emerged—adaptation in the presence of changing circumstances. These changes were couched in various ways—anomalies, disruptions, discoveries—but they all ultimately had to do with changes in underlying assumptions. Invalid assumptions, whether due to unexpected changes in the environment, or an inadequate understanding of interactions within the system, may cause unexpected or unintended system behavior. A system is resilient if it continues to perform the intended functions in the presence of invalid assumptions. Our study focused on areas of resilience that we felt needed additional exploration and integration, namely system and software architectures and capabilities, and autonomy technologies. (While also an important consideration, resilience in hardware is being addressed in multiple other venues, including 2 other KISS studies.) The study consisted of two workshops, separated by a seven-month focused study period. The first workshop (Workshop #1) explored the ‘problem space’ as an organizing theme, and the second workshop (Workshop #2) explored the ‘solution space’. In each workshop, focused discussions and exercises were interspersed with presentations from participants and invited speakers. The study period between the two workshops was organized as part of the synthesis activity during the first workshop. The study participants, after spending the initial days of the first workshop discussing the nature of resilience and its impact on future science missions, decided to split into three focus groups, each with a particular thrust, to explore specific ideas further and develop material needed for the second workshop. The three focus groups and areas of exploration were: 1. Reference missions: address/refine the resilience needs by exploring a set of reference missions 2. Capability survey: collect, document, and assess current efforts to develop capabilities and technology that could be used to address the documented needs, both inside and outside NASA 3. Architecture: analyze the impact of architecture on system resilience, and provide principles and guidance for architecting greater resilience in our future systems The key product of the second workshop was a set of capability roadmaps pertaining to the three reference missions selected for their representative coverage of the types of space missions envisioned for the future. From these three roadmaps, we have extracted several common capability patterns that would be appropriate targets for near-term technical development: one focused on graceful degradation of system functionality, a second focused on data understanding for science and engineering applications, and a third focused on hazard avoidance and environmental uncertainty. Continuing work is extending these roadmaps to identify candidate enablers of the capabilities from the following three categories: architecture solutions, technology solutions, and process solutions. The KISS study allowed a collection of diverse and engaged engineers, researchers, and scientists to think deeply about the theory, approaches, and technical issues involved in developing and applying resilience capabilities. The conclusions summarize the varied and disparate discussions that occurred during the study, and include new insights about the nature of the challenge and potential solutions: 1. There is a clear and definitive need for more resilient space systems. During our study period, the key scientists/engineers we engaged to understand potential future missions confirmed the scientific and risk reduction value of greater resilience in the systems used to perform these missions. 2. Resilience can be quantified in measurable terms—project cost, mission risk, and quality of science return. In order to consider resilience properly in the set of engineering trades performed during the design, integration, and operation of space systems, the benefits and costs of resilience need to be quantified. We believe, based on the work done during the study, that appropriate metrics to measure resilience must relate to risk, cost, and science quality/opportunity. Additional work is required to explicitly tie design decisions to these first-order concerns. 3. There are many existing basic technologies that can be applied to engineering resilient space systems. Through the discussions during the study, we found many varied approaches and research that address the various facets of resilience, some within NASA, and many more beyond. Examples from civil architecture, Department of Defense (DoD) / Defense Advanced Research Projects Agency (DARPA) initiatives, ‘smart’ power grid control, cyber-physical systems, software architecture, and application of formal verification methods for software were identified and discussed. The variety and scope of related efforts is encouraging and presents many opportunities for collaboration and development, and we expect many collaborative proposals and joint research as a result of the study. 4. Use of principled architectural approaches is key to managing complexity and integrating disparate technologies. The main challenge inherent in considering highly resilient space systems is that the increase in capability can result in an increase in complexity with all of the 3 risks and costs associated with more complex systems. What is needed is a better way of conceiving space systems that enables incorporation of capabilities without increasing complexity. We believe principled architecting approaches provide the needed means to convey a unified understanding of the system to primary stakeholders, thereby controlling complexity in the conception and development of resilient systems, and enabling the integration of disparate approaches and technologies. A representative architectural example is included in Appendix F. 5. Developing trusted resilience capabilities will require a diverse yet strategically directed research program. Despite the interest in, and benefits of, deploying resilience space systems, to date, there has been a notable lack of meaningful demonstrated progress in systems capable of working in hazardous uncertain situations. The roadmaps completed during the study, and documented in this report, provide the basis for a real funded plan that considers the required fundamental work and evolution of needed capabilities. Exploring space is a challenging and difficult endeavor. Future space missions will require more resilience in order to perform the desired science in new environments under constraints of development and operations cost, acceptable risk, and communications delays. Development of space systems with resilient capabilities has the potential to expand the limits of possibility, revolutionizing space science by enabling as yet unforeseen missions and breakthrough science observations. Our KISS study provided an essential venue for the consideration of these challenges and goals. Additional work and future steps are needed to realize the potential of resilient systems—this study provided the necessary catalyst to begin this process

    An investigation into the prognosis of electromagnetic relays.

