
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

5-2007

Scale and Contingency in Plant Demography:
Quantitative Approaches and Inference
Sean Maurice McMahon
University of Tennessee - Knoxville

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
McMahon, Sean Maurice, "Scale and Contingency in Plant Demography: Quantitative Approaches and Inference. " PhD diss.,
University of Tennessee, 2007.
https://trace.tennessee.edu/utk_graddiss/241

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268771063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu


To the Graduate Council:

I am submitting herewith a dissertation written by Sean Maurice McMahon entitled "Scale and
Contingency in Plant Demography: Quantitative Approaches and Inference." I have examined the final
electronic copy of this dissertation for form and content and recommend that it be accepted in partial
fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Ecology and
Evolutionary Biology.

James A. Drake, Major Professor

We have read this dissertation and recommend its acceptance:

Dan Simberloff, Nathan Sanders, Halima Bensmail

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



To the Graduate Council:
I am submitting herewith a dissertation written by Sean Maurice McMahon entitled
“Scale and contingency in plant demography: quantitative approaches and inference”.
I have examined the final electronic copy of this dissertation for form and content and
recommend that it be accepted in partial fulfillment of the requirements for the degree
of Doctor of Philosophy, with a major in Ecology and Evolutionary Biology.

James A. Drake
James A. Drake Major Professor

We have read this dissertation
and recommend its acceptance:

Dan Simberloff

Nathan Sanders

Halima Bensmail

Accepted for the Council:

Linda Painter
Interim Dean of
Graduate Studies

(Original signatures are on file with official student records)



Scale and contingency in plant
demography: quantitative
approaches and inference

A Dissertation

Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Sean Maurice McMahon

May 2007



Copyright c© 2006 by Sean M. McMahon.
All rights reserved.

ii



Dedication

This dissertation is dedicated to my parents and debo.

iii



Acknowledgments

I would like to thank most importantly, my family. My parents, Sarah Lynne and
Michal, my brother and sister-in-law, Jeff and Lizanne, and Deb supported me in every
way a family could. My friends both at UT and elsewhere also formed an essential
network that provided emotional support, intellectual stimulation, and important
connections and reminders of the world outside of graduate school. The research
for this thesis was aided by my adviser, Jim Drake, who offered me all manner of
support, guidance, mentorship, and friendship. My committee, as they stand now
(in Nate Sanders, Dan Simberloff, and Halima Bensmail) and have stood (Michael
Huston, Adrian Mayer, and Aaron King), also offered critical guidance and assistance.
The members of my stats masters team, Monica and Justin, not only made learning
statistics fun; they made it possible. I thank the many people that assisted in field
work: Matt, Matt, Justin, Deb, and others. The National Park Service, the All Taxa
Biodiversity Inventory, especially Keith Langdon, Chuck Parker, and Jeanie Hilton,
provided material support, permits, and housing for the field component of this thesis.
The Department of Ecology and Evolutionary Biology at Tennessee offered financial
support and an excellent overall learning environment. I’d like to thank Phyllis and
Cheryl for their fantastic administrative work for the department and myself.

iv



Abstract

Ecologists have long recognized that patterns measured in nature often depend upon
the context in which they are observed and the scale at which they are observed.
When studying plant populations, the role of scale and contingency becomes crucial.
Thinking about a plant community as a system is essential as populations of plants are
centered within a network that influences their dynamics in direct and indirect ways.
Plant populations are inherently scale-dependent because they have properties as a
group that can be independent of their properties as individual stems. Although the
challenge of interpreting population patterns in the face of contingency and scale has
been addressed conceptually, there has been less success in applying those concepts to
observational and experimental studies. This dissertation addresses the challenges of
modeling the demographic dynamics of a forest understory herb, Eurybia chlorolepis

(Asteraceae) or mountain aster. The study population consisted of twenty patches
containing between 20 and 70 individual stems in each patch. These patches spanned
three sites within the Indian Camp Creek watershed in the Cosby Ranger district of
Great Smoky Mountains National Park. Plants in the forest understory in this dense
old-growth forest are influenced by a myriad of biotic and abiotic components of the
community: light, soil characteristics, other plant species, herbivores, pollinators,
seed predators, and the feet of bears. This dissertation shows that the mechanisms
that influence sexual reproduction of this plant are structured almost entirely on the
stem-to-stem scale, indicating little coarse-scale influence of the environment over
sexual reproduction. The use of a Bayesian learning network showed that the envi-
ronmental influences (soil in particular) operated most importantly in the transition
from juvenile stage to adult stage. Taken together, these analyses indicate that the
coarse-environtment (such as gaps, soil profiles, soil moisture, and the presence of
other plants) dictates where E. chlorolepis becomes reproductive, while the success
of that reproduction is dictated by mechanisms operating between individual stems.

