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SUMMARY

The body of work described here investigates development and implementation challenges

associated with a proposed paradigm for fault risk assessment and system health manage-

ment. Health management actions are formulated here in terms of a value associated with

improving system reliability, and a cost associated with inducing deviations from a system’s

nominal performance. The health management problem is considered to be complicated by

the need to accommodate substantial uncertainties that are typically present in estimates of

current component health states and predictions of future component deterioration.

Three simulated case study systems are considered here to highlight some of the funda-

mental challenges of formulating and solving an optimization on the space of available

supervisory control actions in the described health management architecture. Repeated

simulation studies on the three case-study systems are used to illustrate an empirical ap-

proach for tuning the conservatism of health management policies by way of adjusting risk

assessment metrics in the proposed health management paradigm. The simulation stud-

ies also provide an opportunity to make illustrative comparisons between the supervisory

control outcomes achievable if model uncertainty were reduced or eliminated.

The implementation and testing of a real-world prognostic system is also presented to illus-

trate model development challenges not directly addressed in the analysis of the simulated

case study systems. Real-time battery charge depletion prediction for a small unmanned

aerial vehicle is considered in the real-world case study. An architecture for offline testing

of prognostics and decision making algorithms is explained to facilitate empirical tuning of

risk assessment metrics and health management policies, as was demonstrated for the three

simulated case study systems. The real-world case study also serves to provide further con-

text to the role that unavoidable uncertainties play in the implementation and evaluation of

failure risk assessment and management algorithms.
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CHAPTER I

INTRODUCTION

Every physical system is subject to the continuous degradation of its constituent compo-

nents as a function of time and usage. System designers can mitigate some of the risks

posed by potential component failures through a more conservative specification of sys-

tem redundancies, system operating policies, and system maintenance policies. However,

system designers will also strive to avoid unnecessary sacrifices in performance and cost

effectiveness incurred by overly cautious designs. Online estimates of the present health of

system components (fault diagnostics) and prediction of their remaining useful life (fail-

ure prognostics) provide an opportunity for online health management actions that mitigate

failure risks through responsive action rather than pre-planning.

The supervisory health management actions considered here are formulated in terms of

a bounded set of adjustments that may be made to the component loads that would be

allocated by a nominal control system. The component load terminology is used here as a

stand-in for pressure, force, torque, or a wide variety of other stressors that drive component

deterioration and system dynamics. The reduction of component loads will be considered

to extend their likely useful lifetimes; however, this will typically come at the expense of

degrading the nominal performance expected from an unmodified system.

A graphical introduction to the outer-loop supervisory health management paradigm to be

described here is given in Figure 1.1. The architecture presented here is novel; however,

it is posited that this functional breakdown is general enough to represent a wide swath of

other prognostics-based risk management approaches.

The top shaded area in the figure denotes the inner-loop control dynamics of a system. A

system operator or an imbedded controller is assumed to send control signals to powertrain

1



Figure 1.1: A block diagram representation for outer-loop prognostics and risk-based deci-
sion making

components based on a prescribed high level operations plan, the observed states of the

controlled system, and the observed states of the system’s operating environment.

The bottom shaded area in the figure denotes the functional elements in the proposed outer-

loop formulation of prognostics-based health management. The ‘Fault Isolation and Esti-

mation’ functional block is shown to output estimates of current component health states,

based on available sensor measurements from vehicle powertrain components. The ‘Load

Prediction’ block represents the translation of a high-level operations plan into estimates

of anticipated current and future loads that a given nominal control system would place

on system components. The production of component failure time predictions based on

estimates of current component health states and predictions of future component loads is

represented by the ‘Failure Prognostics’ block. The translation of prognostic estimates into

a value representing relative aversion to predicted outcome distributions is represented by

the ‘Risk Assessment’ block. The prognostics-based decision making problem is then con-

sidered to be represented by a search for optimal modifications to a given nominal compo-

2



nent load allocation policy. Optimal load allocation policy modifications will be evaluated

in terms of a trade-off between assessed failure risk and adherence to the system’s nominal

input-output behavior.

This dissertation takes the position that the ‘Risk Assessment’ and performance modifica-

tion blocks in the depicted outer-loop health management architecture are the least mature,

and thus the most deserving of our attention. The approach taken in much of the research

described here has been to replace all other blocks in the functional breakdown shown in

Figure 1.1 with compact models that highlight various sources of model and estimation

uncertainties. This approach is intended to highlight fundamental formulation challenges

associated with the ‘Risk Assessment’ and performance modification blocks in the pro-

posed architecture. Several sources of model and estimation uncertainties are identified in

Figure 1.1 with the ‘Uncertain’ label.

Section 1.1 of this chapter motivates the challenge of optimizing health management poli-

cies based on prognostic estimates. Section 1.2 summarizes the identified contributions of

research described here. Section 1.3 briefly describes the information presented in each

chapter of the dissertation.

1.1 A Motivating Discussion of the Prognostics-Based Decision Making

Challenge

Risk management processes may be viewed as inherent to almost every decision that we

make. However, arriving at a consensus quantification for the risk assessments that guide

our decisions would almost always be the subject of much debate.

The following three questions are central to how the failure risk assessment and prognostics-

based decision making tasks are addressed in this document.

1. Given two probability distributions over the space of possible future outcomes, how

would the preference for one distribution be established?

3



2. What is the relationship between the distribution of control outcomes that would be

observed after repeated run-to-failure testing, and the outcome distributions predicted

using prognostic modeling information?

3. How is preference evaluated for predictions on the space of future control outcomes?

Consider these questions as they pertain to the sample failure time distributions illustrated

in Figure 1.2. Figure 1.2a depicts distributions of component failure times corresponding

to repeated run-to-failure trials of two sample control polices. Figure 1.2b depicts failure

time predictions produced by a prognostic routine for the same two sample control polices.

Figure 1.2a illustrates the fact that results of repeated run-to-failure trials of a given control

policy are generally expected to show some variability corresponding to manufacturing

variations and uncontrolled environmental variations. Figure 1.2b illustrates the fact that

unmodeled dynamics and errors in the system models used by prognostic algorithms are

generally expected to result in prognostic estimates that differ substantially from the failure

time distributions observed in repeated run-to-failure testing.

First, consider question 1: Given knowledge of the failure time distributions observed over

repeated trials of two sample control policies, how would a preference be established?

One can imagine an application dependent process for weighting the relative aversion or

preference for the failure time distribution’s mean, median, mode, upper tail, lower tail,

etc. Different system experts may come up with a different set of metrics, and a different

decision on the preferred control policy, but let us assume that a satisfactory consensus

could be reached for any particular application.

Question 2 asks how prognostic model uncertainty should be assessed in practice. The in-

herent variability expected in repeated run-to-failure trials, and the high cost of conducting

repeated run-to-failure trials to verify the accuracy of prognostic estimates will typically

complicate this problem. The question must however be addressed in the explanation of

every implementation of prognostic prediction. The view taken in this research, is that the

4



Policy 1

Failure Time

Probability

0

Policy 2

(a) Sample failure time distributions given by repeated run-to-failure trials

Policy 1

Failure Time

Probability

0

Policy 2

(b) Sample failure time probability distributions estimated by a prognostic routine

Figure 1.2: Measured (top) and predicted (bottom) distributions for the system failure time
corresponding to two potential control policies

measure of an effective prognostic estimator lies in desirability of the control outcomes

achieved by a decision making policy that acts it. This view posits that a viable prognostic

estimator is one that would enable better supervisory control actions than would otherwise

be made.

Question 3 asks how should preference be evaluated over a set of possible prognostic pre-

dictions. This question is notably similar to Question 1, which asked for the specification of

preference for measured distributions over the space of possible control outcomes. While

it is reasonable to imagine that system experts would be able to express a preference for

measured distributions, as posed in Question 1, it is much more difficult to imagine how

a consensus answer would be generated for Question 3. The difficulty arises because in

addition to the system experts evaluating their relative aversion or preference for the pre-

dicted outcome distributions, the system experts might also want to consider how much

trust they have in the accuracy of the prognostic routines used. The problem of develop-
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ing prognostics-based preference evaluation metrics is addressed here by demonstrating a

means of tuning prognostics-based risk assessments to achieve desirable control outcomes

1.2 Identified Contributions of the Research Effort

1.2.1 Claim #1 - Description of Prognostics-Based Risk Management Using a Retrofit

Nominal Load Modification Architecture

A retrofit architecture for enacting modifications to a nominal component load allocation

policy is described in Chapter 3. Stochastic models of component deterioration as a func-

tion of component loads are used to evaluate constraints on the risk that component fault

modes will exceed specified thresholds at a given prognostic horizon. Constraints on max-

imum tolerances for induced deviations from nominal system input-output performance

are also used to evaluate constrains on supervisory load allocation policies. Strategies for

tuning prognostic risk aversion metrics and for verifying the feasibility of prognostic con-

straints are described in the context of the retrofit architecture. Much of the architecture

description covered in Chapter 3 was previously published in [8, 12, 15].

1.2.2 Claim #2 - Analysis of Supervisory Health Management Using Finite Horizon

Prognostic Estimates

Risk assessment metrics are used to weight a relative aversion to the probability of com-

ponent failure against the relative aversion to supervisory control actions that decrease

failure probabilities at the expense of system performance. Presently, nearly all published

explanations of prognostics-based health management systems consider remaining useful

life (RUL) estimates in risk assessments. However, it is posited here that if future system

demand and fault model uncertainties are high, it may be more useful to assess fault pre-

dictions over short time-scales where estimation uncertainty is smaller than it would be

for RUL estimates. Chapter 4 explores the supervisory control behaviors resulting from

manipulating certain variables in the risk assessment metrics introduced in Chapter 3, in-
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cluding the length of the prognostic horizon over which control preferences are evaluated.

Empirical results are provided for repeated simulation studies on two example systems

with multiple degrading effectors. The described simulation studies are used to develop

novel insights into the general problem of tuning the risk assessment metrics to achieve

a desirable trade-off between system performance and system reliability. Analysis of the

prognostics-based component load allocation problem on the multi-effector systems de-

scribed in Chapter 4 was previously published in [12, 8, 17].

1.2.3 Claim #3 - Demonstration of the Explicit Incorporation of Future Demand Mod-

els into Health Management Policies

Chapter 5 describes the incorporation of stochastic models for future system demands into

a Markov decision process formulation of the supervisory health management problem.

Another simulated case study example is presented to demonstrate the incorporation of

stochastic process models for future system loading and fault growth physics into a repre-

sentative Markov decision process. Dynamic programming is shown to identify an optimal

load allocation policy for the example stochastic system. Repeated simulations are used to

compare the optimal health management control outcomes calculated with and without un-

certainty in models of the sample fault growth process and future loading demands. Much

of the material describing the Markov decision process formulation of the health manage-

ment problem and the illustrative case study example system was previously published in

[10, 11].

1.2.4 Claim #4 - Real-World Demonstration of Stochastic Component Health Deple-

tion Modeling in terms of Uncertain Future Demand Estimates

Chapter 6 describes a framework for offline software-in-the-loop and hardware-in-the-loop

testing of battery charge depletion prediction and charge management routines for an elec-

tric aircraft. The dynamic loads on aircraft powertrain components are identified using a

real-time simulation of airframe dynamics running on a flight simulator, and an inner-loop
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flight control policy (executed by either an autopilot routine or a human pilot). A stochastic

model is created to predict the depletion of battery charge based on estimates of the current

battery charge and a defined vehicle flight plan. The analysis presented in Chapter 6 is

drawn mostly from two papers, [13, 22]. Development of battery charge management for a

similar application, a hybrid electric vehicle, was presented in [9].

1.3 Organization of the Dissertation

• Chapter 2 gives background on the problem of prognostics-based risk assessment and

the use of supervisory control policies to manage fault risk.

• A modular methodology for fault risk assessment and management is introduced in

Chapter 3.

• A high level exploration of the load allocation problem for systems with multiple

connected effectors at different states of health is given for two sample applications

in Chapter 4. The sample applications considered are an electromechanical actuator

(increasingly used in aerospace applications) and a four wheeled skid-steered vehicle.

• The identification of a component load allocation policy that optimizes a given stochas-

tic fault growth model and future demand model is formulated as a Markov decision

process in Chapter 5.

• Chapter 6 considers software-in-the-loop and hardware-in-the-loop testing of outer-

loop prognostics and supervisory decision making routines on a real-world system.

The real-world failure mode considered is battery charge depletion on a small battery

powered aircraft.

• Chapter 7 gives concluding remarks.
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CHAPTER II

BACKGROUND

Continuous improvements in fault diagnostic and fault growth prognostic technologies have

spawned a growing research interest in the use of diagnostic and prognostic information

to improve system control and maintenance. In general, the application of an analytical

approach to the implementation and evaluation of prognostics-based decision making tech-

niques will be complicated by the potential for high uncertainty in estimating the future

effects of available supervisory control actions. There is also a need to define a computa-

tionally tractable space of present and future supervisory decisions to be optimized over.

The origin and history of the prognostics-based decision making (PDM) is described briefly

in Section 2.1. Background on the representation of uncertainty in failure prognostic esti-

mates is provided in Section 2.2. Risk quantification metrics are discussed in Section 2.3.

Finally, Section 2.3 introduces the use of component load allocation for risk management.

2.1 Origin and History of the Problem

Fault analysis and fault risk mitigation strategies have become deeply ingrained in the de-

sign processes for many systems, and a wide variety of standardized methodologies have

emerged over the past several decades.

2.1.1 Fault Risk Quantification Using Historical Data

The fault analysis process typically starts with the identification of potential failure modes

and the quantification of severity and likelihood for each potential failure mode, based on

expert knowledge and historical data. The failure modes, effects, and criticality analysis

(FMECA) is one of the most widely known and applied a priori fault analysis methods.

It was developed in the early 1970’s by NASA for aerospace and defense [48], and is

9



currently widely applied in industrial automation [34], automotive [45], and aerospace [69]

industries.

Fault Tree Analysis (FTA), Event Tree Analysis (ETA), Six Sigma (6σ ), and Reliability

Block Diagrams (RBD) are examples of other popular techniques for fault analysis and

mitigation based on historical failure rates. Such techniques will continue to play an ever

more prominent role in the design of hardware redundancy specifications and contingency

management policies.

2.1.2 Condition Based Maintenance and Control

In addition to the growing trend towards utilizing historical fault data to manage failure

risks, there is also a growing push to utilize technologies for online fault identification and

fault growth prediction to improve the operation and maintenance of systems. The imple-

mentation of online anomaly detection and diagnostic routines are enabling the increased

development and use of condition based maintenance and control (CBMC) policies. Re-

ductions in maintenance costs and failure rates resulting from the implementation of CBMC

are quantified for several systems in [25]. Automated control recovery after a known fault

mode is detected has been shown using Pseudo-inverse [43, 19], model predictive control

(MPC) [56], and H2 and H∞ robust control theory [28].

CBMC techniques can yield dramatic improvements in risk management for incipient fault

modes, to the extent that they are able to detect faults before they become catastrophic and

adjust maintenance and control policies accordingly. Real-time diagnostics-based tech-

niques for CBMC are rapidly growing in popularity in industrial, automotive, and aerospace

applications. Further improvements in performance and safety are expected if the diagnos-

tic information used by CBMC routines is supplemented with prognostic estimates of fault

growth as a function of future use.
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2.1.3 Prognostics-Based Health Management

Several recent government initiatives are dedicated to the analytical development of diag-

nostics and prognostics enhanced control techniques, such as the Integrated Vehicle Health

Management (IVHM) Project (initiated in 2008) [89], the Integrated Resilient Aircraft Con-

trol (IRAC) Project (initiated in 2007) [51], and the Aircraft Aging and Durability (AAD)

project [97] (initiated in 2008).

Predicting the evolution of future system states may be performed in real-time by propagat-

ing input uncertainty, model uncertainty, and state uncertainty forward in time until failure

conditions are reached. Component failure time estimates may be reported in terms of a

probability distribution or in terms of a range of values falling within a given confidence

interval. Particle filtering [3], extended Kalman filtering [67], and Markov modeling [38]

are examples of predictive filtering techniques that have been used to propagate current

state and model uncertainties forward in time.

The development and use of prognostic information is typically a challenging proposition

due to significant uncertainty that is generally unavoidable in predicting future fault growth.

The models used to estimate fault dynamics are typically split into two main camps; one

is data driven modeling [36, 82], and the other is physics based modeling [7]. Although,

an ideal approach would likely make use of both physics of failure models and data driven

model adaptation techniques, as described in [72, 23, 67].

The use of stochastic estimates of future loading in prognostic predictions is described in

[76, 90]. Because outer-loop supervisory control actions will effect component load alloca-

tions, outer-loop supervisory control policies could also be factored into the computation of

fault growth predictions. The incorporation of outer-loop control policies into fault growth

predictions is described in [10].
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2.2 Uncertainty Representation in Prognostics

The eventual failure of components within a system is considered in this document in terms

of component fault modes that will grow in severity until they cross a threshold, after which

they are considered no longer viable. Fault magnitudes are assumed to be represented by

a real number corresponding to a measurable physical property such as crack length, spall

width, or pitting depth; although, in many cases, faults cannot be directly measured in situ

and diagnostic routines are needed to approximate current fault magnitudes based on the

secondary effects observed in available sensor measurements.

Consider the dynamics of a particular component failure mode to be defined by the follow-

ing generic nonlinear mapping:

γ̇l = f (γl,ul,ξl) (2.1)

where γl is a random variable representing a fault magnitude for the lth component in a

system, ul represents a loading profile applied to component l, and ξl is a random variable

representing uncertainty in this physics of failure model.

The component loading variable, ul , may represent pressure, force, torque, or a wide variety

of other stressors that drive component deterioration. Component loading profiles are as-

sumed to be dictated partly by the dynamics of the system’s operating environment, which

may not be entirely predictable, and partly by the supervisory health management control

actions taken in response to online observations of environmental states and component

fault magnitudes.

Uncertainty in estimating the dynamics of component degradation as a function of the loads

or stresses applied to a specimen is often included as a noise term in lumped parameter and

data driven fault growth prediction models [72, 63]. A bounded environmental disturbance

term is typically used to incorporate modeling of future exogenous system stresses into

the analysis of robust and reconfigurable control design techniques, such as H∞ control, L1
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control, and gain scheduling [104, 102].

Sensor noise and feature mapping uncertainties will often result in significant diagnostic

uncertainty, and it is common practice for diagnostic estimates to be reported in terms of a

probability distribution over the potential fault magnitudes that could correspond to a given

set of observations. A recursive expression for the Bayesian belief in the current state of a

particular fault mode, given a set of sequential observations is written as;

p(γl (k) |zl (k)) = α p(zl (k) |γl (k)) ·
ˆ

p(γl (k) |γl (k−1) ,ul (k−1))

· p(γl (k−1) |zl (k−1))dγl (2.2)

where zl represents observations of a component fault magnitude, p(γl (k) |γl (k−1) ,ul (k−1))

represents uncertain fault growth physics modeling, p(zl (k) |γl (k)) represents an observa-

tion model, and α is a normalizing constant. The recursive nature of this expression makes

it computationally expensive to compute, opening the door for approximate Bayesian meth-

ods and machine learning to be used for fault magnitude estimation [26].

The application of analytical processes for uncertainty representation and management

have been described in many publications on fault diagnostic classification [32, 52, 60]

and failure prognostic modeling [78, 64, 77, 91]. Prudent methods for obtaining diagnostic

and prognostic probability density functions (pdfs) should be selected on a case-by-case

basis. Particle Filtering [4, 64, 63, 93] and Bayesian Reasoning [72, 84] are commonly

used approaches for estimating fault magnitudes and predicting future growth based on

available measurements and physical modeling.