    Get PDF
    Electrical contacts provide a well-proven solution to switching various loads in a wide variety of applications, such as power distribution, control applications, automotive and telecommunications. However, electrical contacts are known for limited reliability due to degradation effects upon the switching contacts due to arcing and fretting. Essentially, the life of the device may be determined by the limited life of the contacts. Failure to trip, spurious tripping and contact welding can, in critical applications such as control systems for avionics and nuclear power application, cause significant costs due to downtime, as well as safety implications. Prognostics provides a way to assess the remaining useful life (RUL) of a component based on its current state of health and its anticipated future usage and operating conditions. In this thesis, the effects of contact wear on a set of electromagnetic relays used in an avionic power controller is examined, and how contact resistance combined with a prognostic approach, can be used to ascertain the RUL of the device. Two methodologies are presented, firstly a Physics based Model (PbM) of the degradation using the predicted material loss due to arc damage. Secondly a computationally efficient technique using posterior degradation data to form a state space model in real time via a Sliding Window Recursive Least Squares (SWRLS) algorithm. Health monitoring using the presented techniques can provide knowledge of impending failure in high reliability applications where the risks associated with loss-of-functionality are too high to endure. The future states of the systems has been estimated based on a Particle and Kalman-filter projection of the models via a Bayesian framework. Performance of the prognostication health management algorithm during the contacts life has been quantified using performance evaluation metrics. Model predictions have been correlated with experimental data. Prognostic metrics including Prognostic Horizon (PH), alpha-Lamda (α-λ), and Relative Accuracy have been used to assess the performance of the damage proxies and a comparison of the two models made

    Establishment of a novel predictive reliability assessment strategy for ship machinery

    Get PDF
    There is no doubt that recent years, maritime industry is moving forward to novel and sophisticated inspection and maintenance practices. Nowadays maintenance is encountered as an operational method, which can be employed both as a profit generating process and a cost reduction budget centre through an enhanced Operation and Maintenance (O&M) strategy. In the first place, a flexible framework to be applicable on complex system level of machinery can be introduced towards ship maintenance scheduling of systems, subsystems and components.;This holistic inspection and maintenance notion should be implemented by integrating different strategies, methodologies, technologies and tools, suitably selected by fulfilling the requirements of the selected ship systems. In this thesis, an innovative maintenance strategy for ship machinery is proposed, namely the Probabilistic Machinery Reliability Assessment (PMRA) strategy focusing towards the reliability and safety enhancement of main systems, subsystems and maintainable units and components.;In this respect, the combination of a data mining method (k-means), the manufacturer safety aspects, the dynamic state modelling (Markov Chains), the probabilistic predictive reliability assessment (Bayesian Belief Networks) and the qualitative decision making (Failure Modes and Effects Analysis) is employed encompassing the benefits of qualitative and quantitative reliability assessment. PMRA has been clearly demonstrated in two case studies applied on offshore platform oil and gas and selected ship machinery.;The results are used to identify the most unreliability systems, subsystems and components, while advising suitable practical inspection and maintenance activities. The proposed PMRA strategy is also tested in a flexible sensitivity analysis scheme.There is no doubt that recent years, maritime industry is moving forward to novel and sophisticated inspection and maintenance practices. Nowadays maintenance is encountered as an operational method, which can be employed both as a profit generating process and a cost reduction budget centre through an enhanced Operation and Maintenance (O&M) strategy. In the first place, a flexible framework to be applicable on complex system level of machinery can be introduced towards ship maintenance scheduling of systems, subsystems and components.;This holistic inspection and maintenance notion should be implemented by integrating different strategies, methodologies, technologies and tools, suitably selected by fulfilling the requirements of the selected ship systems. In this thesis, an innovative maintenance strategy for ship machinery is proposed, namely the Probabilistic Machinery Reliability Assessment (PMRA) strategy focusing towards the reliability and safety enhancement of main systems, subsystems and maintainable units and components.;In this respect, the combination of a data mining method (k-means), the manufacturer safety aspects, the dynamic state modelling (Markov Chains), the probabilistic predictive reliability assessment (Bayesian Belief Networks) and the qualitative decision making (Failure Modes and Effects Analysis) is employed encompassing the benefits of qualitative and quantitative reliability assessment. PMRA has been clearly demonstrated in two case studies applied on offshore platform oil and gas and selected ship machinery.;The results are used to identify the most unreliability systems, subsystems and components, while advising suitable practical inspection and maintenance activities. The proposed PMRA strategy is also tested in a flexible sensitivity analysis scheme
    • …
    corecore