v



Contents

I Introduction 1

II Scales of association: hierarchical linear models and the
measurement of ecological systems 7

III Quantifying the community: using Bayesian learning
networks to find structure and conduct inference in inva-
sions biology 38

IV The scale of seed fate in a perennial herb 71

V Bottom-up effects of a canopy invader 121

Vita 142

vi



List of Tables

1 Parameters in the combined multi-level model. . . . . . . . . . . . . . 32
2 Various models described by hierarchical equations. . . . . . . . . . . 33
3 Variance Components of 3-level model. . . . . . . . . . . . . . . . . . 34
4 Parameter estimates for three-level logistic models. . . . . . . . . . . 35
5 Dependence parameters. Prior regression coefficients and posterior es-

timates of the dependence between variables in the selected network. 68
6 Variance components of the network. Posterior unconditional and con-

ditional variances estimates. Prior values consisted of a vector of ones. 69
7 Inference. Posterior parameter values and updated parameter estima-

tions based on inference from evidence. A star (*) denotes an evidential
node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8 Hypotheses for the patterns of seed fate at the stem scale and patch
scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9 Missing Data Estimation Distributions. were derived from regressions
on observed complete inflorescence heads that met the criteria denoted.
TOT is the total number of seeds assigned to an inflorescence head with
receptacle width ‘RW.’ . . . . . . . . . . . . . . . . . . . . . . . . . . 105

10 Posterior medians of unconditional models for response and predictor
variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

11 First-level models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

vii



List of Figures

1 A conceptual map of the three-level model. . . . . . . . . . . . . . . . 36
2 Scale-explicit coefficient estimates. Solid lines represent 95% posterior

credible intervals for estimated effects of variables at three levels of the
model. Those intervals not overlapping the zero line may be consid-
ered significantly different from zero. Leaf width of individual plants,
microsite availability of light and moisture, and population level soil
pH and % sand content are considered. Light refers to winter PAR
readings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 A three-node Bayesian Learning Network, with independence modeled
between variables one and two. The dependencies between variables
X1, X2, and X3 are designated by bij , where i is the node lower on the
graph and j is the variable that influences that node. µi and σi denote
the unconditional mean and conditional variance of the variables. . . 66

4 The highest scoring DAG. Nodes reflect simulated components of a
forest system: 1) canopy openness, 2) herbivore damage to an invasive
understory plant, 3) invasive plant height, and 4) invasive plant seed
set. The dashed line indicates an included edge that was not generated
from the copula, but reflects a very weak dependence in the parameter
value of the connection. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Diagram of the temporal process of seed production to dispersal with
the observed variables in the boxes. Note that viable seeds includes
eaten viable seeds and eaten seeds includes those that are viable. Pol-
linated includes both viable and eaten viable. . . . . . . . . . . . . . 108

6 Stage diagram of E. chlorolepis. Stages are in circles (S = seed, SD =
seedling, J = juvenile, and R = reproductive), and transitions, repro-
duction, and survival are shown as arrows. . . . . . . . . . . . . . . . 109

7 Photographs of E. chlorolepis. The juvenile stage shows leaves in a
rosette form (a), while the reproductive form has inter-nodal stems
(b). Inflorescences show disc and ray flowers (c). Disc flowers show
various stages (colors) of reproductive receptivity. A seedling is shown
with one of two cotyledons (d). . . . . . . . . . . . . . . . . . . . . . 110

viii



8 Photographs of E. chlorolepis seeds. Size of unpollinated seeds beside
a U.S. dime (a), an unpollinated (inviable) seed, (b) a viable seed (c),
aborted seeds (d), an eaten viable seed (e), and the receptacle (f). . . 111

9 The γ parameter of the unconditional TOTseed model shown converg-
ing quickly on its posterior distribution.a) Correlation versus lag time
shows that beyond immediate time-steps, there is no autocorrelation
in the Gibbs sampler. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

10 Histograms of posterior seed numbers by fate. Red lines indicate 2.5
and 95% quantiles. The blue line indicates the median. Note that in
this figure, the designations are as in Table 10 where ‘viable seeds’ does
not include ‘eaten viables’, etc. . . . . . . . . . . . . . . . . . . . . . 113

11 Bootstrap of seed fates holding out patches. Red line shows value of
variation with all patches included. . . . . . . . . . . . . . . . . . . . 114

