
sensors

Article

Multi-Horizon Air Pollution Forecasting with Deep
Neural Networks

Mirche Arsov 1, Eftim Zdravevski 1,* , Petre Lameski 1 , Roberto Corizzo 2 , Nikola Koteli 1,
Sasho Gramatikov 1, Kosta Mitreski 1 and Vladimir Trajkovik 1

����������
�������

Citation: Arsov, M.; Zdravevski, E.;

Lameski, P.; Corizzo, R.; Koteli, N.;

Gramatikov, S.; Mitreski, K.;

Trajkovik, V. Multi-Horizon Air

Pollution Forecasting with Deep

Neural Networks. Sensors 2021, 21,

1235. https://doi.org/10.3390/

s21041235

Academic Editor: Sergio Toral Marín

Received: 19 December 2020

Accepted: 27 January 2021

Published: 10 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University,
1000 Skopje, North Macedonia; mirche.arsov@gmail.com (M.A.); petre.lameski@finki.ukim.mk (P.L.);
nikola.koteli@hotmail.com (N.K.); sasho.gramatikov@finki.ukim.mk (S.G.);
kosta.mitreski@finki.ukim.mk (K.M.); vladimir.trajkovik@finki.ukim.mk (V.T.)

2 Department of Computer Science, American University, Washington, DC 20016, USA; rcorizzo@american.edu
* Correspondence: eftim.zdravevski@finki.ukim.mk

Abstract: Air pollution is a global problem, especially in urban areas where the population density
is very high due to the diverse pollutant sources such as vehicles, industrial plants, buildings, and
waste. North Macedonia, as a developing country, has a serious problem with air pollution. The
problem is highly present in its capital city, Skopje, where air pollution places it consistently within
the top 10 cities in the world during the winter months. In this work, we propose using Recurrent
Neural Network (RNN) models with long short-term memory units to predict the level of PM10
particles at 6, 12, and 24 h in the future. We employ historical air quality measurement data from
sensors placed at multiple locations in Skopje and meteorological conditions such as temperature
and humidity. We compare different deep learning models’ performance to an Auto-regressive
Integrated Moving Average (ARIMA) model. The obtained results show that the proposed models
consistently outperform the baseline model and can be successfully employed for air pollution
prediction. Ultimately, we demonstrate that these models can help decision-makers and local
authorities better manage the air pollution consequences by taking proactive measures.

Keywords: RNN; LSTM; convolutional networks; deep learning; air pollution

1. Introduction

Air pollution is a wide spread problem [1], contributing to seven million deaths a
year. About 92% of the world’s population is breathing toxic air, and it is estimated that
70% of the world’s population will live in urban centers by 2050 [2]. Per a World Health
Organization report [3], air pollution is the leading cause of death for children under the
age of 15 with about 600,000 deaths every year, according to a report done by the World
Health Organization [3]. The financial impact of premature deaths due to air pollution is
about $5 trillion in welfare losses worldwide [4]. For these reasons, efficient solutions are
required to monitor and predict air pollution.

Some studies show that air pollution increases the incidence of respiratory diseases
in areas with a high concentration of air pollutants such as PM2.5 and PM10 particles [5].
The authors in [6] gave a review of the challenges humanity faces with the negative impact
of the particles on human health. In recent years, as the Internet of Things paradigm has
become popular, sensory arrays have been placed in urban areas to collect vast amounts
of data. In turn, cloud computing technologies are being used to analyze and detect
emerging patterns [7] and facilitate near real-time monitoring and visualization. Support
vector machine methods and artificial neural networks have been used for a variety of
prediction tasks, starting from business and financial tasks [8], to a variety of ecological
problems [9]. Even more beneficial are predictive air pollution systems because they can
help governments employ smarter solutions and preventive measures to address air quality
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problems. For this reason, tracking and predicting air pollution has become a necessity
in every modern urban society. The ability to predict air quality and to know when the
air quality will exceed the threshold of becoming hazardous is essential for managing air
pollution. It gives the authorities a tool to understand when to take preventive measures
such as traffic reduction policies, the closure of public venues including schools, and
recommendations to limit exposure for sensitive people [10].

The authors of [11] showed that ambient air quality data can be modeled as stochastic
time series, which allows building models that can predict future values. Statistical learning
models, machine learning, and deep learning models have been applied for extracting
patterns directly from the input data, learning from the data distribution [12]. There are
other approaches for successful forecasting over large multi-sensor data sets, using sliding
window-based feature extraction and feature subset ensemble selection [13,14]. These
approaches show that it is possible to use short-term predictions of dangerous methane
concentrations in coal mines to take adequate measures to prevent the mines from reaching
the hazardous thresholds. The same approach can be used in cities and other areas. Taking
preventive measures could decrease the influence on the air quality upfront and prevent or
minimize the citizens’ exposure to air with hazardous pollution [15,16].

In this article, we use air quality measurements and combine them with meteorological
data to predict the air pollution in the Skopje city area for multiple time horizons of 6, 12,
or 24 h. This work’s main contribution is that we combine various data sensor sources
available in Skopje’s area to increase the accuracy of the predictions. Furthermore, we
leverage the data from the meteorological stations and combine them with the historical
data from the various air pollutants measured in geographically distant places within
the city area. We evaluate different architectures based on Long Short-Term Memory
(LSTM) networks and Convolutional Neural Networks (CNNs) and compare them with
Auto-Regressive Integrated Moving Average (ARIMA) models.

The article is organized as follows. In Section 2, we review recent relevant works on
air pollution. In Section 3, we describe the evaluated architectures and the dataset. After
that, in Section 4, we show the results from the experiments, and in Section 5, we discuss
and analyze the results. Finally, Section 6 concludes the paper.

2. Related Work

Recently, the air pollution prediction problem has been tackled with many differ-
ent models considering traditional and deep learning approaches. They mainly utilize
measurements of multiple pollutants, such as Particulate Matter (PM)—PM2.5 and PM10—
and gaseous species (i.e., NO2, CO, O3, and SO2) collected from sensors at specific times
and locations. The meteorological information of current and forecasted parameters like
humidity, temperature, wind speed, and rainfall have also been integrated [17,18].

Predicting the concentration of PM10 for different hours by using three different step-
wise Multiple Linear Regression (MLR) models was proposed in [19]. In [20], the authors
forecast the concentration of different air pollutants for the current day and the subsequent
four days in a highly polluted region utilizing Artificial Neural Networks (ANNs) with
Real-Time Correction (RTC).

