508 research outputs found

    A Survey of the Current Status of Research on Quantum Games

    Get PDF
    Quantum games have gained considerable interest from researchers. In this paper, on the basis of the Web of Science database, through the use of the social network analysis methods, the literature on quantum games is analyzed from three aspects: the keywords co-occurrence, co-authorship, and co-citation. In the process of analysis, the main quantum game models are reviewed with graphical illustrations. Our paper provides a survey and outline of the current Status of research in this field, and identify directions for future work

    A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics

    Get PDF
    The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area

    Soft computing applied to optimization, computer vision and medicine

    Get PDF
    Artificial intelligence has permeated almost every area of life in modern society, and its significance continues to grow. As a result, in recent years, Soft Computing has emerged as a powerful set of methodologies that propose innovative and robust solutions to a variety of complex problems. Soft Computing methods, because of their broad range of application, have the potential to significantly improve human living conditions. The motivation for the present research emerged from this background and possibility. This research aims to accomplish two main objectives: On the one hand, it endeavors to bridge the gap between Soft Computing techniques and their application to intricate problems. On the other hand, it explores the hypothetical benefits of Soft Computing methodologies as novel effective tools for such problems. This thesis synthesizes the results of extensive research on Soft Computing methods and their applications to optimization, Computer Vision, and medicine. This work is composed of several individual projects, which employ classical and new optimization algorithms. The manuscript presented here intends to provide an overview of the different aspects of Soft Computing methods in order to enable the reader to reach a global understanding of the field. Therefore, this document is assembled as a monograph that summarizes the outcomes of these projects across 12 chapters. The chapters are structured so that they can be read independently. The key focus of this work is the application and design of Soft Computing approaches for solving problems in the following: Block Matching, Pattern Detection, Thresholding, Corner Detection, Template Matching, Circle Detection, Color Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. One of the outcomes presented in this thesis involves the development of two evolutionary approaches for global optimization. These were tested over complex benchmark datasets and showed promising results, thus opening the debate for future applications. Moreover, the applications for Computer Vision and medicine presented in this work have highlighted the utility of different Soft Computing methodologies in the solution of problems in such subjects. A milestone in this area is the translation of the Computer Vision and medical issues into optimization problems. Additionally, this work also strives to provide tools for combating public health issues by expanding the concepts to automated detection and diagnosis aid for pathologies such as Leukemia and breast cancer. The application of Soft Computing techniques in this field has attracted great interest worldwide due to the exponential growth of these diseases. Lastly, the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many everyday domestic appliances, such as washing machines, cookers, and refrigerators is now a reality. Many other industrial and commercial applications of Soft Computing have also been integrated into everyday use, and this is expected to increase within the next decade. Therefore, the research conducted here contributes an important piece for expanding these developments. The applications presented in this work are intended to serve as technological tools that can then be used in the development of new devices

    Algorithms for Analysis of Heterogeneous Cancer and Viral Populations Using High-Throughput Sequencing Data

    Get PDF
    Next-generation sequencing (NGS) technologies experienced giant leaps in recent years. Short read samples reach millions of reads, and the number of samples has been growing enormously in the wake of the COVID-19 pandemic. This data can expose essential aspects of disease transmission and development and reveal the key to its treatment. At the same time, single-cell sequencing saw the progress of getting from dozens to tens of thousands of cells per sample. These technological advances bring new challenges for computational biology and require the development of scalable, robust methods to deal with a wide range of problems varying from epidemiology to cancer studies. The first part of this work is focused on processing virus NGS data. It proposes algorithms that can facilitate the initial data analysis steps by filtering genetically related sequencing and the tool investigating intra-host virus diversity vital for biomedical research and epidemiology. The second part addresses single-cell data in cancer studies. It develops evolutionary cancer models involving new quantitative parameters of cancer subclones to understand the underlying processes of cancer development better