12 The log of total seeds was regressed against first-level predictor variables.115
13 The patch-to-patch differences in the relationship between biomass and

total seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
14 The percent of viable seeds produced by a plant was regressed against

first-level predictor variables. . . . . . . . . . . . . . . . . . . . . . . . 117
15 The patch-to-patch differences in the log of viable seeds per plant. . . 118
16 The patch-to-patch differences in the relationship between inflorescence

number and absolute number of viable seeds. . . . . . . . . . . . . . . 119
17 The inter-patch differences for predictor variables. . . . . . . . . . . . 120
18 Stage diagram of E. chlorolepis. Stages are in circles (S = seed, SD =

seedling, J = juvenile, and R = reproductive), and transitions, repro-
duction, and survival are shown as arrows. . . . . . . . . . . . . . . . 138

19 Photographs of E. chlorolepis. The juvenile stage shows leaves in a
rosette form (a), while the reproductive form has inter-nodal stems
(b). Inflorescences show disc and ray flowers (c). Disc flowers show
various stages (colors) of reproductive receptivity. A seedling is shown
with one of two cotyledons (d). . . . . . . . . . . . . . . . . . . . . . 139

20 Pairwise correlations show the direction and strength of relationships
between variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

21 The network illustrates the relationship between soil variables and com-
ponents of E. chlorolepis site life-history characteristics. Conditional
variances are in a legend at the bottom right. . . . . . . . . . . . . . 141

ix



Part I

Introduction
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Understanding the distribution of organisms in space and time has been a core

theme of ecology. Experiments conducted under controlled conditions as well as

theoretical models have suggested that fundamental mechanisms hypothesized to de-

scribe species distributions, such as niche theory (Chase and Leibold, 2003; Pianka

and Huey, 1978; Silvertown, 2004), competition (Pacala and Tilman, 1994; Tilman,

1982), dispersal, and disturbance (Connell, 1978; Watt, 1947), can in fact structure

populations. Efforts to map these mechanisms onto natural populations, however,

have failed to produce a universal set of rules that ecologists can apply to any par-

ticular community. This may be because most natural populations show the product

of multiple mechanisms operating simultaneously. Furthermore, these mechanisms

operate at different scales, disturbing their straightforward measurement. My dis-

sertation research has focused on detecting the mechanisms that structure a natural

plant population. To do this, I measured physical and biological variables of a forest

understory herb, Eurybia chlorolepis (mountain aster) in Great Smoky Mountains

National Park and applied two novel statistical methods. The second and third parts

of this thesis introduce these methods and the fourth and fifth parts apply them.

Hierarchical linear models (HLM) consist of nested regression equations. These

models can be estimated using maximum likelihood or hierarchical Bayesian tech-

niques (Raudenbush and Bryk, 2002). They are designed to quantify the role of scale

in structuring a response variable and estimating covariates that can explain that

structure. HLM evolved from classical statistical models like nested ANOVA and

mixed models. In the past two decades, however, new computationally intensive esti-

mation techniques have allowed these models to address more complex problems. In

Part II, I describe how these models can be estimated from hierarchically structured

data. I focus on the use of unconditional models to measure the scale at which a
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response variable shows the most variation. Following this diagnostic model, con-

ditional models are built using covariates to explain relevant variation. I show two

example applications of these models. The first example builds a linear two-level

model estimated with maximum likelihood techniques to explain leaf damage from

herbivores on a clonal plant. The second uses Bayesian estimation techniques to build

a three-level logistic model to determine the influences on the probability of flowering

of another forest herb structured over three spatial scales.

Bayesian learning networks (BLN) were developed in the field of artificial intelli-

gence to quantify networks of interacting variables. In Part III, I explain how BLN

can find structure in a collection of correlated variables, quantify that structure, and

draw inference from observed or hypothesized changes in that structure. I focus on

the benefits of applying this method to the direct and indirect effects of invasive or-

ganisms. Research in invasion biology has struggled to identify simple mechanisms

that determine the probability or results of invasive organisms. BLN, I argue, is an

ideal method to use to tease apart important pathways in invaded ecological systems.

In Part IV, I apply HLM to a field study of Eurybia chlorolepis, focusing on the

biotic and abiotic variables that influence seed fate. The fate of seeds is important

to measure because sexually reproductive plants invest in producing flowers, pollen,

ovaries and eventually seeds at the expense of other tissues important to resource

acquisition, vegetative reproduction, and survival (Ehrlen, 1991; Kneitel and Chase,

2004; Silvertown, 2004; Wright and Meagher, 2003). The production of floral parts,

however, does not guarantee successful seed production and dispersal. Flowers must

be pollinated. Pollenated ovaries must avoid predation. Further, in many plant

species, ovaries are aborted before viable seeds are produced. There are a number

of hypotheses that explain the determinants of flower production, pollination, seed

predation and abortion. By modeling the scale at which these processes occur in
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a natural population of Eurybia chlorolepis, I was able to show that almost all of

the variation in these processes was at the scale of the stem and not the patch.