In [21], a Fuzzy Time Series Markov chain (FTSMC) model based on a grid method
with an optimal number of partitions was used to predict the daily Air Pollution Index (API).
A hybrid multi-resolution method that utilizes high resolution (1 h) and low resolution
(1 day) data as the input and generates low-resolution PM2.5 concentrations was shown
in [22].

Other popular approaches for the estimation of air pollution combine different ma-
chine learning algorithms. Some such approaches are the forecast of particulate matter
concentration in atmospheric air using cross-validation evaluation by linear regression,
random forests, gradient boosting, K-nearest neighbors, MLP, and CART decision trees,
as proposed in [23]. In [24], the predictive value of the Weather Research and Forecasting
(WRF) model was used as the input for a municipal atmospheric pollutant response model,
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which was based on the random forest algorithm. In [25], the authors forecast the API by
adopting trigonometric regressors, Box-Cox transformation, ANNs, ARIMA, and Fuzzy
Time Series (FTS).

The use of ARIMA time series models for forecasting air quality every month was
presented in [26]. The authors in [27] went a step further in the use of the ARIMA models
for creating a forecasting model by combining them with Empirical Mode Decompo-
sition (EMD) and a Non-linear Auto-Regressive Neural Network (NARNN). In [28], a
periodogram-based test was used to examine the periodic and seasonal components of
PM10 time series, which were modeled within a trigonometric harmonic regression setup
and used to forecast future values with superior accuracy compared to ARIMA.

Another class of approaches is represented by those that adopt LSTM neural net-
works [29]. LSTM is an artificial Recurrent Neural Network (RNN) [30] architecture used
in deep learning. LSTMs are considered a typical architecture of neural networks for
sequences and lists due to their chain-like nature. LSTMs have been successfully applied
in forecasting tasks in a variety of domains, such as financial time series [31] and sensory
data [32–36]. An alternative for auto-regressive methods to include multiple time series
in the modeling task is represented by VARIMA models [37,38]. However, despite auto-
regressive models exploiting only linear relationships among features, LSTM presents the
advantage of leveraging non-linear interactions in the modeling task.

The widespread adoption of LSTM across different domains shows this model’s
effectiveness and reliability in multi-step forecasting tasks. Its effectiveness is due to the
ability to extract time-variant dependencies and correlations that are inherently present in
real-life scenarios and exploiting them to predict future time steps. Different from ARIMA
models, which are auto-regressive and capable of analyzing exclusively univariate time
series, LSTM models can exploit multiple time series in a combined manner. Potentially,
leveraging the existing correlations among them can lead to more accurate predictions.
LSTM networks have been widely used for time series multi-step forecasting in multiple
studies [32–36].

In [39], a similar approach was described, where convolutional neural networks were
combined with LSTM to classify PM10 levels. In [40], an approach for air pollution fore-
casting using an RNN with LSTM was presented. Multiple models based on deep neural
networks have emerged [17,41,42]. Likewise, methods based on fully-connected neural
networks such as RNNs [12] and LSTM networks have also emerged. Some approaches
combine CNNs to improve the performance of RRN-based air pollution prediction [43–45].
In addition, some approaches exploit autoencoder models [46,47], sequence-to-sequence
models [48], neural networks that combine linear predictors as ensembles [18], Bayesian
networks, and multi-label classifiers [49]. Another interesting approach was explained
in [50], where an attention-based model was adopted. This approach’s attention mech-
anism was applied only to the wind measurements to obtain an encoded value used as
a data augmentation technique in the main model. Similarly, in [51], an attention-based
approach was applied to all available weather and pollution information. Alternative
studies in the literature exploit feature extraction as a preprocessing step for the predictive
task [52–55].

3. Methods

The proposed method for pollution forecasting described in this article utilizes the
data flow shown in Figure 1. Multiple sensors located at different places in the city provide
sensory measurements. Then, several model types are employed to build a forecasting
system for predicting the PM10 particle concentration levels in the time horizons of 6, 12,
and 24 h.
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Figure 1. Data flow of the proposed method for air pollution forecasting.

3.1. Dataset and Preprocessing

The dataset consists of air quality sensor measurements from sensors deployed in
several locations in Skopje. A variety of parameters are monitored by the sensors, including
PM10 and PM2.5, as well as the presence of NO2, CO, O3, and SO2. Measurements were
done in intervals of one hour. This dataset was also enriched with meteorological param-
eters, namely temperature and atmospheric pressure, measured at the Skopje-Petrovec
meteorological station. This study evaluated different sliding window lengths, includ-
ing 6, 12, and 24 consecutive measurements from the air pollution measurement and the
meteorological station.

The air pollution measurements were taken hourly, and the meteorological station
measurements were taken every three hours. We interpolated the meteorological measure-
ments to obtain the hourly values. The interpolation was performed by repeating the same
measurement until a new measurement was obtained.

An earlier study with a similar approach was described in [15], attempting to forecast
the PM10 concentration values 3 h in the future. In [39], a similar approach was described,
where a subset of the data was used to classify future values using a combination of LSTM
and convolutional neural networks. Compared to those approaches, this study also con-
siders the PM2.5 values and concentration of nitrogen dioxide (NO2) at the measurement
stations in Karposh and Centar municipalities in Skopje, which have not been previously
analyzed. The source code repository and the preprocessed dataset are available online (
https://gitlab.com/magix.ai/air-pollution-sensors (accessed on 2 February 2021)).

Figure 2 shows the seasonality and trend in the data set. It is clearly noticeable that
disturbances and irregularities are present in the air quality sensor data. Due to these
reasons, to train the recurrent neural network models, we used data in the range from
December 2011 to December 2019. To model possible malfunctions of the sensors, we
introduced a dropout layer into some of the architectures.