Fault growth predictions may be generically represented as:

Pr [(γl (tp + τ) = γl|ul (t))] , t ∈ [tp..tp + τ] (2.3)

where tp denotes the time at which a prediction is made, and τ denotes the length of the
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horizon to be predicted over.

Prognostic pdfs are represented in this document using the following more compact form

of Eqn. 2.3:

p(γl (t + τ) |ul (t)) (2.4)

The time period until the hazard threshold is reached is referred to as the remaining useful

life (RUL) or the time-to-failure (TTF). RUL and TTF probability distributions are repre-

sented here as

Pr [γl (tp + τ) = ζl|ul (t)] , ∀ τ ∈ [0..∞] , t ∈ [tp..tp + τ] (2.5)

where ζl denotes the hazard threshold for component l, and τ is a random variable repre-

senting RUL.

2.3 Risk Quantification

The application of analytical processes for uncertainty representation and management has

been described in many publications on fault diagnostic classification and failure prognos-

tic modeling, as cited in the previous section. However, evaluating the effectiveness of tools

for making intelligent control decisions based on available diagnostic and prognostic infor-

mation is a much more complex proposition, due to the lack of certainty and repeatability

inherent to such problems.

The specification of appropriate metrics for assessing the risk posed by probabilistic prog-

nostic predictions of future component health deterioration may generally be considered

independently from the problem of building prognostic models. In practice, some form

of scenario analysis could be used to derive and validate risk assessment metrics though

empirical studies wherein people familiar with the targeted systems would quantify the rel-

ative value of preserving nominal system performance and the relative aversion to the risks

posed by potential fault scenarios [2, 80].
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As was described in Chapter 1, Section 1.1, the translation of outcome evaluation metrics

into metrics for evaluating the relative preference for various possible fault scenarios is

complicated by the fact that the trust in prognostic outputs must also be incorporated. The

utilization of strategic analytics to redesign a system’s mission based on diagnostic and

prognostic estimates is discussed at a high level in [29]. A discussion of the formulation of

convex risk metrics to enforce asymptotic safety and asymptotic precision limits is found

in [33]. Quantitative metrics for assessing the performance of prognostic algorithms are

compared in [78].

Candidate risk metrics may be drawn from the growing body of publications offering dis-

cussions of health management systems (HMS), or integrated systems health management

(ISHM) architectures. Although, nearly all current studies in this area consider only end

of life predictions in risk calculations and ignore data regarding short term fault growth,

which is probably not ideal in many cases.

Literature on risk management in finance and actuarial science contains a rich array of tools

that may be adapted to analyze prognostic information. Value at risk (VaR) is an example of

a prolific financial risk management tool that may be utilized in analyzing fault prognostic

risk. VaR metrics are commonly used to judge the financial risk of investments [30]. The

VaR metric has been applied to a wide variety of risk management problems in areas such

as industrial systems management [81] and agricultural resource planning [95]. Chapter

4 provides several examples of VaR metrics for assessing risk and enforcing prognostic

constraints at a chosen prognostic horizon.

Expected utility (EU) is perhaps the most prolific tool for risk based decision making in

the fields of decision theory and Bayesian reasoning. It is essentially a way of encoding

risk into an expected value calculation. The reader interested in understanding EU theory is

encouraged to start by considering the famous St. Petersburg paradox [75], which originally

motivated mathematicians to formulate EU theory. The reader is then encouraged to look
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up explanations for the three fundamental axioms of EU theory: ordering, independence,

and continuity. The review papers by Schoemaker [79] and Camerer [20] describe many of

the key empirical studies, dating back from the early 1950s, that have played a particularly

important role in shaping EU theory.

2.4 Component Load Allocation for Risk Management

The load allocated to individual components at each control time-step by a given control

policy is assumed to be a primary driver of component degradation. The aggregate of

individual component loads is also assumed to drive a system’s mechanical dynamics.

Practical applications of control allocation based on fault information are already found in

aerospace [31, 85, 101, 55], automotive vehicles [40], and marine vehicles [46]. Optimal

load allocation to extend the RUL of a single component is discussed in [37, 101]. A survey

of efficient methods for determining the optimal control allocation for general linear and

nonlinear systems is discussed in [62]. Proof of the equivalence of this type of control

allocation and optimal control is given in [39] for nonlinear systems with precise modeling

and a quadratic cost function.

A modularized approach to the control allocation for risk management problem is described

in the next chapter.
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CHAPTER III

A MODULAR METHODOLOGY FOR FAULT RISK ASSESSMENT

AND MANAGEMENT

3.1 Introduction

A modular architecture for fault risk assessment and management is described in this chap-

ter. The potential benefits of the proposed approach, as well as its fundamental limitations,

are discussed.

The following general assumptions are made regarding the data and modeling available to

the control routines.

Assumption 3.1. A sufficiently accurate dynamic model of the system is known at all

times. Where a definition of sufficient model accuracy is provided in Section 3.2.3.

Assumption 3.2. Fault magnitudes will increase monotonically with component load.

Assumption 3.3. Diagnostic and prognostic estimates for each component are given in

terms of probability density functions (pdfs).

3.2 A Component Load Allocation Control Structure

This section introduces the component load allocation for risk management control struc-

ture in terms of a nominal control loop, a component load allocation loop, and a low-level

load enacting controller.

3.2.1 The Nominal Control Loop

Figure 3.1 shows a block diagram for a system under nominal control. Here, each system

effector is assumed to have an embedded controller that adjusts component input signals,
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Figure 3.1: Block diagram showing the assumed structure of nominally controlled systems

θ̃c, based on the difference between component set-point commands, θ c, and component

state feedback signals, θo. A reference system state vector, designated yc, is assumed to

be specified by a high level planning and scheduling routine. The difference between the

desired state vector and an observed state vector, designated yo, is assumed to be acted on

by some nominal control logic that maps (yc− yo)→ θ c.

The load exerted on or by component i at a given time is represented by ui. The net output

force exerted by the system on its environment is represented by the variable, ν , and the

mapping between ui and ν is represented by h(·). The physical mapping represented by

h(·) is assumed to be known for a system of interest; however, it is allowed to be dynamic

and nonlinear.

3.2.2 Component Load Allocation

A block diagram designating separable control tasks in a load allocation for risk manage-

ment controller is given in Figure 3.2. The optimization problem that is the focus of this

research is formulated as a middle layer in the control architecture illustrated in Figure 3.2.

The first step in the load allocation control structure shown in Figure 3.2 is the inversion

of nominal control dynamics to determine the net control effort that would be output by

the nominally controlled system at each control time-step. After a fault has been detected,
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Figure 3.2: A functional breakdown of control tasks in the proposed component load allo-
cation framework

the state observations and control commands that would have been input to the ‘Nominal

Controls’ block, shown in Figure 3.1, are rerouted to the ‘Desired Control Effort’ block,

shown in Figure 3.2. The output of the ‘Desired Control Effort’ block is an estimate of the

forces that would have been exerted by a system on its environment if no fault had occurred

and the nominal control laws were still in effect.

The vector, r, in Figure 3.2 is used to represent the current estimate of a nominally con-

trolled system’s output force response to a given set of inputs from high level planning and

scheduling routines. This vector is viewed as the reference performance to be delivered by

component load allocation routines in each of the system’s output degrees of freedom. In-

dividual component loads are then allocated by a risk management policy that will attempt

to minimize induced deviations from a system’s nominal input-output performance, while

also lowering the loads on degrading components in order to increase safety.

An advantage of having both system kinematics and fault growth dynamics formulated in

terms of component loading is that load allocations between functionally redundant com-

ponents may be separated from the top level supervisory control problem and handled by a

nested optimization routine. A mathematical description of the nested optimization prob-

lem for systems with functionally redundant components is given in Appendix A.

The optimal load allocation for risk management problem is represented in Figure 3.2 by
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two functional blocks. The ‘Series Control Modification’ block represents the problem

of determining the degree to which the faulty system will deviate from the output force

that would have been exerted by a healthy system in each of the system’s output degrees

of freedom at each control time-step. The ‘Parallel Control Distribution’ block represents

the problem of distributing load among active redundancies in a system while delivering a

specified net output force from the composite system.

The vector, ρ , in Figure 3.2 represents the relative deviation between the net output control

effort that would have been exerted by a system on its environment if a nominal control law

were used, and the net output control effort that is actually exerted by a given health man-

agement control routine at each control time-step. The vector, r̃, in Figure 3.2 represents a

modified net output control effort allocation, given by the dot product of ρ and r,

r̃ = ρ · r (3.1)

The state space of feasible values for r̃ will be dictated by the limitations of the system’s

individual control effectors, and the acceptable range for the nominal performance modi-

fier, ρ . Sections 3.3.1 and 3.3.2 of this chapter, introduce the formulation of performance

and prognostic constraints to be enforced over the domain of feasible component load al-

locations.

The variable, r̃i, in Figure 3.2 represents the load allocated to component i by the ‘Paral-

lel Control Distribution’ functional block. Because the optimization of the system output

control effort vector, r̃, requires knowledge of the component failure risk that would be

induced by a particular system output load demand, the mapping r̃→{r̃1, r̃2, ..r̃N}, should

be used to optimize the ‘Series Control Modification’ policy.
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Figure 3.3: A block diagram of component load assignment and inversion of embedded
control logic

3.2.3 Low Level Component Load Allocation

Figure 3.3 shows the insertion of a low level controller that is assumed to work as an outer-

loop controller on top of other embedded component control logic. The main problem

the implementation of such controllers lies in determining how to make clever use of the

sensing and control hardware already on the system to enable accurate load allocation.

Model predictive control (MPC) and dynamic inversion are commonly used to implement

a desired component load allocation in a damaged system, as described in the references

[56, 54, 17] and [47, 61] respectively.

Figure 3.4 depicts a generic formulation of low level control dynamics, in which the error in

attaining allocated component loads is represented by the dynamic variable δi. A constraint

on the accuracy for achieving a specified component load allocation is given as:

|δ | ≤ ε (3.2)

where ε denotes the error bound on a component load controller.

Acceptable ranges for δi and ε would need to be developed on an application by application

basis to ensure system stability and model fidelity. The discussion of the higher level

control effort allocation routines will proceed in this document with the assumption that
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δi and ε are small enough to be ignored.

3.3 Stochastic Modeling of Fault Growth in terms of Component Load

and Net Output Control Effort Allocations

Consider a state space of feasible component load allocations that may be enacted by a

supervisory controller at current and future decision making epochs. The general stochastic

component degradation process given in Eqn. 2.1 is formulated here in terms of a discrete

Markov process,

pl
i, j(ul)= p(γl (k+1)=s j|γl (k)=si,ul)

= p(ξl (k) = ξl) where f (si,ul,ξl) = s j, si,s j ∈ Sl, ul (k) ∈U l (k) , k ∈ N (3.3)

m

∑
j=0

pl
i, j = 1, ∀ i ∈ {0,1, ...,m} (3.4)

Here, Sl and Ul represent a uniformly quantized state space of potential fault magnitudes

and potential load allocations for component l respectively, and pl
i, j(ul) represents the prob-

ability of transitioning from damage state si to damage state s j, given a particular com-

ponent load allocation, ul . The function, f (si,ul,ξl), represents a model of fault mode

dynamics,

γl (k+1) = f (γl (k) ,ul (k) ,ξl (k)) (3.5)
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Figure 3.5: A discrete Markov process representation of fault growth modeling

where γl represents the damage state of component l, and ξl is a random variable that is

used to represent uncertainty in the fault dynamics model.

Equation 3.4 specifies that the sum of all transition probabilities defined at each system state

must always be equal to one. Figure 3.5 shows an illustration of a discrete Markov process

representation of a fault growth model. Such discrete Markov process models capture the

entirety of modeled dynamics using a quantized set of fault states to be observed at discrete

time-steps, and a fixed set of state transition probabilities.

A mandate of monotonically increasing component fault modes is incorporated into the

Markov process notation given in Eqn. 3.3 as:

pl
i, j = 0, if j < i,

m

∑
j=0

pl
i, j = 1 ∀i ∈ {0,1, ...,m} (3.6)

This constraint will be problematic for other fault growth modeling techniques that repre-

sent process uncertainty with an analytical distribution that lacks an explicit lower bound.

For example, in the case of Kalman filtering or Gaussian process models of fault growth,

an assumption of Gaussian uncertainty would introduce some probability that the fault

mode will be smaller in the future than it was known to be in the past. It would be nec-

essary, in such cases, to assure that the probability attributed to non-realizable outcomes,
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P(γl (τ)< γl (t)) for τ > t, will be acceptably small.

The state transition probabilities defined in Eqn. 3.3, are directly derivable from the fault

mode dynamics model represented in Eqn. 3.5, given a model for the statistics of ξ , and

kinematic modeling sufficient to determine the component loads that result future control

actions and environmental inputs.

As described in Section 3.2, the net output control effort, ν , exerted by a system at each

control time-step is expressed in terms of a nominal control effort output response r, and a

performance metric, ρ , as:

ν = ρ · r (3.7)

The nominal control effort output response of a given system is defined here using the

following functional mapping:

r = G(w,x,xc) (3.8)

where G(w,x,xc) maps a system state, x, a system state command, xc, and an exogenous

system load, w, to an expected nominal control effort output response, r.

The minimum damage mapping between the net output loads exerted by a system on its

environment, and the loads on constituent components is denoted by the mapping

u(k) = H (ν (k)) (3.9)

where,

H (ν (k)) = min
u

E { f (γ,u,ξ )} , s.t. ν = Bu (x) ·u (3.10)

Derivation of the minimum damage mapping is described in Appendix A.
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Equation 3.3 can now be rewritten in terms of the performance metric, ρ , as:

pl
i, j(ρ (k))=p(γl (k+1)=s j|γl (k)=si,ρ=ρ (k)) = ∑

w∈W
∑

ξ∈Ξ

p(w(k) = w) · p(ξl (k) = ξ ) ,

where f (si,H (ρ ·G(w,x,xc))l ,ξl) = s j, si,s j ∈ S (3.11)

The process uncertainty terms, ξl , are considered to belong to a stationary distribution,

and a potentially non-stationary distribution is considered for the exogenous inputs to the

system, w. This formulation of fault growth dynamics provides a convenient means for

analyzing the prognostics-based control problem, because it directly relates modifications

of system output performance to predictions of component degradations.

3.3.1 Performance Constraints

Operational constraints on minimum allowable output performance and maximum allow-

able fault growth risk are considered here. An operational constraint on minimum allowable

system performance is considered to be defined in terms of a maximum allowable deviation

from some commanded system state:

|xc (k)− x(k)|i ≤ ∆i (k) , i ∈ {1,2, ...,n} (3.12)

where ∆i specifies a maximum acceptable error between the ith dimensions of x and xc.

Equation 3.12 is approximated in terms of a maximum allowable deviation from a given

nominal control effort output profile as:

|ri (k)−νi (k)| ≤ ∆̃i (k) , i ∈ {1,2, ..., p} (3.13)

where ∆̃i (k) specifies a maximum acceptable error between the ith dimensions of ν and r.

The constraint is expressed in terms of the performance metric ρ by substituting Eqn. 3.7
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into Eqn. 3.13;

|1−ρi (k)| ≤
∆̃i (k)
ri (k)

, i ∈ {1,2, ..., p} (3.14)

∆̄i (k) =
∆̃i (k)
ri (k)

(3.15)

where ∆̄i now represents a constraint on the maximum allowable deviation from a system’s

nominal control effort output in dimension i at time-index k.

3.3.2 Prognostic Constraints

Value at risk (VaR) metrics are commonly used to judge the financial risk of investments

[30]. The VaR of a random variable X at a confidence level ψ is defined as:

VaRψ (X) = inf{x ∈ R : P(X < x)> ψ} (3.16)

Constraints on component longevity may be enforced at a fixed prognostic horizon through

the specification of a lower bound on acceptable VaR assessments of system health over

the range t = [tp, tM]. This metric has been applied to a wide variety of risk management

problems in areas such as industrial systems management [81] and agricultural resource

planning [95].

A finite horizon constraint on future fault growth risk is written as:

VaRα (γl (tp + τ))> ζl (tp + τ) (3.17)

where γl represents a state of health (SOH) index for component l, tp represents the time

at which a fault growth prediction is made, τ specifies a time horizon at which prognostic

constraints will be evaluated, ζl specifies a lower bound on the VaR estimates of component

health over the range t = [tp, tM], and α specifies the maximum acceptable probability that

the health of component l is less than ζl at time tp + τ .
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Figure 3.6: Evaluation of the prognostic constraint at several finite horizons for two sample
component loading profiles denoted ‘High’ and ‘Low’

Constraints on the minimum acceptable component failure time may be specified in terms

of a maximum acceptable probability that the component will reach a given SOH index

before a given time:

VaRα (γl (T ))> ζl (3.18)

where α represents an upper bound on the probability that component l will be lower than

the SOH index, ζl , at time, T .

Figure 3.6 illustrates the spread of uncertainty for future SOH predictions, depicted at finite

horizon prognostic horizons, (τa,τb,τc, tM), for two sample component loading profiles

denoted ‘High’ and ‘Low’ . The growth of uncertainty in future SOH predictions over

large time horizons will tend to diminish the utility of those estimates, which motivates the

use of shorter horizon predictions in risk management control loops. A sample definition

for the prognostic constraint, ζl , is shown in the figure.

The specification of an appropriate profile for the hazard threshold, ζl (t), will be left as a

design choice. Some general considerations for the specification of an appropriate profile

include:

• If component health is expected to be monotonically decreasing and it is ever the
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case that VaRβl
(γl (tp))< ζl (tp + τ), then the prognostic constraint is unsatisfiable.

• The greater the difference between VaRβl
(γl (tp)) and ζl (tp + τ), the greater the con-

trol freedom allowed under the prognostic constraint.

Many publications on the topic of prognostics-based control elect to simplify the prognos-

tics problem by assuming that component loadings will be unvarying over the prediction

horizon:

u(t) = u(tp) ∀t ∈ [tp,∞] (3.19)

However, in most cases, time-varying environmental loading conditions and time-varying

component health estimates are expected to result in time-varying loadings on a system’s

components. The production of accurate prognostic estimates in such cases, requires future

component loadings to be modeled as a stochastic process that accounts for the statistics of

all parameters affecting component load allocations within the controlled system.

3.3.3 Verifying the Feasibility of the Constrained Load Allocation Problem

The existence of feasible solutions to the constrained load allocation problem is verified

in simulation studies by demonstrating the existence of at least one feasible solution. The

candidate load allocation used to demonstrate the existence of controls that satisfy both

performance and prognostic constraints is selected to be one that supplies the minimum

output force allowed under the performance constraint.

The minimum allowable output force profile is defined here as:

ν̃ = min{ν} , s.t. |ν− r|= ∆̃ (3.20)

where ν̃ represents the minimum output control effort that is allowed under the performance

constraint.

Feasible solutions to the component load allocation problem then exist if there is a distri-
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bution of component loads that result in ν̃ and do not violate the prognostic constraint at

the end of the mission. This condition is written as follows:

Pr(di (tM)> γi|ν i (t))≤ α, s.t. ν̃ = h(ν1,ν2, ...,νN) , t ∈ [tp, tM] (3.21)

where h(·) represents the kinematic mapping of component loads to the net output forces

exerted by a system on its environment, and tM represents the end of mission (EOM) time.