This has important implications for determining which of many biotic and abiotic

components of an ecological community actually determine the spatial pattern of

sexual reproduction in a clonal plant species. I discuss how the prevalence of stem-

level variation conflicts with the assumptions of several possible mechanisms that

have been hypothesized to determine seed fate.

Having shown that the determinants of seed fate are idiosyncratic with respect

to the patch-level distribution of flowering stems in E. chlorolepis, in Part V, I ap-

ply BLN to measure which features of the forest understory environment determine

whether a patch of E. chlorolepis has reproductive individuals or not. Patch-level

heterogeneity in soil, light, and biotic features of the understory can be heavily influ-

enced by the overstory tree population. Eastern hemlocks (Tsuga canadensis) are an

important tree in the cove forest where E. chlorolepis is found. The hemlock woolly

adelgid (Adelges tsugae) , recently discovered in Southern Appalachian forests, can

kill up to 95% of the hemlock trees it infests (Orwig and Foster, 1998). By analyzing

the network of patch-variables that can create source-populations of E. chlorolepis

using BLN, I show that soil features related to hemlock presence are important to E.

chlorolepis populations. This analysis, though preliminary with regards to the mul-

tiple and long-term potential effects of hemlock mortality, demonstrates the value of

quantifying a network of correlated components of the forest when asking questions

about the direct and indirect influences of an invader on a community.
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Part II

Scales of association: hierarchical

linear models and the

measurement of ecological systems
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This part was co-written with Jeff Diez, University of Massachusetts. Sean McMa-

hon is first author.

Abstract

A fundamental challenge to understanding patterns in ecological systems lies in em-

ploying methods that can analyze, test, and draw inference from measured associa-

tions between variables across scales. Hierarchical linear models (HLM) use advanced

estimation algorithms to measure regression relationships and variance-covariance pa-

rameters in hierarchically structured data. Although hierarchical models have occa-

sionally been used in the analysis of ecological data, its full potential to describe

scales of association, diagnose variance explained, and to partition uncertainty has

not been employed. In this paper we argue that full utilization of the HLM frame-

work will enable significantly improved inference about ecological processes across

levels of organization. We suggest that ecologists must begin adopting a hierarchical

framework if advances are to be made in our field. After briefly describing the prin-

cipals behind HLM, we give two illustrations to highlight its power to simultaneously

describe relationships between variables at multiple scales. The first example em-

ploys maximum likelihood methods to construct a two-level linear model predicting

herbivore damage to a perennial plant at the individual and patch scale; the second

example uses Bayesian estimation techniques to develop a three-level logistic model

of plant flowering probability across individual plants, microsites, and populations.

HLM model development and diagnostics illustrate the importance of incorporating

scale when modeling associations in ecological systems and offers a sophisticated yet

accessible method for studies of populations, communities, and ecosystems.
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Introduction

Scale is essential to the analysis of ecological systems. The relationship between two

variables in a natural system can be obscured by other variables at other scales (Mau-

rer, 1999; Wiens, 1991), and the inferences drawn from an observed relationship can

be distorted or even reversed depending on the scale at which that relationship is

measured (Cadotte and Fukami, 2005; Denny et al., 2004; Wiens, 1991). For this rea-

son, there have long been calls to incorporate scale explicitly in designing, analyzing,

and drawing inference from ecological studies (Allen and Starr, 1982; O’Neill et al.,

1986; Levin, 1992, 2000; Holling, 1992; Wiens, 1991; Rahel, 1990). Although a great

deal of work has addressed quantitative methods for measuring scale (Borcard et al.,

2004, 1992; Dale, 1999; Dungan et al., 2002; Harte et al., 2005; He and Legendre,

2002; Thrush et al., 1997), it is remarkable that so few ecological studies incorporate

scale in the analysis of observed natural patterns or experiments. As the importance

of scale in determining ecological patterns has become more apparent (Harte et al.,

2005; Levin, 1992, 2000) techniques explicitly designed to measure and interpret in-

teractions and associations at different scales will better enable the generalization of

these analyses to other systems and the predictive application of the results to future

system behaviors (Noda, 2004; Underwood and Chapman, 1996).