The measurements used are listed below, grouped by location with the longitude and
latitude of the locations:

• Municipality of Karposh, North Macedonia (42.0054876◦ N, 21.3816153◦ E)

– PM10 concentration
– PM2.5 concentration
– NO2 concentration

• Municipality of Centar, North Macedonia (41.9949946◦ N, 21.410862◦ E)

– Measurement station Centar—PM10 concentration
– Measurement station Centar—PM2.5 concentration
– Measurement station Rektorat—PM10 concentration

• Municipality of Miladinovci, North Macedonia (41.9824467◦ N, 21.6411268◦ E)

– PM10 concentration

• Municipality of Petrovec, North Macedonia (41.9370666◦ N, 21.6030801◦ E)

– Temperature (in degrees Celsius)
– Atmospheric pressure at station level
– Daily minimum temperature Tmin
– Daily maximum temperature Tmax

https://gitlab.com/magix.ai/air-pollution-sensors
https://gitlab.com/magix.ai/air-pollution-sensors
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We performed preprocessing on the sensors’ data and the meteorological data due to
different sampling frequencies and time windows with missing values [56]. The prepro-
cessing was performed on the training and validation set, consisting of the following steps:

• Missing data interpolation
• Min-Max normalization
• Twelve samples’ data window preparation

In addition to the preprocessing, we performed additional reshaping for the CNN layers.
The data were divided into distinct training, validation, and test data sets. For

training, we used data in the time interval 1 December 2011–31 December 2019. This
dataset consisted of 70,129 samples. Validation samples were taken dynamically as
1 percent from the training data points (709 samples). Before the training process, we
used a smaller two year subset of the data for hyperparameter optimization. Data points
for the optimization were taken from the interval from 1 August 2014 to 1 August 2016
(17,534 samples). Hyperparameter tuning was validated using a small two month data set
in the time frame 1 November 2016–31 December 2016 (1430 samples).

(a) PM10 level—Karposh station (b) PM2.5 level—Karposh station

(c) PM2.5 level—Center station (d) NO2—Karposh station

Figure 2. Exploration of the seasonality and trend in concentration levels taken from the Karposh and Center
measurement stations.

After the models were built and optimized, they were tested on the separate test set,
which consisted of measurements from January 2020.

3.2. Baseline Model: ARIMA

Among many available time series regression methods, one of the most popular and
broadly used is the ARIMA model [57]. Results obtained in this study confirmed that the
ARIMA has a strong potential for short-term spot prediction. The ARIMA forms a class
of time series models that are widely applicable in time series forecasting. In the ARIMA
model, a variable’s future value is a linear combination of past values and errors after
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removing the trend—by differencing. In our experiments, we adopted the auto ARIMA
functionality in order to automatically select the best ARIMA model choosing the optimal
values for the number of autoregressive terms (p), the number of nonseasonal differences
needed for stationarity (d), and the number of lagged forecast errors in the prediction
equation (q). Subsequently, we exploited the best model optimized on the training data for
the prediction step.

3.3. Deep Learning Models’ Architecture

In this article, we compared several different model architectures and analyzed how
they performed compared to the ARIMA model. We used recurrent neural network (LSTM,
SimpleRNN) and CNN (Conv2D in combination with MaxPooling2D) layers to build the
models. In some of the architectures, we added a dropout layer to mitigate temporary
failures of some sensors.

The RNN mainly deals with processing sequence data, such as text, speech, and time
series. These types of data exist in an orderly relationship with each other; each piece
of data is associated with the previous piece. Another example is climate data, where,
for example, the temperature of a day is related to the temperature of the previous day.
Therefore, we can form many sets of sequences from a set of continuous data, and the
correlation between those sequences can be observed.

We trained all models using the combined data set, using values from the different air
quality PM10 measuring stations, and temperature and pressure from the meteorological
station. Finally, we validated the ability to make short-term predictions for time horizons
of +6, +12, and +24 h in the future. Neural networks are used as a means to reconstruct a
function in the form of:

Yn = f (Xm) (1)

where Xm is the input vector. Choosing a good-fitting input vector, with appropriate
causality and correlation to the desired feature, is not a trivial task. In our experiments,
we tried several combinations of features. By providing different sizes of input vectors,
we examined which input features contributed the best results. In [15], experiments were
done with input vectors ranging from a single PM10 sensor value to a 6 feature vector.
Since we were using past values to predict the feature, the input was in the form of a
matrix. The shape of the input matrix depends on how many past values will be taken
into account. Using models based on LSTM and RNN layers, it was concluded that the
best results in short-term air pollution forecasting (+3 h, using a subset of the dataset)
can be achieved using the PM10 values from all the sensors in combination with the
meteorological parameters. The vector consists of four values of PM10 levels, temperature,
and atmospheric pressure. We used these input features as a starting point and examined
further possible improvements.

The input for the deep neural networks has the form of the matrix:
X1,t X2,t X3,t ... Xm,t

X1,t−1 X2,t−1 X3,t−1 ... Xm,t−1
X1,t−2 X2,t−2 X3,t−2 ... Xm,t−2

... ... ... ... ...
X1,t−dwl X2,t−dwl X3,t−dwl ... Xm,t−dwl


where m is the number of features and the dwl index represents the data window length.
Experiments were done with a data window length of 12 and 24, and the number of features
varied in the range from 6 to 9.

We tried to further lower the mean squared error by introducing an extended data set.
As a first try, we added two new features to the input. By examining the data seasonality
and trend, we added the maximum and minimum daily temperature (T_max, T_min
measured at the meteorological station Petrovec) to the training data set. This did not
improve the accuracy. Adding too many meteorological parameters seemed to lead to
overfitting. Our second attempt was to add the value of the PM2.5 level to the training
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data set. This value was measured by the same sensor that was used in the forecast. We
concluded that the values of the PM10 concentration had a high level of correlation with
the level of PM2.5. The extended dataset used in this experiment improved the results.
A second value of the measured level of PM2.5 at a different location was added, but it
did not bring any further improvement. We also experimented with the measured value
of NO2, which also is an air pollutant. The LSTM model’s performance decreased when
this parameter was used. In most of the experiments, the ReLU function was used as an
activation function.

ReLU(x) = x+ = max(0, x) (2)

where x is the input signal to a neuron. In addition to the ReLU function, experiments
were executed to examine the performance of different models using different activation
functions like the Scaled Exponential Linear Unit (SELU), tanh, and the sigmoid function.

S(x) =
ex

ex + 1
(3)

f (x) = tanh(x) (4)

The SELU is a variant of the ReLU function. It is defined as:

SELU(x) = λx (5)

when x > 0, or:
SELU(x) = λex − αλ (6)

when x is equal to or smaller than zero. λ and α are pre-defined constants. The SELU
solves the problem of vanishing gradients. It was first introduced in [58].

For this particular experiment, we used the mean squared error loss function, and for
the model optimization, we used the Adam optimizer [59]. The implementation was done
with Keras [60].