The dimensionality of space of feasible component load distributions corresponding to

ν̃ = h(ν1,ν2, ...,νN) is equal to the degree of active redundancy in the system. The search

for feasible control solutions can be terminated as soon as one feasible solution is identified.

3.3.4 Strategic Definition of Performance Objectives and Risk Aversion Metrics

The proposed fault risk assessment and risk management paradigm will indirectly address

the task of designating risk assessment metrics through comparative studies of the efficacy

of various formulations for the bounded load allocation problem on selected application

examples.

It is proposed that system designers could start from the definition of an analytical ex-

pression to evaluate the desirability of future control outcomes. For example, the ultimate

objective for operations and maintenance of industrial robotics will likely be to maximize

future profits, and for a NASA rover, the objective may be to maximize the vehicle’s useful

lifetime and landmass explored. The definition of such outcome evaluation expressions

provides a means of assessing the relative desirability of control policies through iterative

simulation studies. Iterative simulation studies are examined here to tune risk assessment

metrics based on the relative desirability of control outcomes corresponding to the online

optimization of a given set of risk metrics. The application of this type of iterative empiri-

cal approach to the definition of risk quantification metrics is more of an academic exercise

than something that would actually be performed on a real system. On real systems such
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iterative run-to-failure experiments would be very costly and impractical. However, once

this paradigm is understood it can be an instructive conceptual tool.

A general form of the risk metric to be optimized by supervisory load allocation controllers

is:

J(u,ρ) = Jp(ρ)+λ · Jd (p(γ (tp + τ) |u(t))) (3.22)

where p(γ (tp + τ) |u(t)) represents component health predictions evaluated at a finite hori-

zon, using the component loading vector, u(t). Jp(ρ) represents a penalty function that

assigns a cost to induced deviations from a system’s nominal output performance,

Jd (p(γ (tp + τ) |u(t))) penalizes aversion to prognostic pdf estimates, and λ is a weight

that captures the relative importance of performance and reliability.

Chapters 4 and 5 present empirical simulation studies to demonstrate the effects that various

risk metric formulations have on resulting prognostics-based supervisory control policies

for several simulated application examples.
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CHAPTER IV

AN EXPLORATION OF LOAD ALLOCATION AMONG SIMILAR

DEGRADING COMPONENTS

4.1 Introduction

This chapter describes the load allocation for risk management problem in the context of

two example systems: a triplex redundant electromechanical actuator (EMA), and a skid-

steered unmanned ground vehicle (UGV). The two example systems are used to demon-

strate the allocation of load in systems with multiple similar degrading effectors. An empir-

ical model for winding insulation degradation in DC motor systems is adapted to simulate

the degradation of the motors in both example systems over simulated missions.

The EMA and UGV systems are used to illustrate the challenge of deciding how load

is best split among similar cooperating components at different states of health. In both

cases substantial conceptual and computational challenges are shown to stand in the way of

optimizing system output performance and prognostics-based risk metrics. Analysis of the

prognostics-based component load allocation problem on the EMA and UGV systems was

previously published in [8, 17] and [12] respectively. In addition to both examples being

informative to the general theoretical discussion of prognostics-based control allocation

problems, the analysis of prognostics-based decision making on these example systems is

also motivated by the fact that both systems are seeing increasing use in the safety minded

domains of aerospace and exploration vehicles respectively.

EMAs are commonly used in commercial aircraft, military air/land vehicles, robotics, and

industrial process [87], in which system failures would be extremely costly and possibly

dangerous. A triplex redundant EMA of the type used on aircraft is shown in Figure 4.1.

Diagnostic and prognostic studies for similar EMA systems are found in [17, 16, 99, 37].
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An illustration of a skid-steered vehicle is shown in Figure 4.2. Each of the four wheels

of the skid-steered vehicle are fixed to the vehicle frame, and are pointed straight forward.

Each of the wheels is powered by an independently driven DC motor. The four wheel

motors will interact with each other and the vehicle through their mutual contact with the

ground.

Figure 4.1: Photograph and illustration of mechanical coupling in a triplex redundant elec-
tromechanical actuator

4

3

2

1

Figure 4.2: An illustration of a skid-steered vehicle

4.2 A Fault Growth Model

Winding insulation breakdown is considered to be the primary failure mechanism for the

example systems considered in this chapter. The rate of motor winding insulation break-

down is assumed to be driven primarily by the thermal loads on motor windings. A stan-

dard heuristic model for this relationship is the ten-degree rule, introduced in 1930 by

Montsinger [57]. The useful lifetime of motor winding insulation is observed to be roughly

halved for each increase of 10◦C in the exposure temperature. This exponential relationship
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between winding temperature and expected winding life is expressed as:

LN (Tw (t)) = αe−βTw(t) (4.1)

where the α and β coefficients parameterize the linear part and exponential part of the

anticipated lifetime model respectively, LN represents the anticipated lifetime of new in-

sulation in seconds if it is held at a given temperature, and Tw(t) represents the winding

temperature at time t. A halving of insulation life for each 10◦C rise in temperature corre-

sponds to β = 0.069 in this equation.

The empirical model of expected winding lifetime as a function of temperature will be

shown to play an illustrative role in the analyses presented here. Note that, if the reader

is interested in implementing motor winding insulation diagnostics and prognosis, more

sophisticated fault detection and fault progression models can and should be explored.

Each of the parameters in the fault model defined in Eqn.4.1 will be viewed here as random

variables with priors defined based on available empirical and/or heuristic knowledge of

the winding degradation process. The value of α in the model will depend on the grade

and thickness of the materials used to insulate the motor windings. The α value for a

particular winding could be estimated experimentally by running several windings at a

fixed temperature and observing the distribution of realized motor winding lifetime.

Motor health is estimated at a given time, tp, by accumulating the portion motor health that

was expended during past operation.

γ (tp) = γ (0)−100 ·
ˆ tp

0

1
LN (TW (τ))

dτ (4.2)

where γ ∈ [0,100] represents winding SOH percentage, TW represents the average winding

temperature, and LN(Tw) is given by the exponential model defined in Eqn. 4.1. Here,

γ = 100 indicates perfect health, and γ = 0 indicates failure.
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Figure 4.3: Addition of uncertainty to the insulation breakdown model

Figure 4.3 shows a probabilistic insulation life versus temperature estimate resulting from

adding a probability distribution to the α coefficient in Eqn. 4.1. The value of the β coef-

ficient in Eqn. 4.1 is set to β = 0.069. The probability distribution assumed for α in this

example has a mean of α = 1011, and two standard deviations above and below the mean

are given by α =
(
1012,1013) and α =

(
1010,109) respectively. Uncertain beliefs about

the true value for β in the winding degradation model could similarly be incorporated into

the winding lifetime model shown in Figure 4.3.

4.3 A Thermal Model

The thermal dynamics modeling for the DC motors used here is split into two parts. First,

winding temperature is expressed as a function of the Ohmic power loss in motor wind-

ings. Second, the Ohmic power loss in the windings is expressed as a function of torque

measured at the motor output shaft. Although the modeling presented here represents a

fairly simplistic approach to representing winding thermo-electrical dynamics, the realism

is deemed sufficient for the higher level control problem analysis that is the focus of this

work.
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Figure 4.4: An equivalent circuit model for motor winding temperature dynamics

A first order equivalent circuit model [59], shown in Figure 4.4, is used to represent the

thermo-electrical dynamics of the motor windings. Winding-to-ambient temperature is

represented by TWA in the model, CWA and RWA represent the thermal capacitance and

thermal resistance between the motor winding temperature and the ambient temperature,

and Ploss represents Ohmic power loss in a motor’s windings.

Appendix B describes the derivation of the following ODE expression relating motor torque

output to winding temperature dynamics

ṪW (t) =−TW (t)−TA

RWACWA
+

(
TM (t)

kT

)2 Rt

CWA
(4.3)

TW represents the temperature of motor windings. TA represents the ambient temperature of

the motor housing. RWA and CWA represent the thermal resistance and thermal capacitance

respectively of the motor winding and motor housing. Rt represents the motor winding

resistance. TM represents the toque at a motors output shaft, and kT represents a coefficient

of proportionality that relates winding current and motor torque.

4.4 Application Example - A Triplex Redundant Electromechanical Ac-

tuator

Performance and prognostic metrics are discussed and demonstrated here for a relatively

easy to understand EMA example. The primary failure mechanism of the EMA is assumed
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to be the degradation of motor windings. The EMA system considered here consists of

three independently operated DC motors that are each geared to the output shaft of a linear

actuator. The results and analysis generated here for a multiple input single output system

will provide insight into the more general and more difficult to analyze case of multiple

input multiple output (MIMO) systems.

4.4.1 Mechanical Dynamics Model

The torque allocated to each motor shaft in the mechanically coupled EMA motor arrange-

ment is designated to be the ‘load’ variable that drives component fault dynamics and sys-

tem output effector dynamics.

The EMA simulation model is described and its coefficients are defined in Appendix C.

The mechanical dynamics of torque transmission in a three motor system are expressed by

the following linear model:

ẋ = Ax+B1u+B2w (4.4)

A =

 1 0

kL
JL+3λJM

−bL−3bMλ

JL+3λJM


B1 =

λ

JL+3λJM

 0 0 0

1 1 1

 , B2 =
1

JL+3λJM

 0

1


x =

[
θL ωL

]T

, uc =

[
T1 T2 T3

]T

,

(4.5)

The state vector, x, in this model consist of the position, θL, and the rotational velocity,

ωL, of the EMA output shaft. Two control input vectors are considered in the model; u

represents the three independently assignable motor torques, (T1,T2,T3), and w represents

a non-controllable and time-varying environmental loading on the output shaft. The model

uses only Coulomb damping to model friction. Damping forces measured at the individual

motor output shafts, and at the actuator output shaft are represented by bM and bL. The kL

term represents an elastic force that drives the output shaft to an equilibrium position of
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θL = 0. The inertias of the three constituent EMA motors, and the inertia of the load driven

by output shaft are represented by the terms JM and JL respectively. The λ term represents

a gearing ratio between the motor shafts and the output shaft.

4.4.2 Performance and Prognostics Based Load Allocation Constraints

The performance constraint used in simulation studies of the EMA system is:

0.8 ·Tc ≤ To ≤ Tc (4.6)

where To represents the sum of the shaft torques supplied by the each of the three con-

stituent motors, and Tc represents the summed output torque that is required at the current

time instant to satisfy the nominal performance expectation for the system.

The net output torque allocated at each control time-step is expressed in terms of the per-

formance metric ρ , introduced in Chapter 3, Section 3.2.2 as:

To = ρ ·Tc (4.7)

The performance constraint given in Eqn. 4.6 is expressed in terms of the performance

metric as:

0.8≤ ρ ≤ 1 (4.8)

As shown in the following equation, making a selection for ρ and for the torque loads on

two of the three motors, determines the torque load on the third EMA motor;

T3 = ρ ·Tc−T1−T2 (4.9)

A uniformly quantized component load allocation space satisfying the performance con-

straint is illustrated in Figure 4.5.
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Figure 4.5: Illustration of the feasible load allocation domain for EMA motors under the
performance constraint 0.8 ·Tc ≤ To ≤ Tc

The prognostic constraint used in simulation studies of the EMA system is:

VaR.98 (γi (tM))> 10% (4.10)

where tM represents the end of mission (EOM) time and γi (t) represents the state of health

(SOH) of motor i at time-index t. The SOH at EOM constraint mandates that there be a

98% confidence that each of the system’s three motors have a health of greater than %10 at

tM.

As discussed in Chapter 3, Section 3.3.2, the growth of uncertainty over long prognostic

horizons can lead to SOH at EOM predictions with very large uncertainties. It may be

more useful in such cases to perform fault growth prediction only up to a finite prognostic

horizon, at which the estimation uncertainty is more manageable.

A finite horizon prognostic value at risk constraint is expressed as:

VaRβi (γi (tp + τ))> ζi (tp + τ) (4.11)

Two sample definitions for the finite horizon prognostic threshold, ζi, are shown in Figure

4.6. The illustration in Figure 4.6a shows the use of linear interpolation to derive a finite

horizon prognostic constraint from an SOH at EOM constraint. The illustration shown in

Figure 4.6b illustrates the use of a similar piecewise linear interpolation process. A 98%
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Figure 4.6: Illustrations of finite horizon prognostic constraint evaluation using linear (a)
and piecewise linear (b) interpolation from a state of health at end of mission constraint

confidence bound is chosen for the VaR measure in both cases in order to match that chosen

for the SOH at EOM constraint defined in Eqn. 4.10. The 98% confidence VaR measure at

the time of prediction, tp, is denoted by γ̃i in both figures.

The use of a piecewise linear prognostic constraint potentially allows components to de-

grade more rapidly during high demand regions with knowledge that the degradation will

be mandated to be much slower during low demand regions. The simulation results pre-

sented in Section 4.4.4 demonstrate this flexibility.

4.4.3 Quantification of Performance and Risk Metrics

The performance and risk metrics to be optimized online by supervisory component load

allocation routines will penalize the predicted deviation from a commanded EMA output

profile, and the predicted damage to components over a defined prognostic horizon. A cost

function of the following general form is considered here:

J =

ˆ tp+τ

tp

ρ (t)dt +λ

3

∑
i=1

p(γi (tp + τ)< ψi (tp + τ) |Ti (tp)) (4.12)

where the term,
´ tp+τ

tp
ρ (t)dt, penalizes the summation of induced output control effort de-

viations relative to a given nominal control policy. The term p(γi (t + τ)< ψi (t + τ) |Ti (t))
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is used to assign a cost to the probability that a torque, Ti, on motor i will result in that mo-

tor’s SOH dropping below the threshold ψi (tp + τ) at time tp + τ . The variable λ is used

to weight the performance and prognostic penalty terms in the expression.

The future loads driving fault growth over a defined prognostic horizon are assumed, in this

case, to remain constant over the interval (tp, tp + τ). However, motor torque allocations

will in fact be subject to change at each control time-step, as the output demands on the

system change.

4.4.4 Simulation Results

An exhaustive search is used to optimize the performance evaluation and prognostic risk

metrics defined in Section 4.4.3 over a quantized domain of allowable load allocations.

The simulation results presented in this section are used to explore the effect of various

cost function definitions on the resulting optimal component load allocation policies. The

EMA output speed profile given in Figure 4.7 is used as the sample mission to be optimized

over. The coefficients that define the thermal model for EMA motor windings are given in

Table 4.1.

Each of the three EMA motors will be initialized at different states of health in the simula-

tion studies presented here in order to illustrate the challenge of controlling several similar

0 500 1000 1500
-500

0

500

Time

Figure 4.7: A sample EMA head speed profile command
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Table 4.1: Parameter definitions for the EMA motor winding temperature dynamics model

Sym Description Units Value

Rwa Thermal resistance Ω 1.1
Cwa Thermal capacitance farad 100
Ta Ambient Motor Temperature ◦C 30

components at different states of health. The mean SOH estimates for the three EMA mo-

tors are set to begin simulated missions at 95%, 65%, and 45% SOH for motors 1, 2, and

3 respectively. Uncertainty on initial SOH estimates is represented by placing the first two

standard deviations of an SOH prior distribution at a distance of ±2.5% and ±5% above

and below the mean SOH estimate. The degradation of motor winding health is simulated

for the mean and the ±2 standard deviation points in the motor winding SOH estimate pdf

using the winding lifetime model described in Section 4.2. The trajectories of the motor

winding health estimate mean and ±2 standard deviations are simulated using β = 0.025

and α = (105 ·2,105 ·1.5,105,105/1.5,105/2).

The simulation example presented is designed such that the risk of motor failure will be

unacceptably high for a system under nominal control, while some solutions that lie within

the allowed output performance modification domain are shown to be sufficiently safe. The

optimization of load allocation policies is examined for the EMA example, with special

attention paid to the influence of the prognostic horizon length and the formulation of finite

horizon prognostic constraints.
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4.4.4.1 A Nominal Control Law

The EMA nominal output torque command is assumed to be updated continuously using

the following proportional control law:

Tc (t) =


k · (ωo (t)−ωc (t)) if |k · (ωo (t)−ωc (t))| ≤ 170

−170 if k · (ωo (t)−ωc (t))<−170

170 if k · (ωo (t)−ωc (t))> 170

(4.13)

where ωo (t) is the EMA output speed, ωc is a commanded speed, and k is a proportional

gain (k = 15 in simulation studies). The maximum allowable actuator torque command is

shown to be clipped at a range of ±170 Nm to avoid over stressing the system

The nominal motor load allocation law is assumed to split the commanded output load

equally among all three motors:


T1

T2

T3

= Tc ·
[

1
3

1
3

1
3

]
(4.14)

Figure 4.8 shows simulation results obtained using the nominal control law given in Eqns.

4.13 and 4.14 on the EMA thermal model and winding degradation models defined earlier.

The plot in Figure 4.8a shows the load allocated to each of the three EMA motors by

the nominal control law, along with dashed lines that shown the maximum motor torque

that can be sustained for the remainder of the mission without violating the SOH at EOM

constraint. The plot in Figure 4.8b shows the winding temperatures of the three EMA

motors. The simulated evolution of probabilistic winding insulation SOH estimates as a

function of motor temperature is given Figure 4.8c. The supervisory output control effort

modifier, ρ , is plotted in Figure 4.8d, (ρ = 1 for nominal control).
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Figure 4.8: Simulation results for an EMA under nominal control

The simulation results show that using the nominal control law to follow the sample EMA

output speed profile given in Figure 4.7 is predicted to result in the violation of the SOH at

EOM constraint given in Eqn. 4.10 for motors 2 and 3. The regions of constraint violation

are circled in the predicted motor winding insulation degradation plots given in Figure 4.8c.

4.4.4.2 Verification of Performance and SOH at EOM Constraint Feasibility

As discussed in Section 3.3.3, the feasibility of the commanded speed profile is checked

by verifying that at least one load allocation policy satisfies the given performance and

SOH at EOM constraints. The existence of at least one feasible control provides proof that
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the domain to be optimized over by risk management controllers is non-empty. Figure 4.9

shows simulation results obtained using the minimum allowable value of the performance

metric, ρ = 0.8, as defined by the performance constraint given in Eqn. 4.8.

The ratio of the EMA net output load demand, To, allocated to each of the three EMA

motors is set to the following constants, identified experimentally:


T1

T2

T3

= To ·


9

25

17
50

3
10

 (4.15)

The plot in Figure 4.9a shows the load allocated to each of the three EMA motors by the

sample minimum output performance control law. Dashed lines in Figure 4.9a show the

maximum motor torque that can be sustained for the remainder of the mission without vio-

lating the SOH at EOM constraint. The plot in Figure 4.9b shows the winding temperatures

of the three EMA motors. The simulated evolution of probabilistic winding insulation SOH

estimates as a function of motor temperature is given Figure 4.9c. The supervisory output

control effort modifier, ρ , is plotted in Figure 4.9d, (ρ = 0.8 for minimum allowable output

performance).