Scale in general and hierarchical approaches to scale in particular have rich histo-

ries in ecological theory, observation, and experimentation. Ecological data are often

hierarchically structured; a fact that arises both from common sampling designs as

well as biological truth (e.g., quadrats on transects, species within genera, clonal

stems attached to rhizomes, behaviors over time, fish in watersheds). Hierarchical

structure in ecology has over the years inspired treatises on proper experimental de-

sign (Hurlbert, 1984; Oksanen, 2001), statistical analysis (Clark and Gelfand, 2006;
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Raudenbush and Bryk, 2002; Wu and David, 2002), and broader theoretical and

philosophical explorations (Allen and Starr, 1982; O’Neill et al., 1986; Rahel, 1990;

Whittaker et al., 2001; Levin, 1992, 2000; Noda, 2004). Thus, over the years, ecolo-

gists generally agree scale is important, have offered methods to quantify scale, and

have implemented a number of studies that show scale to be important. Unfortu-

nately, most ecological research that is not specifically focused on the issue of scale

fails to account for scale in analysis and inference. It is this oversight, the vast gap

between the agreed importance of scale and the failure to include scale in analysis,

that we hope to address in this paper.

There seems to be no consensus approach to quantifying scale in ecological stud-

ies. The methods that are applied generally fall into three categories. The first

consists of methods that primarily determine the scale at which a pattern is evident

(e.g., principle coordinates of neighbor matrices (Borcard et al., 2004), wavelet anal-

ysis (Keitt and Urban, 2005), fractal dimensions, (Keitt et al., 1997; Sugihara and

May, 1990), canonical correspondence analysis (Cushman and McGarigal, 2003)).

Although these methods effectively designate the scale at which a response variable

shows distinct patterns and are quite effective at capturing scale-dependent patterns

along a continuously-scaled variable (e.g., a fine-grained time-series, or detailed spa-

tial measurements such as GIS), they require an indexing (ordination) of the variable

of interest and generally cannot take into account correlation between the same mea-

surement of predictor variables across scales (Keitt and Urban, 2005). These methods

also require specialized conceptual knowledge of the techniques and math for appli-

cation, inference, and communication of the results.

The second category of methods includes classic design of experiments. Nested

analysis of variance (ANOVA) and mixed models estimated with ordinary least squares

fall into this category (Benedetti-Cecchi et al., 2005; Benedetti-Cecchi, 2001; Cadotte

2



and Fukami, 2005; Chase and Leibold, 2002). We include for organizational purposes

here studies that use basic statistical techniques to find effects (any technique) but ap-

ply them at two scales to perform a qualitative analysis (Tolimieri, 1995; Gotelli and

Ellison, 2002). These methods have the benefit of ease of use, ease of interpretability,

and clarity of result. The fail, however, to be flexible in design (unbalanced data,

more complex model constructions, and missing data are difficult to contend with).

Further, results from models that require reduction of the system (specifically nested

ANOVA designs) frustrate the generalization of results, or the application of inference

in prediction (Moran, 2003; Clark, 2003b, 2005).

The third category of approaches include a suite of statistical methods built from

the base of classical statistical approaches but ones that have advanced because of new

computational power that allows the estimation of more complex, flexible, and robust

models. In this category we would place modeling variance components (Edwards,

2004; Searle et al., 1992), multi-level models (Buckley et al., 2003), and hierarchical

Bayesian models (Clark et al., 2005; Clark, 2003a; Gelman et al., 2004; Helser and

Lai, 2004; Hooten et al., 2003). Hierarchical linear models (HLM), the focus of this

paper, relate to all three of these methods as they offer a specific model structure

within the hierarchical Bayesian context, a generalization of the mixed models, and

specialize in estimating variance components. Although HLM can be estimated us-

ing maximum likelihood or Bayesian approaches, iterative computational techniques

are required for those estimates (EM algorithm (Dempster et al., 1977) or Gibbs

sampler (Gelfand and Smith, 1990) respectively). Further, although estimated with

sophisticated algorithms, the structure, lexicon, and analysis of HLM use the common

language of regression analysis. Results and predictions can be communicated across

systems and research programs. HLM has been applied to ecological problems related

to community interactions (Vazquez and Simberloff, 2004), species-area relationships
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(Storch et al., 2005), spatial covariance (Gering and Crist, 2002). The focus of these

applications has primarily been to account for nested observations and not to explore

explicitly the role of scale in determining the associations between variables (but see

Buckley et al. (2003)). Applications of HLM in ecology, however, would benefit from

a protocol of analysis that can build models that develop a clear concept of the role

of scale in a system, and extend its analysis to important diagnostics measures of

variation and association.

In this paper we demonstrate how HLM both identifies important scales of in-

formation and measures associations that explain the information at those scales,

developing this in the conceptual and mathematical framework of linear and gen-

eralized linear regression, and then demonstrate the variety of models that can be

built within this framework. This method is conceptually accessible to a wide range

of ecologists with a wide range of statistical experience. Our goal, therefore, is not

merely to offer another approach to ecologists interested in scale issues. We hope

to show that ecological studies with no explicit interest in scale must justify that

omission. We also hope to offer a method that is readily applicable to studies with

classic sampling and experimental designs. This method can be applied to any nested

question, whether phylogenetic, geographical, experimental design, or physiological.