3.4. Parameter Tuning

We used parameter tuning to obtain the best predictive model. For hyperparameter
optimization, a smaller subset of the training data was used. Data points were taken
in the interval from 1 August 2014 to 1 August 2016 (17,534 samples). Hyperparameter
tuning was validated using a two month validation data set in the time frame 1 November
2016–31 December 2016 (1430 samples). Table 1 presents the parameters that were tuned
with the range of values. Optimization was done using the Keras-Tuner library [60]
(https://keras-team.github.io/keras-tuner/ (accessed on 2 February 2021)).

Table 1. Parameters used for tuning the neural network.

Parameter Name Min Value Max Value Step

Learning rate 0.01 0.1 [0.01, 0.1]
Dropout rate 0.1 0.3 0.1

LSTM 1 layer units 2 128 2
LSTM 2 layer units 24 256 4
RNN 1 layer units 16 256 16
RNN 2 layer units 2 124 4

Kernel size [3, 3] [6, 6] 1
Number of filters 4 6 2

The following parameters ranges were evaluated, aiming to obtain the optimal archi-
tecture for this task:

• Dropout: Deep neural networks with many parameters can be powerful tools. How-
ever, overfitting can be a problem in such networks. This often happens when neural

https://keras-team.github.io/keras-tuner/
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nets are trained on relatively small datasets. The lack of control over the learning
process often leads to cases where the neural network cannot generalize and make
forecasts for new data. Dropout is a technique for addressing this problem. The idea
is to randomly drop units from the neural network in the training phase to prevent
units from co-adapting too much.

• Learning rate: The learning rate is a hyperparameter that controls how much to change
the model in response to the estimated error each time the model weights are updated.
Choosing the learning rate is challenging as a value that is too small may result in a
lengthy training process that could get stuck, whereas a value that is too large may
result in learning a sub-optimal set of weights too fast or an unstable training process.
The learning rate controls how quickly the model is adapted to the problem.

• LSTM layer units: The number of LSTM cells in the layer is a parameter that we used
in our model optimization. The number of units determines the dimensionality of the
output space.

• RNN units: This is number of RNN cells in the layer. By default, the output of an
RNN layer contains a single vector per sample. This vector is the RNN cell output
corresponding to the last time step, containing information about the entire input
sequence. The “units” parameter determines the shape of this output. An RNN layer
can also return the entire output sequence for each sample (one vector per time step
per sample).

• Convolutional kernel size: The convolutional kernel size specifies the height and
width of the convolution window used as a filter mask in the feature extraction.

• Number of filters in the Conv2D layer: This is the number of output filters in the
convolution.

We performed a grid search through the parameter space, trying every possible
combination of the parameters. Table 2 shows which parameters were optimized for each
proposed architecture.

Table 2. Summary of the evaluated approaches with different configurations in terms of the number of Units in the LSTM
layer (U), the Learning Rate (LR), and the Dropout rate (D).

# Architecture Parameters Optimized

1 LSTM + Dense U (2-128) + LR [0.01, 01]

2 ARIMA (12) None

3 LSTM + Dense U (2-124) + Learning rates [0.01, 01]

4 LSTM + Dense U (2-124) + LR [0.01, 01]

5 LSTM + Dense U (2-124) + LR [0.01, 01]

6 LSTM + Dropout + LSTM + Dense LSTM (2-24) + D [0.3, 0.2, 0.1]
+ LSTM (2-124) + LR [0.01, 01]

7 Conv2D + MaxPooling2D + Conv2D + MaxPooling2D Conv Kernel size ([3, 3]-[6, 6]) + LR [0.01, 01]+ Flatten + Dense

8 Conv2D + MaxPooling2D + Conv2D + MaxPooling2D Conv. Kernel size ([3, 3]-[6, 6])
+ Conv2D + MaxPooling2D + Flatten + Dense + Third layer filters [4, 6] + LR [0.01, 01]

9 SimpleRNN + LSTM + Dense RNN (1-128) + LSTM (2-124) + LR [0.01, 01]

10 SimpleRNN + LSTM + Dropout + SimpleRNN + Dense RNN (1-128) + LSTM (2-24)
+ D [0.3, 0.2, 0.1] + RNN (2-124) + LR [0.01, 01]

11 SimpleRNN + LSTM + Dropout + LSTM + Dense RNN (1-128) + LSTM (2-24)
+ D [0.3, 0.2, 0.1] + LSTM (2-124) + LR [0.01, 01]

4. Results

First, we evaluated the impact of the activation function on the model’s performance.
Table 3 shows the different MSE and RMSE results obtained with different architectures and
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activation functions on the validation set. The most optimal activation varied, depending
on the model’s architecture. Therefore, in the following experiments, we chose to use
the most appropriate activation function for the different architectures, as highlighted
in Table 3.

Table 3. Comparison among different activation functions with the achieved average forecasting performance in terms of
Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) for the +6 h time horizon. SELU, Scaled Exponential
Linear Unit. The best performance is marked in bold.

Input Activation Function Data Architecture MSE RMSE

6 × 12 ReLU 4 × PM10 + Temp. + Pressure SimpleRNN + Dense 0.0043 0.0653
6 × 12 tanh 4 × PM10 + Temp. + Pressure SimpleRNN + Dense 0.0055 0.0742
6 × 12 sigmoid 4 × PM10 + Temp. + Pressure SimpleRNN + Dense 0.0224 0.1497
6 × 12 SELU 4 × PM10 + Temp. + Pressure SimpleRNN + Dense 0.0076 0.0872
6 × 12 ReLU 4 × PM10 + Temp. + Pressure LSTM + Dense 0.0166 0.1289
6 × 12 tanh 4 × PM10 + Temp. + Pressure LSTM + Dense 0.0096 0.0975
6 × 12 sigmoid 4 × PM10 + Temp. + Pressure LSTM + Dense 0.0095 0.0973
6 × 12 SELU 4 × PM10 + Temp. + Pressure LSTM + Dense 0.0111 0.1051
6 × 12 ReLU 4 × PM10 + Temp. + Pressure CNN (3 hidden layers) 0.0128 0.1133
6 × 12 tanh 4 × PM10 + Temp. + Pressure CNN (3 hidden layers) 0.0106 0.1032
6 × 12 sigmoid 4 × PM10 + Temp. + Pressure CNN (3 hidden layers) 0.0082 0.0908
6 × 12 SELU 4 × PM10 + Temp. + Pressure CNN (3 hidden layers) 0.0145 0.1204

The results for all experiments are presented in Tables 4–6. As can be observed, the
best result for the 6 h time horizon was obtained using the combination “SimpleRNN +
Dense” (MSE = 0.0043, RMSE = 0.0653) . All of the models for this time horizon performed
significantly better than the baseline ARIMA model. Figure 3 shows the comparison between
the best model and the ARIMA model for the first week of predictions for the six hour
time horizon.