The plot in Figure 4.9c shows that there is greater than 99% confidence that no motor will

be below 10% SOH at the EOM. The SOH at EOM constraint is thus shown to be sat-

isfiable for some set of component load allocation polices that also satisfy the net output

performance constraint. Note however that the estimated maximum allowable sustained

motor torque allocations, shown with the dashed lines in Figure 4.9a, are repeatedly vio-

lated using the sample policy. This indicates that the maximum allowable sustained motor

torque constraint is overly conservative and more cleaver prognostic constraints will need

to be devised to account for the future load variability observed in the sample mission.
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Figure 4.9: Simulation results for an EMA following the minimum allowable performance
path

4.4.4.3 Optimization of Performance and Risk Metrics within a Bounded Load Allocation

Domain

As described in Section 4.4.2, the EMA output regulation task has one degree of freedom,

the choice of ρ , and values for the remaining two degrees of freedom in the problem are

specified by the component load allocation task. Given a choice of ρ at each control time-

step, the fault risk optimization problem to be solved by the component load allocation
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Figure 4.10: Plots of the parallel distribution cost function using ρ ·Tc = 0.4T̃ (a), ρ ·Tc =
0.6T̃ (b), and ρ ·Tc = 0.7T̃ (c)

routine is:

min
T1,T2

3

∑
i=1

p(γi (tp + τ)< ψi (tp + τ) |Ti) ,where T3 = ρ ·Tc−T1−T2 (4.16)

Figure 4.10 shows plots of the cost function given in Eqn. 4.16 for low, moderate, and

high load levels. Here, low, moderate, and high load levels are defined as a proportion

of the maximum output torque allowed under the prognostic constraint, denoted T̃ . Low,

moderate, and high load levels are defined as 0.4T̃ , 0.6T̃ , and 0.7T̃ respectively in this

example.

As shown in Figure 4.10, the optimal prognostic cost is monotonically increasing with sys-

tem load. In this section, both the output regulation and component load allocation tasks are

performed using exhaustive searching on a uniform grid over the space of all feasible mo-

tor load allocations satisfying the performance constraints. This somewhat naive approach

to global optimization was successful because of the linearity of the motor’s thermal and

degradation models, and the efficiency of arithmetic on large matrices in MATLAB.

Simulation results are shown in Figure 4.11 for the control policy that is found to optimize

the receding horizon risk management problem defined in Eqn. 4.12 at 0.1 second control
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time-steps. The prognostic horizon is set to τ = 50 seconds, and the weighting term in Eqn.

4.12 is set to λ = 25000. Finite horizon prognostic constraints are defined using linear

interpolation, as described in Section 4.4.2. The risk metric ψi (tp + τ) is defined to be the

average of the current 98% confidence VaR estimate of SOH, and the prognostic constraint

at the end of the prognostic horizon.

The plot in Figure 4.11a shows the component load allocations that optimize the given risk

metric at each control time-step over a simulated mission. The dashed lines in Figure 4.11a

represent the maximum motor torque allocation allowable under the prognostic constraint

evaluated at the prognostic horizon. The plot in Figure 4.11b shows the winding tempera-

tures of the three EMA motors. The simulated evolution of probabilistic winding insulation

SOH estimates as a function of motor temperature is given Figure 4.11c. The supervisory

output control effort modifier, ρ , is plotted in Figure 4.11d.

Note that the finite horizon prognostic constraint shown with the dashed lines in Figure

4.11a is seen to tighten and loosen as the motor windings warm up and cool down. This is

an effect of the prognostic horizon (τ = 50 sec) being small with respect the time constant

in the thermal dynamics of the motor winding. If a longer prognostic horizon were used

then the increased uncertainty of prognostic predictions and the decreased significance of

the thermal capacitance’s effect on winding temperatures would lead to more conservative

prognostic bounds with less variation over the mission.

The plots in Figure 4.11c show that the control policy used is estimated to result in a

sufficiently low risk of any motor windings having less than 10% SOH at EOM. However,

the plot of the output performance modifier, ρ , given in Figure 4.11d, shows that enforcing

the finite horizon prognostic constraint at each control time-step forces the performance

constraint to be violated during the more aggressive regions in the commanded load speed

profile.

It was proven in Section 4.4.4.2 that a set of motor load allocation policies exists such
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Figure 4.11: Simulation results using τ =50 sec, λ = 25000

that there is > 98% confidence that all motors have > 10% SOH at the EOM, and the

performance constraint is never violated. Therefore there must exist some more clever

definition of the finite horizon prognostic constraint that will result in feasible component

load allocation policies.

Consideration is given here to how finite horizon prognostic constraint may be tuned based

on foreknowledge of the alternating periods of high and low load in the sample mission.

The maximum allowable fault growth curve was made steeper during the more aggressive

parts of a mission, and less steep during the less aggressive parts of a mission.
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Figure 4.12 shows simulation results for a control policy that was obtained using the same

τ and λ values as in Figure 4.11, with a piecewise linear definition of the prognostic con-

straint. Here, the slope of the prognostic constraint, ζi (t), was defined to be twice as step

during the final 200 seconds than during the first 300 seconds of the repeating actuator head

speed command profile, shown in Figure 4.7. The plots shown in Figure 4.12c and 4.12d

prove that the use of this type of piecewise linear definition of ζi (t) allows controls to be

found that do not violate the finite horizon performance and prognostic constraints at any

time over the sample mission.

The simulation studies presented in the next section will present a simulation based explo-

ration of how the τ and λ terms in the risk quantification function may be tuned based on

repeated simulation trials.

4.5 Application Example - A Skid-Steered Vehicle

This application example explores the allocation of load among four independent motors

that each power one of the four wheels on a skid-steered unmanned ground vehicle (UGV).

The overactuation present in this application example is more complex than the simple

active redundant configuration explored in the EMA example. Here, rather than having the

motors directly geared together, as was the case in the EMA, the four motors in the UGV

are linked through their mutual contact with the ground.

4.5.1 Mechanical Dynamics Model

An illustration of the motor torque contributions to vehicle locomotion is given in Figure

4.13. The skid-steered vehicle model and coefficients are defined in Appendix D. Assuming

that all of the robot’s wheels are getting approximately the same traction, then the skid-

steered wheeled vehicle will behave much like a treaded vehicle [96]. In the simulation

studies presented here, the skid-steered vehicle’s modeling is simplified by treating it as a

treaded vehicle and making other simplifying assumptions.
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Figure 4.12: Simulation results using a piecewise linear constraint

The simple model used here is adequate to serve our purposes of exploring some of the

conceptual and notation complexities associated with control of MIMO systems. However,

the model used in the simulation studies presented here may be overly simplistic for some

applications, especially for applications that rely on dead reckoning for self location.

The skid-steered vehicle model used here expresses vehicle dynamics in terms of wheel
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Figure 4.13: Visualization of motor torque contributions to system locomotion on a four
wheeled skid-steered vehicle

speeds and motor torque outputs with the following ODE expression:

 ω̇L

ω̇R

=


mr2

4 + r2I
αW 2

mr2

4 −
r2I

αW 2

mr2

4 −
r2I

αW 2
mr2

4 + r2I
αW 2


−1−kr

2

 ωL

ωR

+
 T1 +T2

T3 +T4




 v

φ

=

 r
2

r
2

−r
αW

r
αW


 ω̇L

ω̇R


(4.17)

The coefficients used in this model are defined in Table 4.2.

The model has four input degrees of freedom (the torques assigned to the four motors), and

two output degrees of freedom (the vehicle’s linear speed and angular velocity).

4.5.2 Performance and Prognostics Based Load Allocation Constraints

The performance constraint used in simulation studies of the skid-steered vehicle system

is:
0.8 · rL ≤ TL ≤ rL

0.8 · rR ≤ TR ≤ rR

(4.18)
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Table 4.2: Parameter definitions for the skid-steered vehicle model

Symbol Description Units Value
r Wheel radius m 0.1

W Vehicle width m 0.5
L Vehicle length m 0.5
I Wheel rotational inertia kg·m2 0.1
m Vehicle mass kg 1
kr Rolling resistance term - .19
α Longitudinal slip during turn - 2
v Linear vehicle speed m/s -
φ Vehicle angular velocity rad/s -

ωL Left side wheel speeds rad/s -
ωR Right side wheel speeds rad/s -
Ti Torque allocated to motor i N/m -

where rL and rR represent a desired net control effort output from the left-hand and right-

hand motors respectively. TL and TR represent the net toque output of the left-hand and

right-hand motors respectively,

TL = T1 +T2, TR = T3 +T4 (4.19)

The desired net effector output will be determined at each control time-step by a nominal

control law that will be defined in Section 4.5.4. The net motor output torque is expressed

in terms of the performance metric ρ , introduced in Chapter 3, Section 3.2.2, as:

 TL

TR

=

[
ρ1 ρ2

]T

 rL

rR

 (4.20)

The performance constraint given in Eqn. 4.18 is expressed in terms of the performance

metric as:

0.8≤ ρi ≤ 1 (4.21)
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The EOM damage constraint used in simulation studies of the skid-steered vehicle is the

same as was used for the EMA example:

VaR98 (γi (tM))> 10% (4.22)

where tM represents EOM time and γi (t) represents the SOH of motor i at time-index t.

This SOH at EOM constraint mandates that there be a 98% confidence that each of the

system’s motors have a health of greater than %10 at tM.

The finite horizon prognostic value at risk constraint is the same as was used in the EMA

example

VaR98 (γi (tp + τ))> ζi (tp + τ) (4.23)

Linear interpolation is used here to enforce SOH at EOM constraints at the prognostic

horizon, just as was done in the EMA example.

4.5.3 Quantification of Performance and Risk Metrics

An expression used to evaluate preference over a space of various possible system output

profiles and component damage estimates at EOM is defined for the skid-steered vehicle

simulation study as:

JM (φc (t)−φ (t))+ Jd (VaR.98γi (tM)) (4.24)

where φ c(t) and φ(t) represent points on the desired and the actual path followed by the

skid-steered vehicle respectively, and VaR.98γi (tM) represents the 98% confidence VaR

estimate of the SOH for motor i at the EOM. JM and Jd represent functions that penalize

vehicle deviations from a desired path and ending motor damage estimates respectively.

The path deviation penalty is defined for this example as:

JM (φc (t)−φ (t)) =
1
tM

ˆ tM

0
exp |φc (t)−φ (t)| (4.25)
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The ending motor damage penalty is defined as:

Jd
(
d̃i (tM)

)
=

4
3
·max

i
[exp(100−VaR.98γi (tM))] (4.26)

Implemented component load allocation routines will assign risk to uncertain predictions

of future system dynamics using performance and prognostic penalties;

JP (ρ (tp,τ))+λ · J f (VaR.98γi (tp + τ)) (4.27)

where JP represents a performance penalty, J f represents a penalty on future damage es-

timates, and λ is a weighting coefficient, representing the relative value of maximizing

performance and minimizing component degradations

The suggested formulation for the performance penalty is:

JP (ρ (tp,τ)) =

ˆ tp+τ

tp

exp


∣∣∣∣∣∣∣
 r f −ρ · r f

rφ −ρ · rφ


∣∣∣∣∣∣∣
dz (4.28)

Here, r f and rφ represent the net forward torque and the net turning torque requested by a

nominal control law;

r f = TL +TR (4.29)

rφ = TL−TR (4.30)

The suggested formulation for the prognostic penalty is:

J f (VaR.98γi (tp + τ)) =
4

∑
i=1

[exp(VaR.98γi (tp + τ)−ζi (tp + τ))] (4.31)

The simulation studies presented in the following section explore the effect that varying

the τ and λ terms in the risk assessment metric defined in Eqns. 4.27 - 4.31, has on the

outcome evaluation function defined in Eqns. 4.24 - 4.26.
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Table 4.3: Parameter definitions for the skid-steered vehicle motor winding temperature
dynamics model

Sym Description Units Value

Rwa Thermal resistance Ω 0.75
Cwa Thermal capacitance farad 20
Ta Ambient Motor Temperature ◦C 30
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Figure 4.14: Sample skid-steered vehicle path command

4.5.4 Simulation Results

The simulation results presented in this section show the optimal load allocation among the

four motors on a skid-steered vehicle following the figure-eight path shown in Figure 4.14.

The coefficients that define the thermal model for the vehicle motors are given in Table 4.3.

Component load allocations for best risk management are found at each time-step by eval-

uating the objective function defined in Eqn. 4.27 on a sufficiently dense uniform grid over

the space of all component load allocations satisfying the performance constraints.

The two motors on each side of the skid-steered vehicle are initialized to different SOH

in the simulation studies presented here. The mean SOH estimate at the beginning of
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simulated missions is set to 95% for vehicle motors 1 and 3, and it is set to 65% for motors

2 and 4. Uncertainty on initial SOH estimates is represented here by placing the first two

standard deviations of an SOH prior distribution at a distance of ±2.5% and ±5% above

and below the mean SOH estimate.

The degradation of motor winding health is simulated for the mean and the ±2 standard

deviation points in the motor winding SOH estimate pdf using the winding lifetime model

described in Section 4.2. The trajectories of the motor winding health estimate mean and

±2 standard deviations are simulated using β = 0.035 and α = (104 ·7,104 ·8.5,105,105 ·

1.25,105 ·1.5).

4.5.4.1 A Nominal Control Law

The net output control effort commanded of the skid-steered vehicle is updated continu-

ously over the mission using the following proportional control law:

 r f

r
φ̇

= rref (t)+

 p1 · cos(|φe|) · ed

p2 · sin(|φe|)

 (4.32)

where rref (t) is output control effort that would be used at time t if the vehicle followed

the reference path exactly, pi are the proportional control coefficients, φe is the vehicle’s

heading error with respect to the reference path, and ed is the vehicle’s position error with

respect to the reference path.

The nominal control law defined in Eqn.4.32 is assumed to split motor load equally among

the two motors on each side of the vehicle:



T1

T2

T3

T4


=



1
2 0

1
2 0

0 1
2

0 1
2


·

 rL

rR

 (4.33)
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Figure 4.15: Simulation results for a skid-steered vehicle under nominal control

Simulation results for the nominal control policy are shown in Figure 4.15. The plot given

in 4.15a shows the simulated evolution of probabilistic winding insulation SOH estimates

as a function of winding temperature. Motor winding temperature is modeled as a function

of motor torque loads using the thermal model described in Section 4.3. Figure 4.15b

shows the load allocated to each vehicle motor, along with dashed lines showing estimates

of the maximum motor torque that can be sustained over the mission without violating the

SOH at EOM constraint. It is seen in Figure 4.15a that all motors are estimated to accrue

an unacceptable probability of ending the mission with < 10% SOH if the nominal control

law was used over the given figure-8 mission.

4.5.4.2 Verification of Performance and SOH at EOM Constraint Feasibility

The feasibility of given performance and prognostic constraints is verified by checking that

the minimum allowable vehicle performance over the mission will allow all of the motors

to end the mission with adequate health. Figure 4.16 shows simulation results obtained

using the minimum allowable value of the performance metric, ρ = [0.8,0.8], as defined

by the performance constraint given in Eqn. 4.21.

The load split between the two motors on each side of the vehicle is set to the following
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constants, identified experimentally:

 T1

T2

= TL ·
[

11
20

9
20

]
,

 T3

T4

= TR ·
[

8
15

7
15

]
(4.34)

The plot given in 4.16a shows the simulated evolution of probabilistic winding insulation

SOH estimates as a function of winding temperature. Figure 4.15b shows the load allocated

to each vehicle motor, along with dashed lines showing estimates of the maximum motor

torque that can be sustained over the sample mission without violating the SOH at EOM

constraint.

The plot in Figure 4.16a shows that there is greater than 98% confidence that no motor

will be below 10% SOH at the EOM. The SOH at EOM constraint is thus shown to be

satisfiable for some set of component load allocation polices that also satisfy the net output

performance constraint. Note however that, as was also the case with the EMA exam-

ple, the estimated maximum allowable sustained motor torque allocations, shown with the

dashed lines in Figure 4.16a, are repeatedly violated using the sample policy. This indicates

that the maximum allowable sustained motor torque constraint is overly conservative and

more cleaver prognostic constraints will need to be devised to account for the future load

variability observed in the sample mission.

4.5.4.3 Control with Foreknowledge of the Mission and the Fault Growth Model

Because the desired path for the skid-steered vehicle to follow and the fault growth model

are known in advance in simulation studies, the optimal load allocations over the given

mission can be found using future knowledge rather than prognostic information. Analysis

of the direct optimization of the outcome evaluation function, formulated in Eqn.4.25, will

provide substantial insight into the development of prognostics-based risk management

controllers. The optimized control results obtained using future knowledge also provide a

useful means of benchmarking control policies that use prognostic information.
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Figure 4.16: Simulation results for a skid-steered vehicle following the minimum allowable
performance path

The search for optimizing control policy is formulated here as a nested process. First, a

candidate path to be followed by skid-steered vehicle is defined by a set of waypoints and

a third order spline that interpolates between those points. Then, an exhaustive search is

used to identify the motor load split (over a quantized space) that minimizes the motor

degradation cost assessed over the candidate path.

The space of allowable adjustments to a given set of waypoints is bounded by the perfor-

mance constraint given in Eqn.4.18. The net output control effort required to follow a given

path is found by inverting the modeled skid-steered vehicle dynamics given in Eqn. 4.17,

 TL (t)

TR (t)

= f−1
(

φ p (t)
)
, ∀t ∈ [0, ..,T ] (4.35)

where φ p (t) is the (x,y) position of the skid-steered vehicle at time t. Gradient descent is

used to search the space of feasible waypoint modifications.

Individual motor load allocations over the sample mission are derived using the following

expression for splitting load proportionately among the two motors on each side of the
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Figure 4.17: Results of a search for an optimal skid-steered vehicle load allocation policy
over the repeated figure-8 path

vehicle:
T1 (t) · k1 = T2 (t) , T1 (t)+T2 (t) = TL (t)

T3 (t) · k2 = T4 (t) , T3 (t)+T4 (t) = TR (t)
(4.36)

Optimal motor load allocations for a given path are derived by evaluating Eqn. 4.25 over

sufficiently dense uniform grid on k1,k2 ∈ [0,2], and selecting the value resulting in mini-

mum cost.

Figure 4.17 shows plots of the desired skid-steered vehicle path, bounds on allowable path

error, and an approximation of the optimal skid-steered vehicle path over one cycle of the

commanded figure-8 maneuver. The vehicle path is optimized using a gradient descent

search over the space of allowable adjustments to a set of eleven waypoints shown in the

figure. The space of allowable adjustments to each waypoint is shown in Figure 4.17 as the

linear region between the black circles.

The simulated evolution of probabilistic winding SOH estimates and the motor torque pro-

files applied over the path shown in Figure 4.17 are plotted in Figures 4.18a and 4.18b

respectively. Because the control cost penalizes only the lowest 98% confidence motor

SOH assessment at EOM, the optimal control over the mission is expected to allocate load
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Figure 4.18: Simulation results for a skid-steered vehicle following the minimum allowable
performance path

to healthier motors, such that all of the motors will end the simulated mission with nearly

equal 98% confidence SOH estimates. This behavior is in fact seen in Figures 4.18a and

4.18b. Also, note that the error between the commanded and the estimated optimal path,

plotted in Figure 4.17, is greatest in the extreme upper and lower regions of the figure-8

path because introducing an error in those regions results in the greatest reduction in the

total distance traveled by the skid-steered vehicle. Although it will be very difficult to

design a controller that can match these optimal behaviors using uncertain predictions of

future environmental demands, it remains instructive to be able to identify those behaviors

in non-causal control optimization studies

4.5.4.4 Prognostics-Based Control

At each control time-step, a prognostics-based controller will allocate motor loads to best

manage the risk posed by estimates of future system performance and fault growth mod-

els. Motor load allocations for best risk management are derived in simulation studies by

evaluating Eqn. 4.27 on a sufficiently dense uniform grid over the space of all motor loads

satisfying the performance constraint.
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(a) Performance degradation penalty (b) Motor degradation penalty

(c) Net evaluation metric

Figure 4.19: Plots of the performance degradation penalty (a), the motor degradation
penalty (b), and the net outcome evaluation metric (c) for control policies identified us-
ing λ = [0,3,6, ...,160] and τ = [.4,1.6,2.8, ...,24.4] (optimal value found at λ = 100 and
τ = 3.6s)

Two degrees of freedom in the formation of performance and risk metrics are considered

here. The effects of varying both the prognostic horizon length, τ , and the risk-reward

weighting factor, λ will be explored.