In the following sections, we introduce the basic mathematical structure of hierarchi-

cal models and use two examples to show how HLM can be fully exploited to draw

inference beyond that possible using other approaches. To firmly establish the core

application of HLM, we apply maximum likelihood methods to estimate the param-

eters in a two-level linear model that describes the association between the amount

of herbivore damage to plant leaves, plant size, and the species richness of the plots

in which the plants grow. In order demonstrate the more flexible approaches of gen-

eralized HLM (HGLM) as well as some of the strengths of using Bayesian techniques
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to estimate variance-covariance parameters, we present a three-level model exploring

how biotic and abiotic factors at the individual plant-level, the microsite level, and

the population-level influence the probability that an individual plant will flower. We

conclude with a discussion of these analyses focusing on the role of scale in inference

and a call for expanded incorporation of scale into quantitative analyses of natural

systems.

Hierarchical linear models

Hierarchical linear models (HLM) use nested regression equations to investigate asso-

ciations between variables at different scales and account for the fact that observations

are related through the groups within a hierarchy. HLM can apply hypothesis tests

and diagnostic reports that address not only the significance of the relationships be-

tween variables at different scales, but the strength of those relationships and their

explanatory power across scales. Although the equations describing HLMs can be

generalized to contain multiple predictors and link functions, a basic two-level linear

model serves to demonstrate the core structure of HLM, the parameters that need to

be estimated, and the inferences that can be drawn from an estimated model. Fur-

ther, Raudenbush and Bryk (2002) demonstrate a protocol for model building that

effectively incorporates variation at different scales into the analysis. We begin with a

description of HLM model structure and then explain the protocol for model building

in our first example.

Fundamentally, HLM comprises nested regression models that describe distinct

levels of hierarchical data and explain how relationships within the dataset can be

explained by other variables at other scales. Data can be modeled at the level they

were collected, or any higher level, which will be explained in more detail below. The
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first level (the individual-level in our examples) of an HLM in its linear form is the

simple regression equation (all notation in this paper follows Raudenbush and Bryk

(2002)),

Yij = β0j + β1jXij + rij , (1)

where Yij is a measured response variable, which has a group-level intercept β0j and

is related to an individual-level predictor variable Xij by the group-level regression

coefficient β1j. Why are these β terms ‘group’ variables? This stems from the fact

that the residual error of the estimated relationships between the Yij response variable

to the Xij predictor variables, rij , is assumed in a simple linear regression model to

be distributed normally with a mean of zero and variance σ2. Because the response

variable Y is associated not only with the individual i observations, but is nested

within the j groups, the residuals can not be assumed to be normally distributed

(to assume so would constitute pseudo-replication Hurlbert (1984)). To correct this

aggregation in HLM, the first level relationships are modeled not around an overall

intercept and slope, but around the intercept and slope of each of the j = 1, . . . , J

level-2 groups. This corrects for the clustering of the error term and ‘re-normalizes’

the residual error. Doing this however, results not in a single regression, but effectively

in J different regression equations. To obtain an overall estimate of the relationships

between the response variable and the predictors, we then use the J regressions to

form two, higher-level regressions:

β0j = γ00 + γ01Wj + u0j, (2a)

and

β1j = γ10 + γ11Wj + u1j, , (2b)
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where γ00 and γ01 are the level-2 coefficients for the intercept and slope respectively

of these level-2 regression models (in other words, the γ parameters are group-level

equivalents of the β parameters at the individual level). Wj is a level-2 predictor,

and behaves as the Xij does in equation (16). The level-2 random effects u0j and

u1j are assumed to be distributed normally with means of zero and variances of

τ00 and τ11 respectively. The covariance between these random effects is τ01. If we

substitute equations (17a) and (17b) into equation (16) we get the combined model

that simultaneously describes the relationships between all predictors and response

variables including their error terms at the two levels (see Table 1 for a detailed

explanation of this model)(all tables and figures referred to in this part are in an

appendix at the end of the part):

Yij = γ00 + γ01Wj + γ10Xij + γ11WjXij + u0j + u1jXij + rij. (3)

The fundamental difference between this combined model and models typical of single-

level models is that instead of having independent random errors with constant vari-

ance (the rij term), the error term of equation (18) takes the form u0j + u1jXij + rij .

We assume now that rij ∼ N(0, σ2) and that u.j ∼ N(0, τ..), where τ is the variance-

covariance matrix of the u.j terms, whose diagonal elements describe the variance

of each u parameter. The τ variance-covariance matrix of the second level models

becomes an important set of parameters as it describes between-group variance and

determines whether higher-level relationships between variables are needed, signifi-

cant, or explanatory (this will be clarified in the examples below).