Table 4. Summary of the evaluated approaches with the achieved average forecasting performance in terms of Mean
Squared Error (MSE) and Root Mean Squared Error (RMSE) for the 6 h time horizon. The best performance for is marked
in bold.

Input Hours Data Architecture MSE RMSE

1 × 12 6 PM10 ARIMA 0.0300 0.1731
6 × 12 6 4 × PM10 + Temp. + Pressure LSTM + Dense 0.0095 0.0973
6 × 12 6 4 × PM10 + Temp. + Pressure SimpleRNN + Dense 0.0043 0.0653
6 × 12 6 4 × PM10 + Temp. + Pressure SimpleRNN + LSTM + Dense 0.0161 0.1270
6 × 12 6 4 × PM10 + Temp. + Pressure LSTM + Dropout + LSTM + Dense 0.0153 0.1237
6 × 12 6 4 × PM10 + Temp. + Pressure CNN (2 hidden layers) 0.0068 0.0826
6 × 12 6 4 × PM10 + Temp. + Pressure CNN (3 hidden layers) 0.0082 0.0908
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Table 5. Summary of the evaluated approaches with the achieved average forecasting performance in terms of Mean
Squared Error (MSE) and Root Mean Squared Error (RMSE) for the 12 h time horizon. The best performance is marked
in bold.

Input Hours Data Architecture MSE RMSE

1 × 12 12 PM10 ARIMA 0.0266 0.1631
6 × 12 12 4 × PM10 + Temp. + Pressure LSTM + Dense 0.0155 0.1247
6 × 12 12 4 × PM10 + Temp. + Pressure SimpleRNN + Dense 0.0219 0.1479
6 × 12 12 4 × PM10 + Temp. + Pressure CNN (2 hidden layers) 0.0179 0.1338
6 × 12 12 4 × PM10 + Temp. + Pressure CNN (3 hidden layers) + Conv 0.0207 0.1439
6 × 12 12 4 × PM10 + Temp. + Pressure SimpleRNN + LSTM + Dense 0.0415 0.2037
7 × 12 12 4 × PM10 + Temp. + Pressure + NO2 LSTM + Dense 0.0185 0.1359
7 × 12 12 4 × PM10 + Temp. + Pressure + PM2.5 LSTM + Dense 0.0151 0.1227
8 × 12 12 4 × PM10 + Temp. + Pressure + T_max + T_min LSTM + Dense 0.0166 0.1288
8 × 12 12 4 × PM10 + Temp. + Pressure + T_max + T_min SimpleRNN + Dense 0.0588 0.2425
8 × 12 12 4 × PM10 + Temp. + Pressure + 2 × PM2.5 LSTM + Dense 0.0156 0.1249
9 × 12 12 4 × PM10 + Temp. + Pressure + PM2.5 + T_max + T_min LSTM + Dense 0.0161 0.1267

6 × 12 12 4 × PM10 + Temp. + Pressure SimpleRNN + LSTM + Dropout 0.0178 0.1335+ SimpleRNN + Dense

Table 6. Summary of the evaluated approaches with the achieved average forecasting performance in terms of the Mean
Squared Error (MSE) and Root Mean Squared Error (RMSE) for the 24 h time horizon. The best performance is marked
in bold.

Input Hours Data Architecture MSE RMSE

1 × 24 24 PM10 ARIMA 0.0282 0.1680
6 × 12 24 4 × PM10 + Temp. + Pressure LSTM + Dense 0.0266 0.1632
6 × 12 24 4 × PM10 + Temp. + Pressure SimpleRNN + Dense 0.0461 0.2146
6 × 12 24 4 × PM10 + Temp. + Pressure LSTM + Dropout + LSTM + Dense 0.0264 0.1624
6 × 12 24 4 × PM10 + Temp. + Pressure CNN (2 hidden layers) 0.0287 0.1693
7 × 12 24 4 × PM10 + Temp. + Pressure + PM2.5 (Karpos) LSTM + Dense 0.0314 0.1771
8 × 12 24 4 × PM10 + Temp. + Pressure + T_max + T_min LSTM + Dense 0.0265 0.1628
6 × 24 24 4 × PM10 + Temp. + Pressure LSTM + Dense 0.0313 0.1769
6 × 24 24 4 × PM10 + Temp. + Pressure SimpleRNN + LSTM + Dense 0.0310 0.1761

Figure 3. Performance comparison to the ARIMA model of the RNN + Dense model with the best
forecasting performance with the 6 h time horizon.

For the twelve hour time horizon, most of the proposed approaches were better
compared to the baseline ARIMA model (MSE, RMSE): (0.0266, 0.1631). The best model
used the “LSTM + Dense” architecture and combined the PM10 measurements with the
temperature, pressure, and PM2.5 measures (MSE, RMSE): (0.0151, 0.1227). The results of
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all models were very close. Figure 4 shows the loss function for the training and validation
phases. Figure 5 shows the predictions of this model compared to the ones of the ARIMA
model in the first week of the test data set.

Figure 4. Training and validation MSE of the LSTM + Dense model with the best forecasting
performance with the 12 h time horizon. loss denotes the training MSE, and val_loss represents the
validation MSE.

Figure 5. Performance comparison to the ARIMA model of the LSTM + Dense model with the best
forecasting performance with the 12 h time horizon.

For the 24 h time horizon, the best performing approach was the “LSTM + Dropout
+ LSTM + Dense” architecture, which only slightly outperformed the ARIMA method
(MSE = 0.0264, RMSE = 0.1624 vs. MSE = 0.0282, RMSE = 0.1680). Contrary to this, the
performance improvement for the 12 h time horizon was significant for the “LSTM + Dense”
architecture that used the data of four PM10 stations, temperature and pressure from the
meteorological station, and PM2.5 measurements of the target station compared to the ARIMA
model (MSE = 0.0151, RMSE = 0.1227 vs. MSE = 0.0266, RMSE = 0.1631). The loss function
for the training and validation phases is depicted in Figure 6, and the comparison of the best
model for the 24 h horizon can be seen in Figure 7.