Plots of Jd and JM (defined in Eqns. 4.25 - 4.26) versus τ and λ are shown in Figures

4.19a and 4.19b respectively. Figure 4.19c shows plots of the net outcome evaluation cost

(JM + Jd), versus values of λ and τ used to define the risk metric to be optimized at each

control time-step.

A general property apparent from the figure is an increase in the conservatism of control
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Table 4.4: Outcome evaluation costs and 98% confidence VaR estimates for motor state of
health at end of mission, using three sample control routines

d̃1 (tM) d̃2 (tM) d̃3 (tM) d̃4 (tM) Jd |tM0 JM|tM0 (JM + Jd) |tM0
Min performance path 51% 27% 51% 27% 2.76 2.16 4.93
With future knowledge 36% 36% 36% 36% 2.52 1.69 4.21

Without future knowledge 30% 14% 30% 14% 3.17 1.58 4.76

policies as the prognostic horizon, and the damage weighting term, λ , are increased. Con-

trol conservatism is observed in Figures 4.19a and 4.19b as an increase in the performance

evaluation cost and a decrease in the SOH at EOM cost. Conversely, the control policies

are seen to become more greedy as the prognostic and the damage weighting term are de-

creased. Greedy behaviors are observed in Figures 4.19a and 4.19b as a decrease in the

performance evaluation cost and an increase in the SOH at EOM cost. The trough seen

in Figure 4.19c indicates a domain of τ and λ values corresponding to controls that are

neither overly conservative nor overly aggressive. The optimal outcome evaluation cost is

found to result from setting λ = 100 and τ = 3.6.

Table 4.4 shows the outcome evaluation costs and 98% confidence VaR estimates for motor

SOH at EOM using three sample control routines. The table shows control outcomes for

the sample feasible control solution on the minimum performance path (defined in Section

4.5.4.2), the vehicle load allocations optimized using future knowledge (defined in Section

4.5.4.3), and the prognostics-based policy identified using λ = 100 and τ = 3.6 seconds.

The 98% confidence VaR estimate for motor i is dented by d̃i in the table. The ending motor

damage term, Jd , and the path deviation penalty, JM, were defined in Eqns.4.24 - 4.26. The

tabulated results show that the control policy optimized using future knowledge results in

a slightly higher performance degradation penalty than is observed for the controller that

was optimized for uncertain prognostic modeling information. However, the control policy

optimized using future knowledge is seen to trade off this slightly higher performance

degradation penalty for significantly less motor damage at EOM than is observed for the

controller that was optimized for uncertain prognostic modeling.
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CHAPTER V

A GENERALIZED MDP FORMULATION OF PROGNOSTIC MOD-

ELING AND RISK BASED DECISION MAKING

5.1 Introduction

Markov process notation provides a conceptually convenient and extremely flexible means

of encoding uncertainty into the representation of component SOH estimates and future

fault growth estimates. The science of encoding uncertainty into Markov process repre-

sentations of system dynamics based on frequentest theory or Bayesian inference is well

developed and widely applied in academia and in practice. The down side of using Markov

processes to represent system dynamics however is the number of states and state transi-

tion probabilities necessary to describe a given process quickly becomes intractable as the

dimensionality of the represented dynamics is expanded.

A generalized Markov process representation of fault dynamics is presented in this chapter

for the case that uncertainty in component degradation models and uncertainty in predic-

tions of the future exogenous stresses to be placed on degrading components will both be

incorporated into the computation of prognostic estimates. Both sources of uncertainty

are represented here as explicit stochastic processes. The action space of the supervisory

component load allocation process is defined here, as in the previous chapter, in terms of

a metric representing the relative deviation between the system’s nominal output response

and the net system output that is actually enacted by an implemented prognostics-based

control routine at each control time-step.

The risk based decision making problem may be generally expressed as a Markov decision

process (MDP) [86, 66], defined over the space of allowable supervisory control actions

available at fixed decision making epochs. MDPs have been widely applied to the repre-

sentation of problems involving sequential decision making in the presence of uncertain or
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stochastic modeling information in the areas of economics [41], supply chain management

[65], scheduled maintenance [86], and health care [88], in addition to being a widely used

tool for describing fault-adaptive and robust control problems [103]. A formal description

of fault growth modeling and RUL estimation in terms of Markov process models, as well

as a survey of similar stochastic modeling techniques are given in [6].

This chapter uses the generalized Markov process formulation of component fault growth

dynamics originally described in [10]. A multi-variable stochastic system example, origi-

nally introduced in [11], is used to illustrate the compounding of modeling uncertainties and

the application of dynamic programming to identify optimal control policies. Section 5.2

introduces a generalized representation of component degradation dynamics in terms of a

multi-variable stochastic Markov process. Section 5.3 describes the problem of identifying

control policies that optimize the expectation of a given fault risk evaluation function over

a finite time window via dynamic programming. Section 5.4 introduces an illustrative and

representatively computationally challenging example of a system in which uncertainty in

fault growth physics models is represented by a uniformly distributed random process, and

uncertainty in future demand modeling is represented by a discrete random walk. Finally,

concluding remarks are given in Section 5.5.

5.2 Markov Process Modeling of Fault Growth Dynamics

Chapter 3, Section 3.3 introduced the following Markov process description of component

SOH evolution in terms of an outer-loop performance modifier, ρ:

pl
i, j(ρ (k))= p(γl (k+1)=s j|γl (k)=si,ρ =ρ (k))

= ∑
w∈W

∑
ξ∈Ξ

p(w(k) = w) · p(ξl (k) = ξ )

where f (si,H (ρ ·G(w,x,xc))l ,ξl) = s j, si,s j ∈ S (5.1)
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Here, the process uncertainty terms, ξl , are considered to belong to a stationary distribution,

and a potentially non-stationary distribution is considered for the exogenous inputs to the

system, w. The component state of health (SOH) variable, γl , represents a percent health

index, ranging from 100% to 0% (failed).

The incorporation of uncertain beliefs about the present state of a system at fixed control

decision epochs can be found in publications on partially observable Markov decision pro-

cesses; see the survey paper by Lovejoy for more information [53]. The additional notation

necessary to include state estimation uncertainty in the system health management problem

is omitted from this chapter in order to promote clarity in the presentation of the system

health prognostics-based risk management problem and the case-study example.

The Markov process notation given here may be used to describe all probabilistic fault

growth process models in which the following assumptions are satisfied:

Assumption 5.1. The fault growth dynamics are taken to be memoryless; i.e., the con-

ditional probability distribution for future states depends only on the present state of the

process, and not the past. This assumption is referred to as the Markov assumption in

stochastic systems.

Should it be the case that a fault growth process of interest is not completely memoryless,

but future states only depend on a finite number, m, of previous states, then the Markov

process notation given in this document could be extended to satisfy the Markov assump-

tion by defining the state space of the process to be the ordered m-tuple of the current state

and the m previously visited states, as described in [94]

Assumption 5.2. State transition probabilities are considered to be time invariant; al-

though, it may be the case that fault growth models are not precisely known a priori and

must be adapted online using techniques such as particle filtering [64] or Bayesian learning

[73].
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Assumption 5.3. At all discrete time-steps, the state space, the action space, and the space

of environmental and other exogenous inputs to the system are adequately represented by

a finite set of states, which is bounded from above by the availability of computational

resources.

In the event that fault growth must be modeled as a continuous time process, a represen-

tation of fault growth modeling similar to that given here may be expressed in terms of a

continuous time Markov process [83] or a semi-Markov process [27].

These required assumptions are mild enough to allow a wide array of fault growth processes

to be described in terms of the Markov process notation given in Eqn. 5.1 [38, 91]

5.2.1 Incorporating a Stochastic Process Model for Environmental Loading Demand

A generic process model for the environmental demand term, w, is:

p(w(k) = a) = p(w(k) = a|w(k−1) = b) · p(w(k−1) = b) ,

a,b ∈W, k ∈ [tp +1,∞) (5.2)

where an observation of w at time-index tp is used to initialize the random process. Stochas-

tic modeling of environmental dynamics is represented by p(w(k) = a|w(k−1) = b).

The Markovian state transition model of the degrading system can now be expressed as a

four dimensional matrix that incorporates the process model for w.

pl
(i, j),(l,m) (ρ) = p(w(k) = zl|w(k−1) = zm) · p(ξl (k) = ξ )

where f (si,H (ρ (k) ·G(w,x,xc)) ,ξ ) = s j, si,s j ∈ S, zl,zm ∈W (5.3)

Here, pl
(i, j),(l,m) (ρ) represents the probability of component l transitioning from fault state

si and exogenous loading demand zl to fault state s j and exogenous loading demand zm.
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This notation enables available knowledge of system kinematics, fault growth modeling,

exogenous demand modeling, measurement uncertainties, and modeling uncertainties to

be represented by a finite set of state transition probabilities.

5.3 Encoding Risk Aversion into a Markov Decision Process

Over the past several decades much has been published on the theory of encoding various

forms of risk aversion into the specification of MDP state transition costs [42, 68]. An MDP

formulation of the stochastic optimization problem requires control costs to be assessed

using the accumulation of state transition costs,

Total Cost = E

{
gN (γ (N))+

TM−1

∑
k=0

gk
(
γ
′,w′,γ,w,ρ

)}
(5.4)

where gk (γ
′,w′,γ,w,ρ) denotes a state transition cost assigned to the possibility of transi-

tioning from one system state, (γ,w), to another, (γ ′,w′), at time-index k, given a control ac-

tion, ρ . A terminating cost that penalizes the total component degradation over a simulated

time window is denoted by gN (γ (N)). Cost discounting and average cost formulations are

used in the formulation of infinite horizon MDPs, not considered here.

The sequence of control actions taken over the domain k = [0,N−1] in response to online

observations of system and environmental states is referred to as a control policy, denoted

π = {µ0, ...,µN−1}, where µk represents a control mapping. Here, µk maps observations of

γ and w obtained at time-index k into a control action;

ρ (k) = µk (γ (k) ,w(k)) (5.5)

The expected cost for enacting a particular control policy when starting at given initial
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values for γ and w at time-index tp is denoted:

Jπ (γ (tp) ,w(tp)) = E

{
gN (γ (N))+

N−1

∑
k=tp

gk
(
γ
′,w′,γ,w,ρ

)}
(5.6)

An optimal control policy is defined as a one that minimizes Jπ ,

Jπ∗ (γ (0) ,w(0)) = min
π∈Π

Jπ (γ (0) ,w(0)) (5.7)

Here π∗ represents an optimal control policy.

5.3.1 Identification of Optimal Finite Horizon Control Policies with Dynamic Pro-

gramming

Optimizing control policies may be identified using well studied MDP optimization tech-

niques such as backwards induction for finite horizon optimization problems, and linear

programming, value iteration, and policy iteration for discounted and average-reward in-

finite horizon optimization problems. The well known dynamic programming algorithm

uses backwards induction to identify an optimal control policy over the time window

k ∈ {N−2,N−1}, and then for k ∈ {N−3,N−2,N−1} and so on, until the optimal

policy is found over the entire time-window of interest. The control costs used in the back-

wards induction approach are defined for the multi-variable stochastic system discussed

here as:

JN (γ (N) ,w(N)) = gN (γ (N))

µ∗k (γ,w) = minρ E {gk (γ
′,w′,γ,w,ρ)+ Jk+1 (γ

′,w′)}

Jk (γ,w) = E
{

gk
(
γ ′,w′,γ,w,µ∗k (γ,w)

)
+ Jk+1 (γ

′,w′) |ρ = µ∗k (γ,w)
}

γ ∈ S, w ∈W , π∗ =
{

µ∗0 , ...,µ
∗
N−1
}
, k = {0,1, ...,N−1}

(5.8)
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The computational burden of this solution method is:

O
(
mn2N

)
(5.9)

where N is the time horizon to be optimized over, and m and n are the cardinalities of the

discrete spaces defined for the action vector, ρ, and state space of (γ,w) respectively.

While this is a great improvement over the computational burden of an exhaustive search,

which is O
(

mnN
)

, the reader should note that the cardinalities of the state space and action

space used in the MDP will grow exponentially with the dimensionalities of γ, w, and ρ .

Therefore, the dynamic programming method quickly becomes computationally infeasible

for higher dimensional problems.

5.4 Consideration of a Multi-Variable Stochastic System Example

This section considers an example multi-variable stochastic system that is intended to il-

lustrate some of the fundamental difficulties in assessing and managing the prognostic un-

certainty introduced when stochastic models for fault growth physics and environmental

loading demands are incorporated into prognostic estimates.

Consider a health depletion model of the form:

γ (k+1) = γ(k)−λ · |u(k)| ·ξ (k) (5.10)

where the rate of component fault growth is defined to be proportional to the magnitude of

component load u multiplied by a process noise variable ξ , and λ represents a constant of

proportionality in this mapping.

The net control effort output is considered to be equal to the component load, u,

ν = u (5.11)
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Environmental loading demands on the system are taken to be represented by the sum of

consecutive draws from the set {-1,0,1}, constituting a discrete random walk process. The

probability mass function for environmental demands at time-index k is:

Pr(w(k) = a|w(k−1) = b) =


1
3 a−b ∈ {−1,0,1}

0 else
, k ∈ [tp +1,∞) (5.12)

where the variable tp represents the time-index at which prognostic predictions are made.

A nominal control law is considered to command a net system output control effort that

exactly matches the environmental loading demand at each control time epoch,

r (k) = w(k) (5.13)

Substitution of Eqns. 3.7, 5.11, and 5.13 into Eqn. 5.10 yields:

γ (k+1) = γ(k)−λ ·ρ (k) · |w(k)| ·ξ (k) (5.14)

Process uncertainty in the example fault growth model is taken to be represented by inde-

pendent random draws from the set {.7, .8, .9,1.1,1.2,1.3}. The resulting probability mass

function for ξ is:

Pr(ξ (k) = ξ ) =


1
6 ξ ∈ {.7, .8, .9,1.1,1.2,1.3}

0 else
, k ∈ [tp,∞) (5.15)

State transition costs for the example system were designated to penalize the proportional

deviation from nominal output loading commands at each control time-index,

gk (γ
′,w′,γ,w,ρ) = 1−ρ (5.16)
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Figure 5.1: Time-series plots for 100 simulations of the random variables, w and ξ (top),
and the product of w and ξ (bottom)

where, ρ = 1 corresponds to no deviation from the system’s nominal control.

The terminating cost for this example is designated to be inversely proportional to the

square of component health at EOM.

gN (γ (N)) = (100− γ (N))2 (5.17)

5.4.1 Simulation Results

Both w and γ are assumed to be observable in this example. Simulation studies use λ =0.33

in the fault growth process model, and ρ ∈ {.2, .3, ..,1} to define the space of supervisory

control actions that may be enacted at each simulated time-index. The time-series behavior

of the example system was simulated using a pseudo random number generator initialized

with a unique ‘seed’ value provided for each simulation run. Figure 5.1 shows time-series

profiles for |w|, ξ , and |w| · ξ using 100 repeated randomized simulations of the example

system, each using a unique seed value.

Figure 5.2 shows simulation results for two sample control policies; ρ = .2 (top) and ρ = 1
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Figure 5.2: Time-series data (left) and box plots (right) for 100 simulations of the example
fault growth process with 80% deviation (ρ = 0.2) from nominal output demands (top),
and no deviation (ρ = 1) from nominal output demands (bottom)

(bottom). Setting ρ = .2 for all time-indexes results in the maximum allowable degradation

of the system’s nominal load allocations at all time-indexes. Setting ρ = 1 for all time-

indexes enacts no changes to the system’s specified nominal load allocation policy over

any of the sample simulations of environmental loading and fault growth dynamics.

The box plots shown on the right hand side of Figure 5.2 provide a convenient means of

representing the simulated statistics of the fault growth process. The top and bottom of

the boxes plotted in Figure 5.2 represent the 25th and 75th percentiles of the data range at

a given time-index. The notch in each box represents the median of the data points, the

dashed line represents the mean value, and the whiskers in the box plots extend to the most

extreme points falling within the range,

q1−1.5 · (q3−q1)< di < q3 +1.5 · (q3−q1) (5.18)

where q1 and q3 are the 25th and 75th quantiles of the data respectively, and di represents a

datapoint.
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(b) Optimal control with future knowledge

Figure 5.3: Plots of the stochastic health degradation process over repeated simulations of
the optimal control policies computed with (a) and without (b) model uncertainty

Note that the spread of possible system trajectories observed in these simulations become

relatively large over the 100 increment time-window used in this example. This is typical

for prognostics-based control applications. It can be observed from the sample results

shown that always enacting the minimum allowable system performance would be very

‘safe’, but likely overly conservative in many cases. On the other hand, always enacting

nominal system performance would likely be unacceptably ‘risky’, and result in failure in

many cases.

Figure 5.3a shows the distribution of component health as it evolves over 100 repeated

simulations of a control policy that minimizes expected cost over a 100 time-increment

window. Figure 5.3b shows the distribution of component health profiles observed over

repeated simulations of an optimal control policy computed using future knowledge of the

fault growth process, as was described in Chapter 4, Section 4.5.4.3. The dynamic pro-

gramming algorithm given in Eqn. 5.8 was used to identify an optimal control policy for
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Table 5.1: Statistics of the accumulated state transition costs computed over repeated sim-
ulations of four sample control policies

µ (∑k gk) σ (∑k gk) µ (gN) σ (gN) µ (Jπ) σ (Jπ)

Sample control policy: ρ = 1 0 0 81.6 26.7 81.6 26.7
Sample control policy: ρ = .2 78.4 0 9.9 10.5 88.3 10.5

Optimal with stochastic modeling 55.1 18.2 16.8 7 71.8 23
Optimal with future knowledge 40.7 20.1 20.4 7.3 61.1 25.7

both cases. In the case that future knowledge is available, the dynamic programming algo-

rithm is run using a deterministic Markov process model. In the causal case where future

knowledge is not available, the dynamic programming algorithm is run using a stochastic

Markov process model.

Note that while the discovery of an optimizing control policy through finite horizon dy-

namic programming is a computationally challenging problem, as described in Section

5.3.1, the optimal policy is computed offline, and requires no online optimization as long

as the Markov process model used to generate the policy is still applicable. If online up-

dates to the Markov process modeling of environmental loading and fault growth dynamics

were considered, then the optimizing policy would need to be recomputed online.

The mean and standard deviation of the control costs evaluated over repeated simulations of

the two optimized control policies and the two example control policies are given in Table

5.1. Comparison of the health deterioration plots given in Figure 5.3, show a somewhat

more conservative behavior early in the mission from the control policy lacking prefect

future knowledge, which is to be expected. The more conservative nature of the optimal

policy computed using the stochastic system model results in an increased performance

penalty and a decreased ending health penalty, compared to the optimal policy computed

with future knowledge. Both control policies are seen to show substantial variation in

evolution of SOH over repeated trials. This complicates the V&V of control policies,

as discussed in Chapter 2. Many more quantitative and qualitative observations may be

explored using this illustrative and fairly computationally challenging example. The reader

75



is recommended to program this simple example and observe the aggregate efficacy of

various risk management control policy formulations.

