69 research outputs found

    Multi-horizon air pollution forecasting with deep neural networks

    Get PDF
    Air pollution is a global problem, especially in urban areas where the population density is very high due to the diverse pollutant sources such as vehicles, industrial plants, buildings, and waste. North Macedonia, as a developing country, has a serious problem with air pollution. The problem is highly present in its capital city, Skopje, where air pollution places it consistently within the top 10 cities in the world during the winter months. In this work, we propose using Recurrent Neural Network (RNN) models with long short-term memory units to predict the level of PM10 particles at 6, 12, and 24 h in the future. We employ historical air quality measurement data from sensors placed at multiple locations in Skopje and meteorological conditions such as temperature and humidity. We compare different deep learning models’ performance to an Auto-regressive Integrated Moving Average (ARIMA) model. The obtained results show that the proposed models consistently outperform the baseline model and can be successfully employed for air pollution prediction. Ultimately, we demonstrate that these models can help decision-makers and local authorities better manage the air pollution consequences by taking proactive measures

    Comparative Analysis of Machine Learning Techniques for Predicting Air Pollution

    Get PDF
    The modern and motorized way of life has cultured air pollution.  Air pollution has become the biggest rival of robust living. This situation is becoming more lethal in developing countries and so in Pakistan.  Hence, this inquiry was carried out to propose an architecture design that could make real-time prediction of air pollution with another purpose of scanning the frequently adopted algorithm in past investigations. In addition, it was also intended to narrate the toxic effects of air pollution on human health. So, this research was carried out on a large dataset of Seoul as an adequate dataset of Pakistan was not attainable. The dataset consisted of three years (2017-2019) including 647,512 instances and 11 attributes. The four distinctive algorithms termed Random Forest, Linear Regression, Decision Tree and XGBoosting were employed. It was inferred that XGB is more promising and feasible in predicting concentration level of NO2, O3, SO2, PM10, PM2.5 and CO with the lowest RMSE and MAE values of 0.0111, 0.0262, 0.0168, 49.64, 41.68 and 0.1856 and 0.0067, 0.0096, 0.0017, 12.28, 7.63 and 0.0982 respectively. Furthermore, it was found out as well that the Random Forest was preferred mostly in the previous studies related to air pollution prophecy while many probes supported that air pollution is very detrimental to human health especially long-lasting exposure causes lung cancer, respiratory and cardiovascular diseases

    Features Exploration from Datasets Vision in Air Quality Prediction Domain

    Get PDF
    Air pollution and its consequences are negatively impacting on the world population and the environment, which converts the monitoring and forecasting air quality techniques as essential tools to combat this problem. To predict air quality with maximum accuracy, along with the implemented models and the quantity of the data, it is crucial also to consider the dataset types. This study selected a set of research works in the field of air quality prediction and is concentrated on the exploration of the datasets utilised in them. The most significant findings of this research work are: (1) meteorological datasets were used in 94.6% of the papers leaving behind the rest of the datasets with a big difference, which is complemented with others, such as temporal data, spatial data, and so on; (2) the usage of various datasets combinations has been commenced since 2009; and (3) the utilisation of open data have been started since 2012, 32.3% of the studies used open data, and 63.4% of the studies did not provide the data

    A hybrid CNN-LSTM model for predicting PM2.5 in Beijing based on spatiotemporal correlation

    Get PDF
    Long-term exposure to air environments full of suspended particles, especially PM2.5, would seriously damage people's health and life (i.e., respiratory diseases and lung cancers). Therefore, accurate PM2.5 prediction is important for the government authorities to take preventive measures. In this paper, the advantages of convolutional neural networks (CNN) and long short-term memory networks (LSTM) models are combined. Then a hybrid CNN-LSTM model is proposed to predict the daily PM2.5 concentration in Beijing based on spatiotemporal correlation. Specifically, a Pearson's correlation coefficient is adopted to measure the relationship between PM2.5 in Beijing and air pollutants in its surrounding cities. In the hybrid CNN-LSTM model, the CNN model is used to learn spatial features, while the LSTM model is used to extract the temporal information. In order to evaluate the proposed model, three evaluation indexes are introduced, including root mean square error, mean absolute percent error, and R-squared. As a result, the hybrid CNN-LSTM model achieves the best performance compared with the Multilayer perceptron model (MLP) and LSTM. Moreover, the prediction accuracy of the proposed model considering spatiotemporal correlation outperforms the same model without spatiotemporal correlation. Therefore, the hybrid CNN-LSTM model can be adopted for PM2.5 concentration prediction