As an additional attempt to improve the results, the data set was extended to a window of
24 h of historic data (last two rows of Table 6). This did not bring any significant improvement.

To confirm the above results, we repeated the experiments for the available data from
1 February 2019 to 1 February 2020. The results are presented in Table 7. As can be seen
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in the results, we came to the same conclusion. The best performing approaches for the
period of January 2020 were the same as the best performing approaches on the bigger test
set. Unfortunately, due to the large amount of time needed for the ARIMA approach to
process the full year of data, we were not able to confirm the performance of the ARIMA
model for the 24 h time horizon.

Figure 6. Train and validation MSE of the LSTM + Dense model with the best forecasting performance
with the 24 h time horizon.

Figure 7. Performance comparison to the ARIMA model of the LSTM + Dense model with the best
forecasting performance with the 24 h time horizon in the first week of the test data set.
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Table 7. Summary of the evaluated approaches with the achieved average forecasting performance in terms of Mean
Squared Error (MSE) and Root Mean Squared Error (RMSE) for the 6, 12, and 24 h time horizons for the test dataset in the
period from 1 February 2019 to 1 February 2020. The best performance for each time horizon is marked in bold.

Input Hours Data Architecture MSE RMSE

1 × 6 6 PM10 ARIMA 0.0042 0.0650
6 × 12 6 4 × PM10 + Temp. + Pressure LSTM + Dropout + LSTM + Dense 0.0021 0.0453
6 × 12 6 4 × PM10 + Temp. + Pressure SimpleRNN + LSTM + Dense 0.0026 0.0510
6 × 12 6 4 × PM10 + Temp. + Pressure SimpleRNN + Dense (ReLU) 0.0007 0.0273
6 × 12 6 4 × PM10 + Temp + Pressure LSTM + Dense (sigmoid) 0.0013 0.0360
6 × 12 6 4 × PM10 + Temp + Pressure CNN (sigmoid) 0.0021 0.0454

1 × 12 12 PM10 ARIMA 0.0045 0.0669
6 × 12 12 4 × PM10 + Temp. + Pressure LSTM + Dense 0.0043 0.0658
8 × 12 12 4 × PM10 + Temp. + Pressure + T_max + T_min LSTM + Dense 0.0037 0.0606
8 × 12 12 4 × PM10 + Temp. + Pressure + T_max + T_min SimpleRNN + Dense 0.0048 0.0693
6 × 12 12 4 × PM10 + Temp. + Pressure CNN (2 hidden layers) 0.0064 0.0801
6 × 12 12 4 × PM10 + Temp. + Pressure SimpleRNN + LSTM + Dense 0.0038 0.0618
9 × 12 12 4 × PM10 + Temp. + Pressure + PM25 + T_max + T_min LSTM + Dense 0.0200 0.1414
8 × 12 12 4 × PM10 + Temp. + Pressure + 2 x PM25 LSTM + Dense 0.0033 0.0574
7 × 12 12 4 × PM10 + Temp. + Pressure + NO2 LSTM + Dense 0.0050 0.0705
7 × 12 12 4 × PM10 + Temp. + Pressure + PM25 (Karpos) LSTM + Dense 0.0034 0.0586
6 × 12 12 4 × PM10 + Temp. + Pressure SimpleRNN + LSTM + Dropout + SimpleRNN + Dense 0.0056 0.0749

1 × 24 24 PM10 ARIMA N/A N/A
8 × 12 24 4 × PM10 + Temp. + Pressure + T_max + T_min LSTM + Dense 0.0060 0.0773
7 × 12 24 4 × PM10 + Temp. + Pressure + PM25 (Karpos) LSTM + Dense 0.0060 0.0775
6 × 12 24 4 × PM10 + Temp. + Pressure CNN (2 hidden layers) 0.1436 0.3790
6 × 12 24 4 × PM10 + Temp. + Pressure LSTM + Dense 0.0057 0.0758
6 × 12 24 4 × PM10 + Temp. + Pressure SimpleRNN + Dense 0.0056 0.0747
6 × 12 24 4 × PM10 + Temp. + Pressure LSTM + Dropout + LSTM + Dense 0.0056 0.0746
6 × 24 24 4 × PM10 + Temp. + Pressure LSTM + Dense 0.0057 0.0756
6 × 24 24 4 × PM10 + Temp. + Pressure SimpleRNN + LSTM + Dense 0.0058 0.0762

5. Discussion

We compared the LSTM-based architecture’s performance with an architecture com-
posed of a SimpleRNN and a dense layer, followed by an experiment combining the
SimpleRNN and LSTM layers. The combined architecture did not perform well compared
to the simpler architectures where LSTM and SimpleRNN were used separately. In [39], a
convolutional architecture was used to classify the value of PM10. Following this approach,
we built the model proposed in [39] and used it as a forecasting model. We added an
additional step in the data preparation to be able to use this model in forecasting. The CNN
provided decent results. It performed better than the SimpleRNN model in forecasting the
air pollution 12 and 24 h in advance. To examine the deeper convolutional architecture, a
second CNN model was examined, one with an additional Conv2D + MaxPooling2D layer
where the number of filters was optimized. The CNN model with three hidden layers did
not improve the results. Due to the small number of features, we expected that additional
layers could only increase the probability of overfitting on the data. However, further
research and experimentation are necessary to prove this.

In addition to this, most of the time, the proposed architectures performed better than
the ARIMA model. The exception to this was the combination of the SimpleRNN + LSTM +
Dense or SimpleRNN + Dense layer, without dropout, which consistently performed worse
than the baseline model. As expected, the proposed architectures’ performance degraded for
the longer time horizons for the different models, as shown in Figures 8 and 9 and Table 8.
However, the LSTM + Dropout + LSTM + Dense architecture was capable of obtaining a
3.33% RMSE improvement with respect to the ARIMA, which is still a significant result.
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Figure 8. Performance comparison to the best models per architecture and time horizon—one month
of test data.
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Figure 9. Performance comparison to the best models per architecture and time horizon—one year
of test data.