5.5 Summarizing Remarks

A generalized Markov modeling representation of fault dynamics is shown for the case

that available modeling of fault growth physics and available modeling of future envi-

ronmental stresses may be represented by two independent Markov process models. A

notationally convenient MDP formulation of the prognostics-based control problem is pro-

vided for a system with multiple degrading effectors. Formulation of the component fault

growth process in terms of a metric representing the magnitude of system output perfor-

mance degradation induced by a given control policy was used to directly relate supervisory

health management control actions to their effects on system performance and component

degradations. Finite horizon dynamic programming is described to solve for the optimal

risk mitigating control policy over a finite time window for the general case that stochas-

tic models representing physics of failure and future environmental stresses are known, and

the states of both stochastic processes are observable by an implemented supervisory health

management controller.

The effects of compounding uncertainties in physics of failure and environmental demand

modeling were illustrated via a simulation study presented for a multi-variable stochastic

process model. The formulation and implementation of prognostics-based control on the

multi-variable stochastic system example is intended to be structurally analogous to the

prognostics-based control problem on a wide variety of real-world applications. Causal

and non-causal implementations of dynamic programming were used to illustrate the de-

pendence of the optimal health management control policy on uncertainties in fault growth

and environmental dynamics models.
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CHAPTER VI

SIL/HIL REPLICATION OF POWERTRAIN LOAD DYNAMICS AND

ONLINE PROGNOSTICS FOR A UAV APPLICATION

6.1 Introduction

Previous chapters presented analysis of the prognostics-based decision making problem

using simulation examples. This chapter considers the development and testing of prog-

nostics and supervisory decision making on a real system.

As previously described, the development and tuning of prognostics-based decision mak-

ing routines is heavily reliant on the availability of trustworthy models for fault growth

physics, future exogenous loading dynamics, and system physics. A testbed intended for

offline software-in-the-loop (SIL) and hardware-in-the-loop (HIL) testing of battery charge

prognostics and battery charge management routines is described in this chapter. SIL test-

ing refers to tests conducted using only software representations of system physics and

embedded control routines. HIL testing refers to tests that include some hardware compo-

nents from the target system.

A framework is described for the offline recreation of dynamic loads on simulated or phys-

ical aircraft powertrain components. The dynamic loads on aircraft powertrain components

are identified using a real-time simulation of airframe dynamics running on a flight simu-

lator, an inner-loop flight control policy executed by either an autopilot routine or a human

pilot, and a supervisory fault management control policy that can interact with a human

pilot or autopilot. The analysis presented here is mostly drawn from the following two

recent publications: [13, 22]. SIL development of battery SOC management for a similar

application, a hybrid electric vehicle, was presented in [9].

An early investment of resources into the development of an offline V&V testing infrastruc-
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ture for prognostics and supervisory health management algorithms is easily justified for

complex systems in which online testing is substantially more time consuming and costly

than offline testing. The SIL and HIL testing of failure prognostics and decision mak-

ing tools for aircraft systems will facilitate much more comprehensive and cost-effective

testing than what is practical to conduct with flight tests. It is often not feasible to in-

ject faults and run to failure during full-scale tests without compromising the vehicle or

operator safety, thus it is valuable to implement a framework for the offline verification

and validation (V&V) of algorithm performance during failure scenarios. An offline V&V

framework will also facilitate testing over a wide range of potential environmental condi-

tions, including extreme conditions that are rarely encountered in practice.

Offline testing of supervisory health management algorithms in a laboratory setting will

not only improve safety, but, as many issues can be resolved during offline tests. Offline

testing also reduces the number of full-scale deployment tests required for algorithm V&V,

reducing testing costs and development time. That said however, offline V&V testing is

limited by the accuracy of SIL and HIL replications of nominal and off-nominal system

dynamics. Full-scale deployment testing is thus still a necessary part of the algorithm

development and V&V process.

The SIL/HIL testing framework described in this chapter uses the X-Plane1 flight simula-

tor package and an X-Plane Toolbox for MATLAB2 to facilitate prognostic based control

algorithm V&V over a range of potential operating conditions. Examples of other offline

testbeds making use of X-Plane for aerodynamics simulation and MATLAB/Simulink soft-

wares for simulation of control routines are found in [44, 14, 70].
1www.x-plane.com/
2Developed at NASA Ames and scheduled for open source distribution in 2014
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(a) Inner and outer control loops for online flight testing

(b) Inner and outer control loops for offline flight testing

Figure 6.1: Closed-loop control diagrams for online and offline flight testing

6.2 A General Software-in-the-Loop / Hardware-in-the-Loop Frame-

work

Offline V&V tests of supervisory failure prognosis and decision making routines will allow

supervisory health management algorithms to interact with system controllers and mea-

sured data exactly as they would during full-scale tests. The offline testing of health man-

agement algorithms may be conducted using strictly software models of flight systems or a

combination of simulated and physical components.

Block diagrams illustrating the structure of control loops used for online and offline flight

testing are shown in Figures 6.1a and 6.1b respectively. The notation used in the figures

is defined in Table 6.1. An inner-loop controller is assumed to update flight control inputs

based on a known flight plan and observations of the system state. The inner-loop controller
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Table 6.1: Symbol definitions for the software-in-the-loop / hardware-in-the-loop testing
framework

xAF airframe state vector
yAF observation of airframe state vector
xPT electrical power dist. system state vector
yPT observation of xPT states
u pilot or autopilot control output vector
ν mechanical loads on electromechanical components
FCS net mechanical loads exerted on airframe control surfaces
w environmental state parameter vector
γ Component SOH vector
ξ captures uncertainties in physics of failure models
φ captures noise in sensor measurements

is denoted by the ‘Pilot/Autopilot’ blocks in Figures 6.1a and 6.1b. Failure prognostics and

supervisory decision making operations are performed by an outer-loop process, denoted

by the ‘State Estimation’, ‘Failure State Prediction’, and ‘Decision Making’ blocks in Fig-

ure 6.1. Both the inner-loop and outer-loop controllers would be unchanged in either online

or offline flight testing.

6.2.1 Description of Inner-Loop Control Dynamics

Inner-loop control of the aircraft is assumed to be provided by either a human pilot or a

pre-programmed autopilot. Both human pilot and autopilot will henceforth be referred to

as just ‘the pilot’, for convenience. The pilot will update the control vector, u, based on the

observed states of the aircraft and a desired system state directed by a given flight plan.

The ‘Flight Control Mechanisms’ block shown in Figures 6.1a and 6.1b represents the

internal electrical and mechanical dynamics of the vehicle’s powertrain. The inner-loop

control signals sent by the pilot, and the aerodynamic forces exerted on the vehicle’s control

surfaces by the surrounding environment, FCS, are inputs to this block. The FCS vector

consists of forces like the drag on the aircraft propeller, and the torque on control flaps.

These inputs result in the loading of powertrian components, represented by the vector

ν , which in turn determine the dynamics of powertrain component states, ẋPT , and the
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dynamics of component health, represented by the vector γ .

The loads exerted by the vehicle’s active components at a given time index, k, are expressed

as a function of the pilot control action vector, the current states of powertrain components,

and the states of component fault modes that may reduce component effectiveness.

ν (k) = f PT (u(k) ,xPT (k) ,γ (k) ,ξ (k)
)

(6.1)

where the ξ term is used in this expression to represent a vector of unknown or uncertain

model parameters.

The ‘Airframe Dynamics’ block shown in Figure 6.1a represents the aerodynamic interac-

tions between the vehicle airframe, vehicle control surfaces, and the operating environment.

The inputs to this block are the current states of aircraft control surfaces, xCS, and the cur-

rent state of the operating environment, w. Environmental states represented by w may

include atmospheric pressure, air temperature, wind speed, and turbulence. The current

state of the airframe is represented by, xAF ; it includes the position, heading, linear and ro-

tational speed, and linear and rotational accelerations of the airframe in a given coordinate

system.

Vehicle control surfaces are mechanically connected to powertrain components, so they

should be a known function of xPT ,

xCS = fCS (xPT) (6.2)

The forces exerted on the vehicle’s control surfaces due to their motion through surrounding

air is represented here as a generic non-linear function of the airframe state, the states of

vehicle control surfaces, and current environmental states,

FCS (k) = f FCS
(

xAF (k) ,xCS (k) ,w(k) ,ξ (k)
)

(6.3)
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where the additional ξ term is used to represent a vector of unknown or uncertain model

parameters.

Powertrain state dynamics and airframe dynamics are generically expressed in terms of the

loading vectors ν and FCS as:

ẋPT (k) = f PT
(

xPT (k) ,ν (k) ,FCS (k) ,ξ (k)
)

(6.4)

yPT (k) = hPT (xPT (k) ,φ (k)
)

(6.5)

ẋAF (k) = f AF
(

xAF (k) ,xCS (k) ,w(k) ,ξ (k)
)

(6.6)

yAF (k) = hAF
(

xAF (k) ,φ (k)
)

(6.7)

The progression of component health degradation is represented as:

γ̇ (k) = f γ
(
xPT (k) ,γ (k) ,ν (k) ,ξ (k)

)
(6.8)

The deterioration of control surfaces and electromechanical components in aircraft pow-

ertrains as a function mechanical loading forces has been a topic of study for some time;

examples include: electromechanical actuators [5] and composite wing structures [35], to

name a few. The degradation and failure of electrical components as a function of electrical

power loading has also been examined for aircraft components such as batteries [73] and

power electronics [21].

Measurements from simulated vehicle powertrain components, yPT , are generated in offline

testing using models for both the underlying component dynamics, and sensor response

dynamics. Data from actual system hardware is obtained in offline testing by applying me-

chanical loads to hardware components in real-time, in accordance with the environmental

loads, FCS, reported by the X-Plane simulator.

A hardware-only recreation of the ‘Flight Control Mechanisms’ portion of the inner-loop
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vehicle dynamics, illustrated in Figure 6.1b, could be accomplished in a laboratory setting

using an aircraft battery pack, power electronic motor/actuator drivers, electromechanical

components, and associated interconnection cabling. Pilot controls could be sent directly to

an electrical power distribution system assembled in the laboratory and additional loading

hardware could be used to apply mechanical loads to the electromechanical components of

the powertrain in order to recreate the environmental loads estimated by an aircraft simula-

tor. This approach is similar in nature to dynamometer testing commonly performed in the

testing of automotive systems [50, 92]. Software models may be switched in for some or

all of the hardware components in this setup; however, small errors in modeling the behav-

ior of a given component may have outsized effects in observed system behavior over long

time periods.

Measurements of the airframe states are represented by the vector, yAF . In offline testing,

aircraft dynamics are simulated using X-Plane. The X-Plane simulator includes sensor

models that are used to generate yAF . Autopilot routines are connected to the X-Plane

simulator in offline testing using the open-source program APM Mission Planner3. Human

pilots may interface with the X-Plane simulator using a simulator driven interface, and any

desired I/O mechanisms that may be connected to computer.

Adequate control of aircraft does not in most cases require a pilot to understand environ-

mental dynamics or the internal dynamics of the flight vehicle in great detail. Pilots are

autopilots are considered here to make decisions based on an internal decision making pol-

icy that maps observations of yAF (k) and yPT (k) at time-index k to appropriate control

outputs, u(k). An autopilot will use an embedded control policy to map
(
yAF (k) ,yPT (k)

)
onto u. For human pilots, the mapping

(
yAF (k) ,yPT (k)

)
onto u will be determined by the

pilot’s situational awareness and judgment. The mechanism for interaction between an au-

topilot and supervisory prognostics-based decision making routines can be for the decision

making routines to directly update the autopilot’s control policy. Policy updates for human
3http://code.google.com/p/ardupilot-mega/wiki/Mission
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pilots could be prompted indirectly by presenting the pilot with system health information

and suggested risk mitigating actions, as described in [18].

6.2.2 Description of Outer-loop Failure Prognostics and Decision Making

Supervisory outer-loop control routines make use of sensor measurements to estimate cur-

rent and future system states given models of system state dynamics and physics of failure

models. Probability distributions for belief in the current states of xPT , xAF , and γ , based

on a history of observations of yPT , yAF , and uAF are generically represented in Figure 6.1

as:

p
(

xPT ,xAF
γ|yPT (0 : k) ,yAF (0 : k) ,u(0 : k)

)
(6.9)

Many Bayesian and machine learning methods have been published for the estimation of

such probability distributions in the aviation domain [52, 58].

In offline simulations, stochastic beliefs about the manner in which the operating environ-

ment or internal system dynamics will evolve over time may be validated against repeated

randomized simulations of flight scenarios. Although it will not be demonstrated in this

chapter, the proposed SIL/HIL testing framework could be used to conduct repeated ran-

domized trials to validate prognostics-based control routines and online constraints, as was

demonstrated in Chapters 4 and 5.

6.3 Application Example - Battery Depletion Modeling on an Edge 540T

UAV

The aircraft platform used in this application example is a commercial-off-the-shelf (COTS)

33% scale model of the Zivko Edge 540T airplane, pictured in Figure 6.2. The wingspan of

the Edge 540T is 87 inches. The mass of the instrumented vehicle is approximately 44lbs.

The propeller of the UAV is driven by two tandem mounted outrunner brushless DC motors

that are each powered by a series connection of two lithium polymer battery packs. Each of
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Figure 6.2: Picture of an Edge 540T on runway
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Figure 6.3: Electrical and mechanical connections of the Edge 540T UAV powertrain

the battery packs consist of five series connections of two 4.2V 3900mAh lithium polymer

pouch cells wired in parallel.

The electrical and mechanical connections in the UAV powertrain are illustrated in Figure

6.3. Power flow from the battery packs to the driving motors is controlled by a Jeti 90 Pro

Opto electric speed controller (ESC). The ESC sends synchronized voltages to the propeller

motors at a duty cycle determined by a throttle input signal. The throttle input is either sent

by remote control from a pilot, or by an onboard autopilot.

During both remote control and autonomous flight, a human pilot will maintain line of

sight with the aircraft, and stand ready to execute a landing maneuver when the command
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is given by other operators on the ground. The ground operations assisting the pilot monitor

the battery end-of-discharge prognostic estimates and decision making outputs generated

in real-time by outer-loop supervisory routines.

Charge estimation and end of charge prediction for UAV powertrain batteries has previously

been examined in several publications by Bhaskar Saha at NASA ARC, Quach Chong Chi

at NASA LaRC, and others [71, 74]. A separate battery system is used to power the data

acquisition and other flight communications and control hardware. The two battery systems

are sized such that it is very likely that the batteries powering the propeller motors will be

the first to be depleted. For that reason, onboard battery discharge prognostic algorithms

and supervisory decision making actions are considered to only be concerned with the

propeller driving batteries.

6.3.1 Edge 540T Inner-Loop Controls

Vehicle flight plans are considered to be given in terms of an ordered set of 3D coordinates

to be visited by the UAV, and a desired airspeed for making the translation from one way-

point to the next. Autonomous control of the Edge 540T is performed using an ArduPilot

board. The ArduPilot sends control commands to the aircraft ESCs and flight control sur-

faces based on a set of proportional integral derivative (PID) control parameters that are

tuned prior to flight, and periodic measurements of vehicle airspeed, heading, and GPS

position.

As was described in Section 6.2.1, X-Plane is used to simulate vehicle aerodynamics in

offline simulations. Plane Maker, a design tool within the X-Plane package, was used to

specify the aircraft mass, balance, and geometry used in X-Plane aerodynamic simulations.

There is some unavoidable error between the actual geometry, drag, and mass distribution

of the aircraft and that used in the X-Plane aerodynamics models; however, because the

control system is closed-loop, small errors in simulating aircraft aerodynamics will not

typically accumulate into large errors.
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X-Plane can simulate various weather conditions and hardware configurations, and the

ArduPilot can be tested with various flight plans. This configuration allows for thorough

testing of algorithm performance and safety before conducting flight tests.

6.3.2 Battery Demand Modeling

The SIL/HIL framework described in Section 6.2 separates the simulation of aerodynamics

and powertrain dynamics into two functional blocks. Connecting these two blocks requires

that the airframe loads reported by the aerodynamics simulation be translated into loads

on the system’s powertrain components. It is difficult to collect direct measurements of

airframe loads such as component forces and torques in flight. This measurement difficulty

makes validating the load mapping used in offline simulations a complex proposition.

The tuning and validation of a propeller load mapping function is separated into two steps

in this section. First, a series of characterization experiments are performed in X-Plane to

identify a nonlinear mapping between propeller output power and aircraft angel of climb,

speed, and acceleration. Second, the modeled propeller power is mapped to a required

battery power using a fixed power conversion efficiency coefficient and a proportional drag

correction coefficient.

The nonlinear relationship between propeller output power and aircraft angel of climb,

speed, and acceleration is observed for a flight simulator representation of an aircraft, by

simulating a series of climbing and descending maneuvers at various angle of climb and

throttle setpoints. Unlike actual flight tests, there is no difficulty in observing the precise

loads on aircraft components in simulated flight tests. The results of repeated experiments

at different throttle and angel of climb setpoints are used to fit a general set of aircraft

aerodynamics and energy conservation equations, presented below.

The equations developed in this section make use of the following assumptions:

Assumption 6.1. The propeller is mounted on the aircraft nose.
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Assumption 6.2. The angle between the thrust vector generated by the propeller and the

velocity vector of the aircraft is small.

Assumption 6.3. Aircraft turning forces are small in comparison to the thrust and drag

forces on the aircraft in its direction of travel.

The sum of the forces acting in the aircraft direction of travel is:

Txw = D(v)+m ·g · sin(α)+m · v̇ (6.10)

where Txw represents the thrust produced by the aircraft in the direction of travel, D rep-

resents the drag force acting in the opposite direction of aircraft motion, v represents the

aircraft speed, v̇ represents acceleration, α represents angle of climb, m represents the ve-

hicle mass, and g represents the earth’s gravity.

The drag force on the airframe is represented by the following polynomial function of

airspeed and angle of climb.

D(v,γ) = c1 + c2 · v+ c3 · v2 + c4 ·α (6.11)

Figure 6.4a shows a fit of the modeled drag to the averaged drag force reported by the

X-Plane simulator over several steady speed climbing and descending maneuvers. The

fitted parameter values are: c1 = 13.47, c2 = −0.6, c3 = 0.019, c4 = 0.14. During take-

off and landing maneuvers when the aircraft speed is less than 15m/s the drag force is

approximated as D = 3 · v.

A plot of the measured and estimated propeller thrust versus airspeed is shown in Figure

6.4b. The plot was generated using the thrust model given in Eqn.6.10, and the drag model

given in Eqn. 6.11.
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The aircraft ESC throttle command is fit as a linear function of thrust and airspeed,

Throttle = a1 +a2 ·Txw (v, v̇,γ)+a3 · v (6.12)

where the fitted parameter values are: a1 =−19.64, a2 = 0.95, a3 = 1.

A plot of the measured and estimated steady state ESC throttle commands observed in X-

Plane simulations of various steady state climbing and descending maneuvers is shown in

Figure 6.4c.

The product of thrust and airspeed gives the motive power exerted by the aircraft,

Pp =
1

ηp
·Txw · v (6.13)

where Pp represents propeller output power and ηp represents the approximate propeller

output power conversion efficiency.

Figure 6.4d shows the modeled propeller power and the averaged values reported by the

X-Plane simulator over several steady speed climbing and descending maneuvers. The ηp

parameter for the modeled aircraft was fitted to ηp = 0.7652.