    Scale and Contingency in Plant Demography: Quantitative Approaches and Inference

    Get PDF
    Ecologists have long recognized that patterns measured in nature often depend upon the context in which they are observed and the scale at which they are observed. When studying plant populations, the role of scale and contingency becomes crucial. Thinking about a plant community as a system is essential as populations of plants are centered within a network that influences their dynamics in direct and indirect ways. Plant populations are inherently scale-dependent because they have properties as a group that can be independent of their properties as individual stems. Although the challenge of interpreting population patterns in the face of contingency and scale has been addressed conceptually, there has been less success in applying those concepts to observational and experimental studies. This dissertation addresses the challenges of modeling the demographic dynamics of a forest understory herb, Eurybia chlorolepis (Asteraceae) or mountain aster. The study population consisted of twenty patches containing between 20 and 70 individual stems in each patch. These patches spanned three sites within the Indian Camp Creek watershed in the Cosby Ranger district of Great Smoky Mountains National Park. Plants in the forest understory in this dense old-growth forest are influenced by a myriad of biotic and abiotic components of the community: light, soil characteristics, other plant species, herbivores, pollinators, seed predators, and the feet of bears. This dissertation shows that the mechanisms that influence sexual reproduction of this plant are structured almost entirely on the stem-to-stem scale, indicating little coarse-scale influence of the environment over sexual reproduction. The use of a Bayesian learning network showed that the environmental influences (soil in particular) operated most importantly in the transition from juvenile stage to adult stage. Taken together, these analyses indicate that the coarse-environtment (such as gaps, soil profiles, soil moisture, and the presence of other plants) dictates where E. chlorolepis becomes reproductive, while the success of that reproduction is dictated by mechanisms operating between individual stems

    An improved real hybrid genetic algorithm

    Get PDF
    Želeći rijeÅ”iti problem prerane konvergencije genetskog algoritma i algoritma roja čestica, kako bi se omogućilo da te dvije metode konvergiraju ka globalnom optimalnom rjeÅ”enju uz najveću vjerojatnoću te da se poboljÅ”a učinkovitost algoritma, u članku će se kombinirati poboljÅ”ani genetski algoritam s metodom poboljÅ”ane optimalizacije roja čestica da bi se sastavio mijeÅ”ani poboljÅ”ani algoritam. Uz različite referentne funkcije upotrjebljene za testiranje funkcioniranja stvarno hibridnog genetskog algoritma, rezultati pokazuju da hibridni algoritam ima dobru globalnu sposobnost pretraživanja, brzu konvergenciju, dobru kvalitetu rjeÅ”enja i dobru performansu rezultata optimalizacije.Aiming at the problem of premature convergence of genetic algorithm and particle swarm algorithm, in order to let the two methods converge to the global optimal solution with the greatest probability and improve the efficiency of the algorithm, the paper will combine improved genetic algorithm with improved particle swarm optimization method to constitute mixed improved algorithm. Through multiple benchmark function used to test the performance of real hybrid genetic algorithm, the results show that hybrid algorithm has good global search ability, fast convergence, good quality of the solution, and good robust performance of its optimization results

    Efficient modularity density heuristics in graph clustering and their applications

    Get PDF
    Modularity Density Maximization is a graph clustering problem which avoids the resolution limit degeneracy of the Modularity Maximization problem. This thesis aims at solving larger instances than current Modularity Density heuristics do, and show how close the obtained solutions are to the expected clustering. Three main contributions arise from this objective. The first one is about the theoretical contributions about properties of Modularity Density based prioritizers. The second one is the development of eight Modularity Density Maximization heuristics. Our heuristics are compared with optimal results from the literature, and with GAOD, iMeme-Net, HAIN, BMD- heuristics. Our results are also compared with CNM and Louvain which are heuristics for Modularity Maximization that solve instances with thousands of nodes. The tests were carried out by using graphs from the ā€œStanford Large Network Dataset Collectionā€. The experiments have shown that our eight heuristics found solutions for graphs with hundreds of thousands of nodes. Our results have also shown that five of our heuristics surpassed the current state-of-the-art Modularity Density Maximization heuristic solvers for large graphs. A third contribution is the proposal of six column generation methods. These methods use exact and heuristic auxiliary solvers and an initial variable generator. Comparisons among our proposed column generations and state-of-the-art algorithms were also carried out. The results showed that: (i) two of our methods surpassed the state-of-the-art algorithms in terms of time, and (ii) our methods proved the optimal value for larger instances than current approaches can tackle. Our results suggest clear improvements to the state-of-the-art results for the Modularity Density Maximization problem

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field

    Developments in the theory of social evolution

    Get PDF
    • ā€¦
    corecore