The performance degradation might be because the prediction was performed using
only a 12 h time window of data as the input. However, even a 24 h time window
in the input data did not improve the results. We speculate that the reason for this is
that meteorological conditions sometimes drastically change over more extended periods
of time (e.g., wind speed, rain, etc.), thus making the predictions much more difficult.
Additional experiments are needed with more extended input series to validate that
the limitations of the 24 h time horizon prediction result from the shorter input data
time periods.

There are several limitations of the study. The first one is that there are no existing
sensors for pollution and weather within the same geographical location. Therefore, there
is no possibility to include geographical location. Furthermore, there is a limitation in the
fact that not all weather parameters were included. The interpolation of the data within
the training and the validation set might, in some cases, cover spikes in the pollution,
primarily where the interpolation is performed for several hours of data. The obtained
results were generated using a training, validation, and test split. Although this method
allowed us to get a decent overview of the algorithm’s performance, it is dependent on the
random initialization of the variables. We argue that the results were stable by repeating
the experiments on a full year of test data and obtaining similar results.
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One direction for future work could be an extension of the model to consider derived
temporal features, such as month of the year, weekday, holiday, time of day, etc. These
features could bring additional information related to traffic and the working hours of
factories and industrial plants. To make the analysis more robust and scientifically valid, it
would also be preferable to also include data reflecting the traffic intensity to validate that
any relations are not random.

Table 8. Summary of the evaluated approaches in terms of the percentage of RMSE improvement
with respect to the ARIMA for different time horizons. The best performance for each time horizon is
marked in bold.

Architecture 6 h 12 h 24 h

LSTM + Dense 43.79 24.77 2.86
SimpleRNN + Dense 62.28 9.38 −27.74

SimpleRNN + LSTM + Dense 26.63 −24.89 −4.82
LSTM + Dropout + LSTM + Dense 28.54 18.15 3.33

CNN (2 hidden layers) 52.28 17.96 −0.77
CNN (3 hidden layers) 47.54 11.77 −8.51

6. Conclusions

As shown in our previous works, for the Skopje region, the meteorological parameters
and measurements are highly correlated with the pollution. When used together with
the past data for PM10 and PM2.5 concentrations, they significantly increase the models’
predictive performance. This conclusion is valid even though the measurement stations for
pollution and the meteorological measurement stations are several kilometers apart. Re-
searching the geographical location influence within the Skopje city area on the prediction
was out of the scope of the work presented in this article. However, further research using
more sensory data locations can be used to track how the air pollution changes over time in
different city locations. This can also highlight potential causes for the increased pollution.

The proposed architectures performs very well and accurately predicts the short-
term concentration of PM10. Compared to the ARIMA baseline model, the short-term
predictions are significantly better. As expected, when the time horizon increases, the
model’s performance decreases, considering that it is more difficult to make predictions for
events further away in the future.

Placing additional meteorological and air quality sensor stations could potentially
improve the accuracy of the results. Additionally, it could fine-grain the predictions’
geographical location and allow the authorities to take targeted measures at specific lo-
cations instead of citywide measures. There is a rising awareness about the pollution
problem within Skopje. Informal sensor stations are already being placed, and their data
are being gathered. In future work, we plan to leverage this informal information to
include geographical location in our models and possibly improve the current models’
predictive performance.
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28. Akdi, Y.; Okkaoğlu, Y.; Gölveren, E.; Yücel, M. Estimation and forecasting of PM 10 air pollution in Ankara via time series and
harmonic regressions. Int. J. Environ. Sci. Technol. 2020, 1–14. [CrossRef]

29. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
30. Tsoi, A.C.; Back, A. Discrete time recurrent neural network architectures: A unifying review. Neurocomputing 1997, 15, 183–223.

[CrossRef]
31. Vochozka, M.; Vrbka, J.; Suler, P. Bankruptcy or success? the effective prediction of a company’s financial development using

LSTM. Sustainability 2020, 12, 7529. [CrossRef]
32. Yunpeng, L.; Di, H.; Junpeng, B.; Yong, Q. Multi-step ahead time series forecasting for different data patterns based on LSTM

recurrent neural network. In Proceedings of the 2017 14th Web Information Systems and Applications Conference (WISA),
Liuzhou, China, 11–12 November 2017; pp. 305–310.

33. Ceci, M.; Corizzo, R.; Malerba, D.; Rashkovska, A. Spatial autocorrelation and entropy for renewable energy forecasting. Data
Min. Knowl. Discov. 2019, 33, 698–729. [CrossRef]

34. Tokgöz, A.; Ünal, G. A RNN based time series approach for forecasting turkish electricity load. In Proceedings of the 2018 26th
Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2–5 May 2018; pp. 1–4.

35. Sahoo, B.B.; Jha, R.; Singh, A.; Kumar, D. Long short-term memory (LSTM) recurrent neural network for low-flow hydrological
time series forecasting. Acta Geophys. 2019, 67, 1471–1481. [CrossRef]

36. Corizzo, R.; Ceci, M.; Fanaee-T, H.; Gama, J. Multi-aspect Renewable Energy Forecasting. Inf. Sci. 2020, 546, 701–722. [CrossRef]
37. Jang, J.; Shin, S.; Lee, H.; Moon, I.C. Forecasting the Concentration of Particulate Matter in the Seoul Metropolitan Area Using a

Gaussian Process Model. Sensors 2020, 20, 3845. [CrossRef] [PubMed]
38. Zhou, Y.; Li, J.; Chen, H.; Wu, Y.; Wu, J.; Chen, L. A spatiotemporal hierarchical attention mechanism-based model for multi-step

station-level crowd flow prediction. Inf. Sci. 2021, 544, 308–324. [CrossRef]
39. Stojov, V.; Koteli, N.; Lameski, P.; Zdravevski, E. Application of Machine Learning and Time-Series Analysis for Air Pollution

Prediction. In Proceedings of the CIIT 2018, Mavrovo, Macedonia, 20–22 April 2018.
40. Tsai, Y.T.; Zeng, Y.R.; Chang, Y.S. Air pollution forecasting using RNN with LSTM. In Proceedings of the 2018 IEEE 16th Intl Conf

on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on
Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech),
Athens, Greece, 12–15 August 2018; pp. 1074–1079.