A fixed battery power conversion efficiency is assumed here for the aircraft motors and

power electronics. Conversion between the net propeller output power and the net bat-

tery output power required to maintain a particular airspeed and angle of climb setpoint is

achieved by applying a fixed power factor,

Pb = ηe ·Pp (6.14)

where ηe represents power conversion efficiency and Pb represents net battery output power.

A proportional factor is also introduced here to correct for discrepancies between the drag
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Figure 6.4: Model fitting results from X-Plane flight load characterization tests

models given in Eqn.6.11, and the drag forces estimated for the actual aircraft. The correc-

tive factor is expressed as:

DA(v,γ) = λD ·DM(v,α) (6.15)

where DA and DM represent the drag force estimated for the actual aircraft and drag force

estimated for the X-Plane model respectively. λD represents a constant corrective factor

that may be fitted by comparing modeled and actual aircraft powertrain load dynamics over

sample flights.

A roughly proportional deviation between the modeled and actual aircraft drag force is at-

tributed to slight errors in modeling the aircraft geometry and surface aberrations. Small

errors in modeling the true aircraft drag will cause only small effects on the aircraft han-
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dling from the perspective of a pilot or an autopilot, thus the drag correction need not

necessarily be made for the SIL testing of inner-loop controllers. However, small errors

in approximating the loads on onboard energy storage devices will accumulate into large

errors over a simulated flight.

The substitution of Eqns. 6.14 and 6.15 into Eqns. 6.10 - 6.13 yields a model for the net

battery power required to fly at a particular airspeed and angle of climb.

PB = 1
ηeηp
·Txw · v

PB = v
ηeηp
· (DA(v,α)+mg · sin(α)+mv̇)

PB = v
ηeηp
· (λDDM (v,α)+mg · sin(α)+mv̇)

(6.16)

The net battery power, PB, input to aircraft ESCs is given by the summation of battery

power input to ESC1 and ESC2. The proportion of the net battery output powers that goes

to each ESC is represented by:

λESC =
P1 +P2

P3 +P4
(6.17)

where λESC represents the ratio of battery power drawn by each of the onboard ESCs.

The power output from the two strings of series connected battery packs is equal to the

product of current and voltage,

PB = I1,2 · (VB1 +VB2)+ I3,4 · (VB3 +VB4) (6.18)

where VBi represents the terminal voltage of battery i, I1,2 and I3,4 represent the current

flowing through the two sets of series connected batteries.

Substitution of Eqn. 6.18 into Eqn. 6.17, and solving for I gives:

I1,2 =
λESCPb

(λESC+1)·(VB1+VB2)

I3,4 =
Pb

(λESC+1)·(VB3+VB4)

(6.19)
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Figure 6.5: An equivalent circuit battery model

This represents an estimate of the current loads on each of the series connected battery

packs, given an estimate of the battery power output required to fly a particular maneuver

and knowledge of the division of power between the two propeller motors.

6.3.3 An Equivalent Circuit Battery Model

The equivalent circuit model shown in Figure 6.5 is used to replicate battery current and

voltage dynamics as a function of estimated battery state of charge (SOC). The equivalent

circuit model used here is an extended version of the model explained in [24]. This battery

model uses six electrical components that are tuned to recreate the observed current-voltage

dynamics of Edge 540T powertrain batteries. Battery charge is stored in the capacitor,

Cb. The Rs,Cs and Rcp,Ccp circuit element pairs capture battery internal resistance drops

and concentration polarization effects, respectively. The resistor Rp accounts for the slow

battery self-discharge that is seen to occur over weeks or months of storage.

The current and voltage dynamics of the equivalent circuit model are defined as:

xB =

[
qb qcp qCs

]T

(6.20)

ẋB=


− 1

CbRp
1

CcpRp
1
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x+


i

i

i

 (6.21)
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yB =Vp =

[
1

Cb

1
Ccp

1
Cs

]
· x (6.22)

where qb, qcp, and qcs represent the charge stored in capacitors Cb, Ccp, and Ccs respectively.

The total voltage drop across the battery terminals, Vp, is given by the sum of the voltage

drops across the each of the three capacitors in the equivalent circuit model.

Because battery current-voltage dynamics are known to vary as a function of battery SOC,

some of the resistive and capacitive (RC) components in the equivalent circuit model must

be parameterized as functions of battery SOC [100]. It was decided based on qualitative

observation that defining Cb, Ccp, and Rcp as parameterized functions of battery SOC gave

an acceptable trade-off between the number of parameters to be identified and the resulting

model error.

Battery SOC is defined as:

SOC = 1− qmax−qb

Cmax
(6.23)

where qb is the charge stored in capacitor Cb, qmax is the maximum charge of the battery,

and Cmax is the maximum charge that can be drawn from the battery. The term coulombic

efficiency is used to refer to the portion of stored charge that can be withdrawn over re-

peated charge and discharge cycling of a battery. Resting a battery can temporarily unlock

some of its lost charge storage capacity, however the overall trend is inevitably downward.

The Cb, Ccp and Rcp terms in the equivalent circuit battery model are parameterized as:

Cb =CCb0 +CCb1 ·SOC+CCb2 ·SOC2 +CCb3 ·SOC3 (6.24)

Ccp =Ccp0 +Ccp1 · exp
(
Ccp2 (1−SOC)

)
(6.25)

Rcp = Rcp0 +Rcp1 · exp
(
Rcp2 (1−SOC)

)
(6.26)

Each battery pack used in Edge 540T flight tests should be characterized individually prior
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Figure 6.6: Measured and fitted profiles for Cb and battery terminal voltage

to testing, in order to account for any manufacturing and SOH variations. Two battery char-

acterization experiments are used to identify the RC parameters in the battery equivalent

circuit model.

The first experiment is a low current discharge of a battery from a fully charged state until

a cutoff voltage of 17.5V is reached. This type of discharge is mostly affected by the Cb,

qb, qmax, and Cmax parameters in the model. Figure 6.6 shows a polynomial fit of Cb as

a function of SOC, and the battery voltage fit for the tuned parameter values: CCb0, CCb1,

CCb2, CCb3, qmax, and Cmax.

Next, a pulsed loading experiment is used to fit the remaining parameters in the equivalent

circuit model to the observed changes in battery hysteresis behavior as a function of SOC.

A gradient descent search is used to identify the remaining model coefficients using the
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Table 6.2: Parameter definitions for the equivalent circuit battery model

Parameter Value Parameter Value
qmax 2.88×104 C Cs 89.3 F
Cmax 2.85×104 C Rcp0 1.60×10−3 Ω

CCb0 19.4 F Rcp1 8.45
CCb1 1576 F Rcp2 −61.9
CCb2 41.7 F Ccp0 2689 F
CCb3 −203 F Ccp1 −2285 F

Rs 2.77×10−2 Ccp2 −0.73 F

pulsed loading data. Figure 6.7 shows the battery voltage fit over a pulsed loading profile,

using the tuned parameters identified in the low current experiment, and the newly tuned

values of Rs, Cs, Rcp0, Rcp1, Rcp2, Ccp0, Ccp1, and Ccp2.

Values for all of the RC components and parameterization coefficients used in the equiva-

lent circuit model of an Edge battery are defined in Table 6.2.

6.3.4 Battery Charge Depletion Modeling

Outer-loop supervisory health management routines are considered to be focused on the

depletion of battery charge. The charge remaining in the aircraft’s batteries will be esti-

mated online using domain knowledge and periodic measurements of battery current and
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Figure 6.8: Plots of individual and net battery power consumption (top), and battery current
load (bottom) measured over a sample flight

voltage.

In offline testing, the current-voltage dynamics of aircraft batteries may be observed over

simulated flights by loading the aircraft batteries with a current profile indicative of flight

loads. It would also be necessary in offline tests to assure that the SOH and thermal loading

of the batteries under test is similar to what will be encountered in online testing, as battery

dynamics are expected vary substantially as a function battery health and temperature [49].

Similarly, offline replication of battery discharge dynamics using SIL battery models would

require that the models be tuned using data from batteries at similar SOH and thermal loads

to what is anticipated during online tests.

Battery power and current draw over a piloted flight of the Edge 540T are shown in Fig-

ures 6.8a and 6.8b respectively. The ticks on the x-axis denote the initiation of high level

maneuvers. The sample flight consists of eight activities initiated by a pilot flying the Edge

540T in remote control mode.

1. Take-off and climb to 200 ft from 0 to 57 s
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2. Circling flight in auto-mode with throttle set to 75% from 57 to 322 s

3. Throttle is increased to 85% from 322 to 550 s

4. Throttle is decreased to 75% from 550 to 692 s

5. Aircraft lands from 692 to 722 s

6. Aircraft taxies down the runway from 722 to 885 s

7. The tail of the aircraft is held on the runway and the throttle is set to 75% from 885

to 1232 s

8. The throttle is increased to 80% and held there until battery voltages drop below 17V

from 885 to 1232 s

A detailed description of the sample flight and collected data is given in Appendix E.

An asymmetric loading of the two propeller motors over the sample flight is apparent from

the battery power loading profiles shown in Figures 6.8a and 6.8b. Motor M2 is known

to consistently draw more current than motor M1 on the Edge 540T, due to unregulated

coupling of the two motor speed controls (ESCs).

Figure 6.9 shows open loop predictions of battery voltage profiles for B1 and B3 obtained

using the equivalent circuit model described in Section 6.3.3 and recorded battery current

profiles plotted in Figure 6.8b. The open-loop voltage predictions are seen to lie on top of

the observed battery voltage profiles, providing a measure confidence in the accuracy of

the software models.

Estimates of both battery terminal voltage and internal SOC will be further improved

through the use of a closed-loop state estimation technique, such as Kalman filtering [24].

The output of such closed-loop state estimation techniques will be much less susceptible to

initialization and measurement errors than the Coulomb counting method currently used in

many battery monitoring systems.

Figure 6.10 shows the mean estimate of SOC for batteries B1 and B3 given by a Kalman
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Figure 6.10: Estimated SOC for batteries B1 and B3 over a sample flight

filter with small process noise and measurement noise priors. The prior distribution for

process noise is assumed to be small due to high confidence in the fitted battery model, and

the measurement noise is assumed to be small due to an assumption of accurate current

and voltage sensing. The low noise assumption results in negligible uncertainty around

SOC estimates in this case-study. The red line in the figure shows the threshold SOC, after

which the batteries will be considered no longer safe for supporting flight activities. The

SOC threshold is defined to be 20% SOC for the experiment described here.
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6.3.5 Prognostic Prediction

The generation of battery RUL estimates, with appropriate uncertainty bounds, is consid-

ered here. Uncertainty in state estimation and battery dynamics is assumed to be negligible

for the fitted battery equivalent circuit model described in Section 6.3.3. Therefore, un-

certainty in the battery discharge prognostic estimates presented here is caused solely by

uncertainty in estimates of the future loads to be placed on system batteries.

Eqns. 6.10 - 6.16 provide for the estimation of battery power consumption given an angle

of climb, airspeed, and acceleration dictated by each portion of a flight plan. Steps 1-5

of the sample flight are annotated below with approximated values for the angle of climb,

airspeed, and acceleration, used to approximate the steady state battery power demand

over each flight segment. The inversion of the throttle model given in Eqn. 6.12 is used to

identify a steady state aircraft airspeed expected to correspond to given throttle and angle

of climb set points.

1. takeoff and climb to ∼200 meters (duration = 57 s) (α = 2.8◦, v0 = 0m
s , v̇ = 0.4 m

s2 )

2. maintain altitude, set throttle to 75% (duration = 265 s) (α = 0◦, v = 33m
s , v̇ = 0 m

s2 )

3. maintain altitude, set throttle to 85% (duration = 228 s) (α = 0◦, v = 36m
s , v̇ = 0 m

s2 )

4. maintain altitude, set throttle to 75% (duration = 142 s) (α = 0◦, v = 33m
s , v̇ = 0 m

s2 )

5. land (duration = 30 s) (α =−3.2◦, v0 = 33m
s , v̇ =−1.1 m

s2 )

Figure 6.11 shows measured and predicted battery power demand required over steps 1-5 in

the sample flight plan, denoted S1-S5 in the figure. The dashed line in the plot denotes the

steady state power demand estimated using the given values of angle of climb, airspeed,

and acceleration for each step. The proportional constants ηe and λD used in Eqn. 6.16

were fitted to ηe = 0.85 and λD = 0.9 to obtain the model fit shown. The green boxes in the

figure show a±30% envelop around the estimated steady state power demand for each step

in the flight plan. Prognostic predictions will be performed under the assumption that future
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Figure 6.11: Measured and predicted net battery power consumption over steps 1-5 of the
sample flight plan (annotated S1-S5 in the figure).

power demand will be selected randomly each second from a uniform distribution spanning

the ±30% envelop shown in the figure. This assumed stochastic model for future power

demand is intended to account for the unmodeled dynamics in the rather simple model for

future power demand given in Eqns. 6.10 - 6.16. The measured battery power draw over

the sample flight plan, shown with the red line in Figure 6.11, is seen to stay within the

±30% envelop to be used for prognostics, except during the peak loads occurring for the

first several seconds of the flight.

Battery RUL predictions will be made by assuming that the aircraft will continue to fly at

the same speed as it did in step 4 of the flight plan until one of the battery packs reaches the

end of discharge (EOD) condition (min battery SOC estimate ≤ 20%). In reality, a landing

maneuver is initiated at 692 seconds, then the aircraft taxies down the runway and is held in

place while the throttle is controlled such that the batteries are placed under similar loads

to those observed in step 4 until all battery voltages drop below 17 V. This procedure is

described in steps 6-8 of the flight plan described in Section 6.3.4.

Figure 6.12 shows the measured and predicted net battery power consumption over the

sample flight plan. The net battery power observed during the ground discharge phase of

the flight plan is seen to fall within the estimated range of battery power demands over the

sample mission.
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Figure 6.12: Measured and predicted net battery power consumption over the sample flight
plan.

The purpose of loading the aircraft powertrain on the ground immediately after landing

is to safely obtain an approximate measurement for the amount of flight time that would

have been supported by the battery pack if the aircraft had continued to be flown. This

measurement allows comparison between battery EOD predictions made at various points

over the sample mission, and the EOD time observed experimentally. It is seen in Figure

6.10 that the EOD condition is reached at 1039 seconds after the beginning of the flight.

Subtracting the time spent landing and taxing on the runway from 1039 seconds, gives

an approximate measurement for the time at which the EOD condition would have been

observed if the aircraft had continued to be flown at the same speed as in step 4 of the flight

plan until EOD,

1039− (885−692) = 846 seconds (6.27)

A discrete Markov model, of the form described in Chapter 5, is used to propagate future

battery power loading uncertainty into estimates of future SOC. A discrete Markov model

is formulated over the quantized space: qmax ≤ qb ≤ (qmax−Cmax), where qb was defined

to be the charge stored in capacitor Cb in the equivalent circuit model described in Section

6.3.3. State transition probabilities are found using Eqn. 6.19 to map the stochastic battery

power demand profile to stochastic estimates of future battery current demands.
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Figure 6.13: Measured battery power input to ESCs (Top) and observed ESC power ratio
over a sample flight (bottom)

The dynamics of qb were defined in terms of battery current in Eqns. 6.20 - 6.22. However,

this equation is missing a fitted value for the ESC power split coefficient, λESC. Figure

6.13a shows the observed net battery power inputs to ESC 1 and ESC 2 over a sample

flight. Figure 6.13b shows the ratio of power drawn from ESC 1 and ESC 2. The split of

power between the two ESCs is currently uncontrolled, but it is seen to remain close to

a value of λESC ≈ 0.7 until ~1045 seconds into the sample flight. The EOD condition to

be predicted by prognostic data occurs at 1039 seconds, which is right at the point where

λESC starts to move away from λESC = 0.7. It remains reasonably accurate however for

prognostic routines to assume a value of λESC = 0.7 over the allowed SOC range of the

batteries. The approximation for λESC to be used in SIL and HIL testing of the vehicle

power train may be improved in future work by incorporating possible dependencies on

time, battery pack voltage, throttle command, and other inputs control inputs.

Figure 6.14 shows predictions for the future depletion of SOC in battery B3, and the esti-

mated SOC in B3, using Kalman filtering, over the sample flight. Uncertainty in battery

SOC depletion predictions is represented in Figures 6.14a - 6.14d using dashed lines to

denote the 5% and 95% confidence VaR points in predictions of future battery SOC. The
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Figure 6.14: Plots of estimated state of charge for B3 versus predicted state of charge at
various points over the sample flight

back line in the plots denotes the time at which SOC depletion predictions are made, and

the red line denotes the time at which the SOC of battery B3 crosses the EOD threshold.

It appears from the plots shown in Figure 6.14a - 6.14d, that the estimated battery SOC

always falls well within the 5% - 95% confidence estimates shown for future SOC predic-

tions. It is also seen that predictions made later in the mission have much less uncertainty

that predictions made earlier in the mission, as should be expected.

Figure 6.15 shows predictions for the SOC of battery B3 at t = 846 seconds, plotted at

60 second intervals over the sample flight. The red lines in the figure denote the area

between the 5% and 95% VaR estimates for the predicted SOC at 846 seconds. Predictions

are shown at 60 s intervals. The dashed line in the figure shows the actual battery SOC

measured at 846 seconds. The actual value of B3 SOC was 20% at t = 846 seconds. The

gray cone in the figure denotes a 30% relative accuracy cone. The relative accuracy cone is
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Figure 6.15: Predictions of battery B3 state of charge at t = 846 seconds is plotted at 60
second intervals over the sample flight.

defined in terms of a metric α as:

RAα = zT ±α · (T − t)
T

(6.28)

where zT represents a measurement taken at time T and α is an accuracy modifier. In

Figure 6.15, T is set to 846 seconds, zT is set to 20% SOC, and α is set to 30%. It can be

seen from the figure that the median SOC prediction stays within the 30% relative accuracy

cone shown, although the relationship between uncertainty in SOC predictions and the

length of the prognostic horizon appears grow faster than the relative accuracy cone.

The prognostic result shown here is a considerable improvement over previous particle filter

based implementations of battery EOD prognostics, described in [74, 73, 72], which used

the average of battery current over a finite window to estimate the future battery loading

over a flight. Not only are the predictions more accurate, but they are also more stable.

6.3.6 Online Controls Testing

When conducting purely simulation based testing of supervisory control algorithms, con-

trol system designers may run a simulation or a batch of simulations, and assess algorithm

performance upon completion. However, during testing procedures that involve real hard-
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ware, the testing personnel will require some real-time interfaces to monitor a test and

determine if and when it should be aborted.

A set of system status and battery prognostics displays are presented in this section to il-

lustrate how supervisory prognostics-based decision making algorithms may be monitored

in real time during a test. Because the X-Plane simulator nominally runs in real time, the

development and testing of prognostics displays for electric aircraft applications is easily

incorporated into the SIL/HIL testing framework described in Section 6.2 of this chapter.

The displays described here give test operators both high confidence estimates of the ve-

hicle’s current states, and uncertain predictions of future system states. Uncertainty in

the future input model is represented in the displays shown here by a uniform distribu-

tion extending to ±30% of the predicted future battery power demand profile estimated

for a predefined flight plan. Corresponding predictions of future battery state evolutions

are reported in terms of mean, 5%, and 95% confidence VaR estimates. The actual confi-

dence bounds used will depend on the conservatism of the operator; perhaps they will be

interested in the 2% and 98% confidence VaR estimates used in Chapter 4.