    SMART CITY MANAGEMENT USING MACHINE LEARNING TECHNIQUES

    Get PDF
    In response to the growing urban population, smart cities are designed to improve people\u27s quality of life by implementing cutting-edge technologies. The concept of a smart city refers to an effort to enhance a city\u27s residents\u27 economic and environmental well-being via implementing a centralized management system. With the use of sensors and actuators, smart cities can collect massive amounts of data, which can improve people\u27s quality of life and design cities\u27 services. Although smart cities contain vast amounts of data, only a percentage is used due to the noise and variety of the data sources. Information and communication technology (ICT) and the Internet of Things (IoT) play a far more prominent role in developing smart cities when it comes to making choices, designing policies, and executing different methods. Smart city applications have made great strides thanks to recent advances in artificial intelligence (AI), especially machine learning (ML) and deep learning (DL). The applications of ML and DL have significantly increased the accuracy aspect of decision-making in smart cities, especially in analyzing the captured data using IoT-based devices and sensors. Smart cities employ algorithms that use unlabeled and labeled data to manage resources and deliver individualized services effectively. It has instantaneous practical use in many crucial areas, including smart health, smart environment, smart transportation system, energy management, and smart water distribution system in a smart city. Hence, ML and DL have become hot research topics in AI techniques in recent years and are proving to be accurate optimization techniques in smart cities. In addition, artificial intelligence algorithms enable the processing massive datasets and identify patterns and characteristics that would otherwise go unnoticed. Despite these advantages, researchers\u27 skepticism of AI\u27s sometimes mysterious inner workings has prevented it from being widely used for smart cities. This thesis\u27s primary intent is to explore the value of employing diverse AI and ML techniques in developing smart city-centric domains and investigate the efficacy of these proposed approaches in four different aspects of the smart city such as smart energy, smart transportation system, smart water distribution system and smart environment. In addition, we use these machine learning approaches to make a data analytics and visualization unit module for the smart city testbed. Internet-of-Things-based machine learning approaches in diverse aspects have repeatedly demonstrated greater accuracy, sensitivity, cost-effectiveness, and productivity, used in the built-in Virginia Commonwealth University\u27s real-time testbed

    Air pollution prediction with multi-modal data and deep neural networks

    Get PDF
    Air pollution is becoming a rising and serious environmental problem, especially in urban areas affected by an increasing migration rate. The large availability of sensor data enables the adoption of analytical tools to provide decision support capabilities. Employing sensors facilitates air pollution monitoring, but the lack of predictive capability limits such systems’ potential in practical scenarios. On the other hand, forecasting methods offer the opportunity to predict the future pollution in specific areas, potentially suggesting useful preventive measures. To date, many works tackled the problem of air pollution forecasting, most of which are based on sequence models. These models are trained with raw pollution data and are subsequently utilized to make predictions. This paper proposes a novel approach evaluating four different architectures that utilize camera images to estimate the air pollution in those areas. These images are further enhanced with weather data to boost the classification accuracy. The proposed approach exploits generative adversarial networks combined with data augmentation techniques to mitigate the class imbalance problem. The experiments show that the proposed method achieves robust accuracy of up to 0.88, which is comparable to sequence models and conventional models that utilize air pollution data. This is a remarkable result considering that the historic air pollution data is directly related to the output—future air pollution data, whereas the proposed architecture uses camera images to recognize the air pollution—which is an inherently much more difficult problem

    Spatiotemporal and temporal forecasting of ambient air pollution levels through data-intensive hybrid artificial neural network models