41. Li, T.; Shen, H.; Yuan, Q.; Zhang, X.; Zhang, L. Estimating ground-level PM2.5 by fusing satellite and station observations: a
geo-intelligent deep learning approach. Geophys. Res. Lett. 2017, 44, 11–985. [CrossRef]

42. Qi, Z.; Wang, T.; Song, G.; Hu, W.; Li, X.; Zhang, Z. Deep air learning: Interpolation, prediction, and feature analysis of
fine-grained air quality. IEEE Trans. Knowl. Data Eng. 2018, 30, 2285–2297. [CrossRef]

43. Huang, C.J.; Kuo, P.H. A deep cnn-lstm model for particulate matter (PM2.5) forecasting in smart cities. Sensors 2018, 18, 2220.
[CrossRef]

44. Qin, D.; Yu, J.; Zou, G.; Yong, R.; Zhao, Q.; Zhang, B. A novel combined prediction scheme based on CNN and LSTM for urban
PM 2.5 concentration. IEEE Access 2019, 7, 20050–20059. [CrossRef]

45. Wen, C.; Liu, S.; Yao, X.; Peng, L.; Li, X.; Hu, Y.; Chi, T. A novel spatiotemporal convolutional long short-term neural network for
air pollution prediction. Sci. Total Environ. 2019, 654, 1091–1099. [CrossRef] [PubMed]

46. Li, X.; Peng, L.; Hu, Y.; Shao, J.; Chi, T. Deep learning architecture for air quality predictions. Environ. Sci. Pollut. Res. 2016,
23, 22408–22417. [CrossRef] [PubMed]

47. Corizzo, R.; Ceci, M.; Zdravevski, E.; Japkowicz, N. Scalable auto-encoders for gravitational waves detection from time series
data. Expert Syst. Appl. 2020, 151, 113378. [CrossRef]

48. Liu, B.; Yan, S.; Li, J.; Qu, G.; Li, Y.; Lang, J.; Gu, R. A sequence-to-sequence air quality predictor based on the n-step recurrent
prediction. IEEE Access 2019, 7, 43331–43345. [CrossRef]

49. Corani, G.; Scanagatta, M. Air pollution prediction via multi-label classification. Environ. Model. Softw. 2016, 80, 259–264.
[CrossRef]

50. Liu, D.R.; Lee, S.J.; Huang, Y.; Chiu, C.J. Air pollution forecasting based on attention-based LSTM neural network and ensemble
learning. Expert Syst. 2019, 37. [CrossRef]

51. Kalajdjieski, J.; Mircheva, G.; Kalajdziski, S. Attention Models for PM2.5 Prediction. In Proceedings of the IEEE/ACM
International Conferencce on Utility and Cloud Computing, Leicester, UK, 7–10 December 2020.

52. Zhao, A.; Qi, L.; Dong, J.; Yu, H. Dual channel LSTM based multi-feature extraction in gait for diagnosis of Neurodegenerative
diseases. Knowl. Based Syst. 2018, 145, 91–97. [CrossRef]

http://dx.doi.org/10.1007/s11869-019-00772-y
http://dx.doi.org/10.1016/j.asoc.2020.106475
http://dx.doi.org/10.1007/s13762-020-02705-0
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/S0925-2312(97)00161-6
http://dx.doi.org/10.3390/su12187529
http://dx.doi.org/10.1007/s10618-018-0605-7
http://dx.doi.org/10.1007/s11600-019-00330-1
http://dx.doi.org/10.1016/j.ins.2020.08.003
http://dx.doi.org/10.3390/s20143845
http://www.ncbi.nlm.nih.gov/pubmed/32660163
http://dx.doi.org/10.1016/j.ins.2020.07.049
http://dx.doi.org/10.1002/2017GL075710
http://dx.doi.org/10.1109/TKDE.2018.2823740
http://dx.doi.org/10.3390/s18072220
http://dx.doi.org/10.1109/ACCESS.2019.2897028
http://dx.doi.org/10.1016/j.scitotenv.2018.11.086
http://www.ncbi.nlm.nih.gov/pubmed/30841384
http://dx.doi.org/10.1007/s11356-016-7812-9
http://www.ncbi.nlm.nih.gov/pubmed/27734318
http://dx.doi.org/10.1016/j.eswa.2020.113378
http://dx.doi.org/10.1109/ACCESS.2019.2908081
http://dx.doi.org/10.1016/j.envsoft.2016.02.030
http://dx.doi.org/10.1111/exsy.12511
http://dx.doi.org/10.1016/j.knosys.2018.01.004


Sensors 2021, 21, 1235 18 of 18

53. Petrovska, B.; Zdravevski, E.; Lameski, P.; Corizzo, R.; Štajduhar, I.; Lerga, J. Deep Learning for Feature Extraction in Remote
Sensing: A Case-Study of Aerial Scene Classification. Sensors 2020, 20, 3906. [CrossRef]

54. Petrovska, B.; Atanasova-Pacemska, T.; Corizzo, R.; Mignone, P.; Lameski, P.; Zdravevski, E. Aerial scene classification through
fine-tuning with adaptive learning rates and label smoothing. Appl. Sci. 2020, 10, 5792. [CrossRef]

55. Ryan, S.; Corizzo, R.; Kiringa, I.; Japkowicz, N. Pattern and Anomaly Localization in Complex and Dynamic Data. In
Proceedings of the 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Boca Raton,
FL, USA, 16–19 December 2019; pp. 1756–1763.

56. Zdravevski, E.; Lameski, P.; Trajkovik, V.; Kulakov, A.; Chorbev, I.; Goleva, R.; Pombo, N.; Garcia, N. Improving Activity
Recognition Accuracy in Ambient-Assisted Living Systems by Automated Feature Engineering. IEEE Access 2017, 5, 5262–5280.
[CrossRef]

57. Kumar, U.; Jain, V. ARIMA forecasting of ambient air pollutants (O3, NO, NO2 and CO). Stoch. Environ. Res. Risk Assess. 2010,
24, 751–760. [CrossRef]

58. Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-normalizing neural networks. Adv. Neural Inf. Process. Syst. 2017,
30, 971–980.

59. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
60. Chollet, F. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 23 January 2021).

http://dx.doi.org/10.3390/s20143906
http://dx.doi.org/10.3390/app10175792
http://dx.doi.org/10.1109/ACCESS.2017.2684913
http://dx.doi.org/10.1007/s00477-009-0361-8
https://github.com/fchollet/keras

	Introduction
	Related Work
	Methods
	Dataset and Preprocessing
	Baseline Model: ARIMA
	Deep Learning Models' Architecture
	Parameter Tuning

	Results
	Discussion
	Conclusions
	References