Figure 6.16 and Figure 6.17 show a set of operator displays observed near the beginning

and near the end of a sample mission to be flown by the Edge 540T UAV respectively. The

sample mission considered here is plotted in Figure 6.18. Figure 6.18 shows an ordered set

of 17 waypoints that specify aircraft transit speeds, acceleration, and angle of climb over

the sample mission. This sample mission consists of several periods of straight and level

flight, four ±8 degree climbing and descending maneuvers, and two ±4 degree climbing

and descending maneuvers.

The right most graphic in the bottom window shown in Figures 6.16 and 6.17 plots the

ordered set of waypoints to be visited by the aircraft along with past aircraft position mea-

surements. The top left plot in the bottom window shows the measured and desired air

speed of the aircraft over the sample mission. The bottom left plot in the bottom window
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Figure 6.16: Operator displays captured near the beginning of a sample flight

shows the measured and predicted propeller power (with a 30% uncertainty factor included)

over the sample mission.

The top window in Figures 6.16 and 6.17 shows detailed prediction data for a selected

powertrain battery. Predictions are made using the assumption that future battery power

loads are selected each second from a uniform distribution that spans ±30% of the mean

battery power loads predicted, as described in Section 6.3.5. The top left plot in the top

user display window shows the measured battery voltage, an estimate of what the battery

voltage should be, using the battery model described in Section 6.3.3. The mean, 5%, and

95% VaR battery voltage predictions are also shown over the remainder of the mission.

Past battery SOC estimates and uncertain future predictions are shown in the top right

plot in the top user display window. In the experiment shown here, the aircraft batteries

start a mission with 100% SOC, but the battery models are initialized to 80% SOC. The
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Figure 6.17: Operator displays captured near the end of a sample flight

initialization error is corrected in the first minute of the mission by the Kalman filtering

routine used for state updates. The initialization error and the state corrections are seen

by observing the convergence of the measured and modeled battery voltage over the first

minute of the sample mission. The bottom right plot in the top display window shows

past measurements and future predictions for to be drawn from the battery over the future

mission. The plot in the lower right side of the top display window show the evolution of

battery SOC at EOM estimates over the mission.

Comparison of the predictions made early in the sample mission (Figure 6.16) to the actual

battery measurements and internal states observed later in the sample mission (Figure 6.16)

shows the actual measurements to mostly fall within the assumed 5% and 95% confidence

bounds. This result provides some measure of validation for the prognostic model used.

Similarly to what was shown in Figures 6.14 and 6.15 in Section 6.3.5, the SOC at EOM
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Figure 6.18: Plots of the desired aircraft speed, acceleration, angel of climb, and altitude
waypoints that define a sample mission

measurements are seen to converge as the EOM draws near. In this case, it seems that

the SOC at EOM estimates are converging to an estimate of 0% SOC remaining in the

powertrain batteries. The setup of this example mission is similar to that of the missions

analyzed in Chapters 4 and 5. The risk associated with not taking any supervisory control

actions is assessed to be very high. However some relatively small deviations from the

nominal system control could make the mission satisfiable.

6.3.7 Bounded Load Allocation

Assuming the prognostic model for battery charge depletion as a function of flight plan is

sufficiently validated in SIL and HIL testing. The bounded load allocation problem may

now be formulated. The ‘load’ variable, which drives both system dynamics and fault

growth in this example, can be considered to be the instantaneous battery power draw from

the powertrain batteries.

The nominal battery loading associated with a mission defined in terms of 3D waypoints

and desired transit speeds is found using the load inversion approximation given in Eqn.

6.16. As was shown in Chapters 4 and 5, a range of feasible deviations from the nominal

battery load demand at each time instant may be defined in terms of a relative performance

108



metric ρ ,

P̃B = ρ ·P(v,α) (6.29)

where P̃B represents a modified battery power output command, and P(v,α) represents the

estimated net battery power required to follow a given vehicle flight plan.

The methodology demonstrated on the more simplistic case study examples discussed in

Chapters 4 and 5, could also be followed at this point to quantify risk metrics, assess mis-

sion feasibility, and formulate a supervisory risk management optimization problem.
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CHAPTER VII

CONCLUSIONS

The overarching analytical focus of the systems health management approach described

here was on defining example scenarios that are known to present a high likelihood of fail-

ure if supervisory control actions are not taken, but which also contain a set of safe oper-

ating modes achieved by degrading nominal system performance. The challenge then is to

identify prognostics-based supervisory control policies that are safe without unnecessarily

degrading nominal system performance. Repeated trials were shown to facilitate quantita-

tive performance analyses for given risk evaluation metrics and prognostics-based health

management policies. The empirical analytical tools presented here represent a substantial

contribution to a community that is sorely lacking in repeatable application examples.

An overview of the primary contributions to the state of the art that are claimed for this

work are enumerated and explained here. Key assumptions are noted for each claim.

Claim #1 - Description of Prognostics-Based Risk Management Using a Retrofit Nominal

Load Modification Architecture

The search space for supervisory health management actions was defined in terms of al-

lowable modifications to a nominal component load allocation policy. Description of com-

ponent deterioration dynamics in terms of component load allocations was shown to be no-

tationally convenient and able to be applied across different applications. Defining health

management actions in terms of modifications to a nominal system is shown to provide a

clear means of benchmarking system input-output performance goals.

The utility of the search for bounded component load allocations relies on an assumption

that limited deviations from the nominal input-output performance of a given system will

yield sufficiently safe control outcomes. The scope presented here does not include higher

level fault management actions such as changing a system’s mission or scheduling a repair
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operation. The formulation of the health management problem in terms of component load

allocations also relies on a lower level control layer that would invert the load allocation

dynamics of a given nominal control system.

Claim #2 - Analysis of Supervisory Health Management Using Finite Horizon Prognostic

Estimates

The tuning finite horizon risk metrics in order to identify prognostics-based health man-

agement policies that mitigate failure risks without being overly conservative was demon-

strated on two simulated systems with multiple effectors at different states of health. Anal-

ysis of prognostics-based component load optimization on the two example systems was

used to illustrate the utility of risk assessments made at various prognostic horizons. As-

sessing prognostic risk using remaining useful life estimates, which is seen in almost all

other published prognostics-based control discussions, was shown to be of limited useful-

ness in the two case study examples analyzed.

The empirical analyses used here rely on an assumption that an objective means of evalu-

ating control outcomes is available. The value of the iterative empirical risk metric tuning

approach presented also relies on the availability of a trustworthy means of simulating sys-

tem dynamics and sample health management control policies.

Claim #3 - Demonstration of the Explicit Incorporation of Future Demand Models into

Health Management Policies

The incorporation of stochastic models for future environmental loading into a risk opti-

mizing control policy was explored using a Markov decision process formulation of the

supervisory load allocation problem. Causal and non-causal implementations of dynamic

programming were shown to solve for optimal component load allocation policies with and

without future uncertainty respectively. Comparison of the performance of the causal and

non-causal optimal policies served to illustrate the limiting effects of model uncertainty on

health management controllers.
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The analysis of the Markov decision process formulation of the prognostics-based load

allocation problem relies on the assumption that all of the system’s stochastic dynamics

can be encoded as a discrete fully observable Markov process. State transition costs used

in the Markov decision process formulation are assumed to encode fault risk aversion and

performance degradation trade-offs. These assumptions are described to result in burden-

some formulation and computational challenges. However, the ability to directly compute

optimal policies from this formulation is shown to offer analytical advantages that make

the approach attractive in spite of the implementation challenges described.

Claim #4 - Real-World Demonstration of Stochastic Component Health Depletion Model-

ing in terms of Uncertain Future Demand Estimates

Finally, the implementation and testing of a real-world prognostic system was described

to illustrate model development challenges not directly addressed in the analysis of the

simulated case study systems. The problem of battery charge depletion prediction for an

electric aircraft was shown to offer a meaningful and repeatable failure case. Uncertainty

propagation in charge depletion predictions was shown to produce a projection of future

battery charge depletion with confidence bounds that in early testing appeared reasonable.

Given the prognostic model and offline simulation framework demonstrated for the real-

world charge depletion failure mode example, there are still two prerequisites that must be

implemented on the case study before the analytical techniques for supervisory health man-

agement that are described in this document can be applied. First, a mechanism for mod-

ifying the nominal load allocated to aircraft batteries must be identified. Second, metrics

for evaluating a relative preference for control outcome distributions must be established.

After these prerequisites are satisfied the supervisory health management problem can be

stated in the format demonstrated in the three simulated case study systems. The amount of

development effort necessary to get the real-world example to that point illustrates why the

research focused on simulated examples for the initial exploration of the proposed system

health management paradigm.
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APPENDIX A

RESOLVING ACTIVE REDUNDANCIES IN THE LOAD ALLOCA-

TION PROBLEM

The separation of component loading and system output regulation tasks is described in

this appendix for a generic nonlinear system of the form:

ẋ = A(x)+B(x)u+C (x)w (A.1)

where A(x) ∈ Rn, B(x) ∈ Rn×m,C (x) ∈ Rn×l, x(t) ∈ Rn, is the state, u(t) ∈ Rm is the

control effort or load on each of the m components in the system, and w(t) ∈Rl represents

the forces exerted on the system by its operating environment.

If B(x) does not have full column rank, i.e., rank{B(x)} = k < m∀x, then B(x) can be

factorized as:

B(x) = Bν (x)Bu (x) (A.2)

where Bν (x) ∈Rn×k and Bu (x) ∈Rk×m both have rank k. Now the system can be rewritten

as:
ẋ = A(x)+Bν (x)ν +C (x)w

ν = Bu (x)u
(A.3)

where ν(t) ∈ Rk can be interpreted as the net control effort produced by a system’s m

components.

Because Bν (t) has full column rank, a given system state, x, desired system dynamic, ẋ,

and environmental loading term w will uniquely determine the net control effort output,

ν (t) required. However, since Bu (x) has a nullspace of dimension m− k, there are m− k

extra degrees of freedom in assigning component loads, u(t), for a given ν (t).

Here we could consider implementation of a nested optimization routine to identify load

113



allocations in the nullspace Bu (x) that minimizes the expected aggregate damage of func-

tionally redundant components. It is then only the net output control effort vector, ν , and

the corresponding aggregate component damage that must be considered by supervisory

health management control routines.

The optimal mapping between ν and u is denoted here as u(k) = H (ν (k)).

H (ν (k)) = min
u

E { f (γ,u,ξ )} , s.t. ν = Bu (x) ·u (A.4)

where γ is a vector representing the state of health of a system’s components, ξ is a ran-

dom variable representing modeling uncertainty, and f (γ,u,ξ ) represents the dynamics of

component failure modes,

γ̇ = f (γ,u,ξ ) (A.5)
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APPENDIX B

THERMAL MODELING FOR DC MOTOR WINDING INSULATION

Winding-to-ambient temperature is defined as:

Twa (t) = Tw (t)−Ta (B.1)

where Tw is the winding temperature and Ta is the ambient temperature of the surroundings,

which are assumed to be stationary.

The first order differential equation for winding-to-ambient temperature given by this ther-

mal model is:

Ṫwa =−
Twa(t)

RwaCwa
+

Ploss(t)
Cwa

(B.2)

The Ohmic power loss in the motor windings is:

Ploss (t) = i2M (t) ·Rt (B.3)

where iM is the current flowing through the DC motor, and Rt is the motor winding resis-

tance.

The motor torque roughly proportionally related to the current flowing through a DC motor,

where the coefficient of proportionality in this relationship is related to the number of turns

in the DC motor,

TM (t) = kT · iM (t) (B.4)

Here, TM represents the toque at a motor’s output shaft, and kT is a coefficient of propor-

tionality that relates winding current and motor torque.

Working backwards from Eqns. B.2 - B.4, the motor winding temperature is written in
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Figure B.1: An equivalent circuit model for motor winding temperature dynamics

terms of motor torque as:

Ṫw (t) =−
Tw (t)−Ta

RwaCwa
+

(
TM (t)

kT

)2 Rt

Cwa
(B.5)
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APPENDIX C

TRIPLEX REDUNDANT ELECTROMECHANICAL ACTUATOR MOD-

ELING INFORMATION

The electromechanical actuator example used in Chapter 4 is discussed here.

If low level control is assumed to exist such that motor toque is assignable, then mechanical

dynamics of the three motor system are much more simply expressed in terms of torque.

Torque transmission is expressed by the following linear model:

ẋ = Ax+B1u+B2w

y =Cx
(C.1)

A =

 1 0

kL
JL+3ρJM

−bL−3bMρ

JL+3ρJM


B1 =

ρ

JL+3ρJM

 0 0 0

1 1 1

 , B2 =
1

JL+3ρJM

 0

1


C =

 1 0

0 1


x =

[
θL ωL

]T

, uc =

[
T1 T2 T3

]T

, w = Q

(C.2)

Where model parameters are defined in Table C.1.

Compared to the consideration of imbedded speed or position controllers as described in

[17], a dramatic reduction in model complexity is gained by analyzing a system’s mechani-

cal dynamics in terms of assignable component loads. This reduction in model complexity

however comes at the price of needing to implement some low level control scheme that

enacts component loads within acceptable tolerances. Dynamic inversion and model pre-
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Table C.1: Parameter definitions for the electromechanical actuator model

Sym Description Units Value

bL Load damping in·lbf/rad/s 2.5×10−1

bM Motor damping in·lbf/rad/s 1×10−4

kL Load stiffness in·lbf/rad/s 2×10−3

kt Motor torque coef. in·lbf/A 1.01
JL Load inertia in·lbf·s2 2×10−3

JM Motor inertia in·lbf·s2 2×10−3

ρ gearing ratio 8
θL Load position rad -
ωL Load speed rad/s -

dictive control are capable tools for handling this low level control task, even in the case

that system dynamics are changing due to a fault mode, as described in [47, 61].
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APPENDIX D

SKID-STEERED VEHICLE MODELING INFORMATION

The skid-steered vehicle example used in Chapter 4 is discussed here.

Figure D.1 shows the structure of the four wheeled skid-steered vehicle used. The vehicle

kinematics are represented here in a reference frame that is fixed to the center of the skid-

steered vehicle, with an axis pointing in the direction of the velocity vector, v. The motion

of the rover in a 2D inertial reference frame is given by:

ẋ = vcos(θ)

ẏ = vcos(θ)

θ̇ = φ

(D.1)

where x, y, and θ represent the 2D position and orientation of the vehicle respectively, v

represents the linear velocity of the vehicle, and φ represents the angular velocity of the

body frame.

Using the simplifying assumption that the wheels on the same side of the vehicle do not

slip relative to each other, then v and φ are given in terms of wheel speeds as:

ωL = ω1 = ω2

ωR = ω3 = ω4

v = r ωL+ωR
2

φ = r−ωL+ωR
αW

(D.2)

Where ωi represents the rotational velocity of wheel i, ωL and ωR represent the rotational

velocities of the wheels on the left-hand and right-hand sides of the vehicle respectively, r

represents the wheel radius, α regulates the amount of longitudinal wheel slip that occurs

during a turn, and W represents the width of the vehicle.
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Figure D.1: Visualization of motor torque contributions to system locomotion for a four
wheeled skid-steered vehicle

A linear kinetic friction term is used to model the rolling resistance force acting directly

opposite to the wheel velocity,

fri =
m
4

gkrωi (D.3)

where fi represents a rolling resistance force acting on each wheel, m represents vehicle

mass, g represents a gravitational force, and kr represents a linear coefficient of kinetic

friction.

Using the Euler-Lagrange principle and collection terms, as described in [1], yields:

 ω̇L

ω̇R

=


mr2

4 + r2I
αW 2

mr2

4 −
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 v

φ

=
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2

r
2

−r
αW

r
αW


 ω̇L

ω̇R


(D.4)

The coefficients used in this model are defined in Table D.1.

This model may be considered as a placeholder for more accurate representations of kine-

matics and dynamics of skid-steered vehicles. Many publications have addressed improv-
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Table D.1: Parameter definitions for the skid-steered vehicle model

Symbol Description Units Value
r Wheel radius m 0.1

W Vehicle width m 0.5
L Vehicle length m 0.5
I Wheel rotational inertia kg·m2 0.1
m Vehicle mass kg 1
kr Rolling resistance term - .19
α Longitudinal slip during turn - 2
v Linear vehicle speed m/s -
φ Vehicle angular velocity rad/s -

ωL Left side wheel speeds rad/s -
ωR Right side wheel speeds rad/s -
Ti Torque allocated to motor i N/m -

ing modeling accuracy for skid-steered drivetrains [98, 96].
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APPENDIX E

DETAILED DESCRIPTION OF AN EDGE 540T SAMPLE FLIGHT

A sample flight of the Edge 540T electric aircraft is described in this section. The sample

flight consists of eight activities:

1. Take-off and climb to 200 ft from 0 to 57 s

2. Circling flight in auto-mode with throttle set to 75% from 57 to 550 s

3. The throttle is increased to 85% from 322 to 550 s.

4. The throttle is decreased to 75% from 550 to 692 s.

5. Aircraft lands from 692 to 722 s

6. Aircraft taxies down the runway from 722 to 885 s

7. The tail of the aircraft is held on the runway and the throttle is set to 75% from 885

to 1232 s

8. The throttle is increased to 80% and held there until battery voltages drop below 17V

from 885 to 1232 s

Figure E.1 shows the aircraft throttle, propeller RPM, and battery power profiles recorded

over a sample flight. The blue/square and red/diamond traces shown in Figure E.1 give

the net battery power input to the ESCs powering motors M1 and M2, respectively. The

net battery power input to an ESC is given by the product of the current flowing through

the ESC and the sum of the two series-connected battery voltages powering the ESC. The

black trace in the battery power plot gives the sum of all battery power input to the two

onboard ESCs.

Figure E.2 shows the current and voltage profiles for three of the four batteries used to

power the two propeller motors onboard the Edge 540T. The current and voltage data for

battery B4 showed anomalous readings and they are omitted from the plots. The ticks on

the x-axis in Figures E.1 and E.2 denote the time of notable activities.
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Figure E.1: Plots of throttle command, propeller RPM, and battery power draw measured
over a sample flight

An interesting observation to note regarding the battery power draw over the sample flight

is that motor M2 draws more power than motor M1 the majority of the time. This occurs

until the batteries supplying power to motor M2 are depleted to about 18 volts each. At this

point, the batteries powering motor M1 begin to take the majority load. This crossover is

seen in both the battery power and battery current profiles at about the midpoint between

885 and 1232 s.

The period from 692 to 885 s in the figures shows the battery load when the pilot resumes

control to land the airplane and get the airplane in position to operate the motors on the

runway. Operating the motors on the runway to the end of discharge in lieu of flying

until end of discharge is more desirable as it abates the risk of a "dead stick" landing or a

potential crash.
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Figure E.2: Battery current and voltage profiles recorded over a sample flight

The period between 885 to 1435 s captures the ground discharge of the aircraft’s batteries.

This phase of the flight test is used to generate a measurement of the flight time that the

batteries would have been able to support had the plane stayed in the air. For this segment,

the pilot initially set the throttle to match the RPM range observed during the 75% constant

throttle phase of the flight between 550 s and 692 s. At the 75% constant throttle setting

in the runway discharge, the propeller RPM, shown in Figure E.1, trends downward and

eventually drops below 4000 RPM. This is due to the weakened battery condition in the

latter part of the discharge. Because the ground discharge is intended to improvise flight,

the throttle was increased at time 1232 sec to raise the RPM above 4000 so as to meet

output requirements for cruise flight.

The motors were stopped at 1435 s, after the batteries voltages were seen to fall below

the 17 V threshold. Note that the net current draw is seen to increase as the net battery

voltage decreases between 885 and 1232 s in order to meet the power demand dictated by

the throttle set-point.
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