The uncertainty ascribed to this modeled system contains random error at the

individual level and the group level. The error estimation that partitions uncertainty

across groups for both the mean and slope of the level-one model does so by estimating
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the group level variance of the mean (u0j) and slope (u1j). This model provides a

great deal of information about the relationships between predictor variables and

the response variable and the scales at which those relationships are found. These

error terms mark an essential difference between the ordinary least squares (OLS)

approach which requires the deviations from the grand mean to be independent,

normally distributed, and with constant variance. Because the terms u0j and u1j can

differ between groups, their variances are not assumed equal. When these terms are

null (there is no group-error variance), this model reduces to an analogue of the OLS

regression model. To estimate whether these terms are null, however, we must employ

iterative maximum likelihood methods, such as the EM algorithm. Furthermore, by

setting various parameters of this combined model to zero, a variety of more specific

questions that incorporate the scale components of the system can be tested (Table

1).

Examples

The great advantage of HLM lies in its ability to estimate complex models that in-

corporate scale explicitly in the analysis. Understanding the influences of biotic and

abiotic factors on populations presents a challenge ideally suited for analysis using

HLM. In our examples we explore the possible biotic and abiotic mechanisms that

influence plant populations at different scales. These examples use datasets not specif-

ically designed for the purpose of illustrating HLM, yet successfully demonstrate how

both naturally occurring biological hierarchies (such as populations of clonal plants)

and experimental hierarchies (such as nested sampling designs) can take advantage

of HLM analysis.
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The two-level and three-level models we constructed were estimated using two dif-

ferent approaches on two different datasets. The two-level model assumes maximum

likelihood parameters which were estimated using expectation-maximization (EM)

algorithms (Dempster et al., 1977; Raudenbush and Bryk, 2002) written in Matlab

(The Mathworks, 2003) and employs traditional hypothesis tests for model diagnosis

and interpretation (see Appendix A). In the three-level model we applied a hierar-

chical Bayes approach that uses a Markov chain Monte Carlo (MCMC) sampling

procedure in WinBugs (Spiegelhalter and Best, 2000) to estimate model parameters

(see Appendix B for code). It is important to note that Singer (1998) provides a clear

tutorial on using SAS for the maximum likelihood estimation of HLM.

Two-level maximum likelihood model

The data used in this example are a portion of a larger demographic study. The mod-

els constructed here are designed only to advance an understanding of HLM, and not

address issues in plant community ecology. Here we explore the possible relationship

between several characteristics of an understory forest herb and its micro-environment

with the interest of identifying associations with patterns of leaf herbivory. Why

would this problem merit a hierarchical approach? First, a protocol that includes

the collection of such fundamental environmental variables as species richness, soil

moisture, and canopy openness will necessarily require sampling at a scale above the

individual ramet of the plant. Second, the plant of interest has a natural hierarchical

structure. An individual plant (a genet) is comprised of many stems (ramets) which

themselves show variation in size, stage, herbivore damage, phenology, etc. These

plants are further aggregated in populations that experience different habitat char-

acteristics. Any questions that implicitly or explicitly address genotype, phenotype,
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habitat traits, or demographics should distinguish between patterns and associations

at the scale of the ramet, the genet, and the population. Reproductive stems vary

significantly in size; they can grow between 10 and 50 cm. and have between 3

and 25 leaves. Herbivory on the leaves of E. chlorolepis during the summer by a

host of arthropods (the primary one is the leaf-mining beetle, Sumitrosis inaequalis

(Hispinae)) and mollusks can influence both reproductive output in any one year and

age-class structure in the following year (unpublished data). Measuring the relation-

ship between stem height and herbivore damage indicates two potential processes, If

the relationship is positive, it would indicate that herbivores might key in on healthy,

large stems. If the relationship is negative, it might indicate that plants can outgrow

herbivore loads and therefore taller stems would display proportionally less herbi-

vore damage. Soil moisture at the patch level can indicate increased mollusc activity

(personal observation) and light levels can influence plant resources and, herbivore

activity. The number of understory plant species in dense forests indicates overall

microsite soil quality (e.g., higher pH and nitrate content) (unpublished data).

