2,910 research outputs found

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Compensation of Nonlinearity of Voltage and Current Instrument Transformers

    Get PDF
    partially_open11This paper aims at characterizing and improving the metrological performances of current and voltage instrument transformers (CTs and VTs) in harmonic measurements in the power system. A theoretical analysis is carried out to demonstrate that, due to the iron core nonlinearity, CT and VT output signal is distorted even when the input signal is a pure sine wave. Starting from this analysis, a new method for CT and VT characterization and compensation is proposed. In a first step, they are characterized in sinusoidal conditions and the harmonic phasors of the distorted output are measured; in the second step, these phasors are used to compensate the harmonic phasors measured in normal operating conditions, which are typically distorted. The proposed characterization and compensation techniques are called SINusoidal characterization for DIstortion COMPensation (SINDICOMP). Several experimental tests, using high-accuracy calibration setups, have been performed to verify the proposed methods. The experimental results showed that the SINDICOMP technique assures a significant improvement of CT and VT metrological performances in harmonic measurements.restrictedopenCataliotti, Antonio; Cosentino, Valentina; Crotti, Gabriella; Femine, Antonio Delle; Cara, Dario Di; Gallo, Daniele; Giordano, Domenico; Landi, Carmine; Luiso, Mario; Modarres, Mohammad; Tine, GiovanniCataliotti, Antonio; Cosentino, Valentina; Crotti, Gabriella; Femine, Antonio Delle; Cara, Dario Di; Gallo, Daniele; Giordano, Domenico; Landi, Carmine; Luiso, Mario; Modarres, Mohammad; Tine, Giovann

    Are inductive current transformers performance really affected by actual distorted network conditions? An experimental case study

    Get PDF
    The aim of this work is to assess whether actual distorted conditions of the network are really affecting the accuracy of inductive current transformers. The study started from the need to evaluate the accuracy performance of inductive current transformers in off-nominal conditions, and to improve the related standards. In fact, standards do not provide a uniform set of distorted waveforms to be applied on inductive or low-power instrument transformers. Moreover, there is no agreement yet, among the experts, about how to evaluate the uncertainty of the instrument transformer when the operating conditions are different from the rated ones. To this purpose, the authors collected currents from the power network and injected them into two off-the-shelf current transformers. Then, their accuracy performances have been evaluated by means of the well-known composite error index and an approximated version of it. The obtained results show that under realistic non-rated conditions of the network, the tested transformers show a very good behavior considering their nonlinear nature, arising the question in the title. A secondary result is that the use of the composite error should be more and more supported by the standards, considering its effectiveness in the accuracy evaluation of instrument transformers for measuring purposes

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    Improving Harmonic Measurements with Instrument Transformers: a Comparison Among Two Techniques

    Get PDF
    The measurement of harmonics is essential in modern power systems in order to perform distortion level assessment, disturbances source detection and mitigation, etc. In this context, the role of Instrument Transformers (ITs) is crucial, as they are key elements in every power systems measuring instrument. However, inductive ITs, which are still the most widely used, suffer from both a filtering behavior due to their dynamics and from nonlinear effects due to their iron core. The target of this paper is to deeply analyze the performance of two digital signal processing techniques, recently proposed in literature, aimed at mitigating their nonlinear behavior: they are SINDICOMP and the compensation of harmonic distortion through polynomial modeling in the frequency domain. Their performance in improving the measurement of voltage harmonics are analyzed through numerical simulations, by adopting waveforms that can be typically encountered in power systems during normal operating conditions

    The response of transformers to geomagnetically induced- like currents

    Get PDF
    Includes bibliographical references.This dissertation discusses the development and implementation of a rigorously developed protocol for characterizing and testing transformers with GIC-like currents based on their magnetization curve characteristics. The differences between reactive and non-active power in the context of transformers and GICs are investigated thoroughly and their impact on power networks are analysed. The implementation of this protocol in the laboratory and simulation environments has therefore led to a sound characterization of the transformers’ electrical and magnetic response. This developed protocol can also be useful when extended to investigate the response of large power transformers, particularly for the generation of mitigation parameters that are valuable to power utilities.

    Calibration of Current Transformers in distorted conditions

    Get PDF
    In the context of modern power systems, where there are lots of non-linear loads and generators based on switching power electronics, the accurate measurement of voltage and current harmonics is a key task for the knowledge of the actual state of the network. Voltage and current transducers play a crucial role since they are always the first part of the measurement chain. Currently, classical voltage and current instrument transformers are the most installed transducers, but their performance not always is fully characterized in the presence of distorted waveforms. Therefore, in this paper a calibration setup for the accurate characterization of current transformers with distorted waveforms is presented. System implementation and characterization is presented; then it is employed for the evaluation of the performance of a commercial current transformer in distorted conditions

    IGBT-SiC dual fed ground power unit

    Get PDF
    This paper presents the design and control of a three-phase ground power supply unit for aircraft servicing. A new mixed technology converter composed by a three-phase Silicon Carbide (SiC) full bridge unit and a three-phase full bridge IGBT unit connected across the same dc link is used instead of the conventional full bridge configuration. In order to satisfy the stringent requirements of the output voltage quality particular attention is given to the controller. The common dc link topology of the converter allows circulation of Zero Sequence Current (ZSC), therefore also a 0 axis regulator is necessary. The state space model of the system considering the LC output filter is presented and used in order to synthetize the controller parameters using the Optimal Control theory
    corecore