    Get PDF
    Outdoor air pollution (AP) is a serious public threat which has been linked to severe respiratory and cardiovascular illnesses, and premature deaths especially among those residing in highly urbanised cities. As such, there is a need to develop early-warning and risk management tools to alleviate its effects. The main objective of this research is to develop AP forecasting models based on Artificial Neural Networks (ANNs) according to an identified model-building protocol from existing related works. Plain, hybrid and ensemble ANN model architectures were developed to estimate the temporal and spatiotemporal variability of hourly NO2 levels in several locations in the Greater London area. Wavelet decomposition was integrated with Multilayer Perceptron (MLP) and Long Short-term Memory (LSTM) models to address the issue of high variability of AP data and improve the estimation of peak AP levels. Block-splitting and crossvalidation procedures have been adapted to validate the models based on Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Willmott’s index of agreement (IA). The results of the proposed models present better performance than those from the benchmark models. For instance, the proposed wavelet-based hybrid approach provided 39.15% and 28.58% reductions in RMSE and MAE indices, respectively, on the performance of the benchmark MLP model results for the temporal forecasting of NO2 levels. The same approach reduced the RMSE and MAE indices of the benchmark LSTM model results by 12.45% and 20.08%, respectively, for the spatiotemporal estimation of NO2 levels in one site at Central London. The proposed hybrid deep learning approach offers great potential to be operational in providing air pollution forecasts in areas without a reliable database. The model-building protocol adapted in this thesis can also be applied to studies using measurements from other sites.Outdoor air pollution (AP) is a serious public threat which has been linked to severe respiratory and cardiovascular illnesses, and premature deaths especially among those residing in highly urbanised cities. As such, there is a need to develop early-warning and risk management tools to alleviate its effects. The main objective of this research is to develop AP forecasting models based on Artificial Neural Networks (ANNs) according to an identified model-building protocol from existing related works. Plain, hybrid and ensemble ANN model architectures were developed to estimate the temporal and spatiotemporal variability of hourly NO2 levels in several locations in the Greater London area. Wavelet decomposition was integrated with Multilayer Perceptron (MLP) and Long Short-term Memory (LSTM) models to address the issue of high variability of AP data and improve the estimation of peak AP levels. Block-splitting and crossvalidation procedures have been adapted to validate the models based on Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Willmott’s index of agreement (IA). The results of the proposed models present better performance than those from the benchmark models. For instance, the proposed wavelet-based hybrid approach provided 39.15% and 28.58% reductions in RMSE and MAE indices, respectively, on the performance of the benchmark MLP model results for the temporal forecasting of NO2 levels. The same approach reduced the RMSE and MAE indices of the benchmark LSTM model results by 12.45% and 20.08%, respectively, for the spatiotemporal estimation of NO2 levels in one site at Central London. The proposed hybrid deep learning approach offers great potential to be operational in providing air pollution forecasts in areas without a reliable database. The model-building protocol adapted in this thesis can also be applied to studies using measurements from other sites

    Enhancing Multi-Output Time Series Forecasting with Encoder-Decoder Networks

    Get PDF
    Background: Multi-output Time series forecasting is a complex problem that requires handling interdependencies and interactions between variables. Traditional statistical approaches and machine learning techniques often struggle to predict such scenarios accurately. Advanced techniques and model reconstruction are necessary to improve forecasting accuracy in complex scenarios. Objective: This study proposed an Encoder-Decoder network to address multi-output time series forecasting challenges by simultaneously predicting each output. This objective is to investigate the capabilities of the Encoder-Decoder architecture in handling multi-output time series forecasting tasks. Methods: This proposed model utilizes a 1-Dimensional Convolution Neural Network with Bidirectional Long Short-Term Memory, specifically in the encoder part. The encoder extracts time series features, incorporating a residual connection to produce a context representation used by the decoder. The decoder employs multiple unidirectional LSTM modules and Linear transformation layers to generate the outputs each time step. Each module is responsible for specific output and shares information and context along the outputs and steps. Results: The result demonstrates that the proposed model achieves lower error rates, as measured by MSE, RMSE, and MAE loss metrics, for all outputs and forecasting horizons. Notably, the 6-hour horizon achieves the highest accuracy across all outputs. Furthermore, the proposed model exhibits robustness in single-output forecast and transfer learning, showing adaptability to different tasks and datasets.   Conclusion: The experiment findings highlight the successful multi-output forecasting capabilities of the proposed model in time series data, with consistently low error rates (MSE, RMSE, MAE). Surprisingly, the model also performs well in single-output forecasts, demonstrating its versatility. Therefore, the proposed model effectively various time series forecasting tasks, showing promise for practical applications. Keywords: Bidirectional Long Short-Term Memory, Convolutional Neural Network, Encoder-Decoder Networks, Multi-output forecasting, Multi-step forecasting, Time-series forecastin
    • …
    corecore