Species, study site, and protocol

Eurybia chlorolepis (Asteracea) is an understory perennial herb that grows in densely

canopied forests in the southern Appalachian mountains of the United States. Ram-

ets emerge from rhizomes in the early spring as either a juvenile form (rosettes) or

reproductive form (with internodal stems). The reproductive ramets grow through

the summer and, if conditions allow, flower, are pollinated, and set seed in the fall

(September through November). This study tagged 10 stems in 20 plots and mea-

sured the herbivore damage to leaves on each stem by visually estimating a percent

damage to every leaf on every stem. Damage was then averaged for each stem. Stem

height is a good proxy for plant biomass as plant allometry is similar across stems.
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Soil moisture was measured using gravimetric water content methods. Canopy open-

ness was measured using hemispherical photographs and Gap Light Analyzer software

Frazer et al. (1999). Species richness was calculated for all patches.

Model building, parameter estimation, and hypothesis testing

The percentage of leaf herbivory in September was chosen as a response variable to see

if damage to leaves differed between patches and was predicted by plant characteristics

or environmental variables. Constructing a hierarchical model, unlike a linear model,

explains variation in the response variable differently at different scales and therefore

requires an assessment of the scale at which variation in the response variable occurs.

By fitting what Raudenbush and Bryk (2002) term an ‘unconditional model,’ which

is effectively a one-way ANOVA model where the levels of the data hierarchy as

the treatments of the single factor we can establish this baseline of variation. The

‘combined model,’ the analogue of Equation (18) is:

HERBij = γ00 + u0j + rij . (4)

Here, the percent of herbivore damage for an individual plant i in a specific patch

j can be modeled as an overall average of the damage to every plant in every patch

(the ‘grand mean’ γ00) plus some difference between the average herbivore damage

to plants in that jth patch from that overall mean (u0j) plus the difference between

the damage to that individual plant and its patch mean (rij). Thus, the variance

component of every plant has two parts, the individual variance (taking into account

group-variance) and group variance (taking into account individual variance). This

simple formulation offers a base understanding of variation in a hierarchical system.

Although rudimentary in the context of this problem, this basic understanding of the
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variation of a simple response variable is almost universally overlooked in ecological

studies of hierarchical design.

After assessing the scale of variation in the response, a model can be built to

explain that variation in the two scales of the response variable (in this case, that of

the individual stems and that of the quadrat ‘patches’). How this is done depends

directly on the distribution of the variance components discovered in the first model.

The two distinct but not mutually exclusive additions to this ‘unconditional model’

then include a ‘random effects’ formulation (Table ]1) which includes covariates at

the individual level and a ‘means-as-outcome’ formulation, which includes covariates

at the higher level to explain the intercepts among the groups. We begin with the

random effects model. Using plant height as a predictor of leaf herbivore damage,

and remembering that modeling the relationship between plant height and herbivore

damage within groups (β1j ∗ Xij) becomes β1j = γ10 + u1j , we have the complete

random effects model:

HERBij = γ00 + γ10(HEIGHTij) + u0j + u1jHEIGHTij + rij . (5)

This model posits a series of relationships that combine to describe the herbivore

damage to an individual stem given the height of that stem. Across-patch character-

istics of herbivore damage are captured by the overall average damage to all plants

γ00 (given the new regression relationship included in the model) and the deviation of

this plant’s patch intercept from that grand intercept (u0j). The relationship between

an individual’s height and the amount of herbivore damage exhibited is partitioned

into two components: first is the across-patch slope relating herbivore damage to

plant height multiplied by the individual’s height ( (γ10 ∗ HEIGHTij), and second

the difference between the slope of the within-patch relationship between plant height
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and herbivore damage multiplied by that plant’s height (u1j ∗ HEIGHTij). Finally

rij , which is now the residual error, takes into account deviation from the expectation

of this individual given all of the above model components.

The second basic expansion on the unconditional model estimates predictor vari-

ables at the second level (the patch level). It is termed the ‘means-as-outcomes’

model (Table 1) because the explanatory variables are set up to explain variation in

group means of the response variable and not variation in individual observations of

the response. If we regress herbivore damage of individual plants on patch-level soil

moisture, for example, we get this combined model:

HERBij = γ00 + γ01SMj + u0j + rij . (6)

Here, we again have an individual’s herbivore damage explained first by the grand

intercept of herbivore damage (γ00). The regression term (γ01SMj) contains the

relationship between patch-average herbivore damage and the soil moisture at each

site. The u0j term is the residual difference between average site herbivore damage

and the grand across-site damage, taking into account site soil moisture. The rij

term is the difference between the herbivore damage to an individual stem and the

average damage within that stem’s site. Its variance should not have changed from the

unconditional model, as no predictors were set up to explain that variance. Another

potential expansion of the unconditional model is, which focuses on deviations of the

group-level responses around the grand mean. As variation can exist at both of these

levels, far more complex models are readily built.

These two models, the random effects and means-as-outcome models, are easily

combined or expanded to construct more sophisticated models (Table 1). Indirect

effects can be modeled as second-level predictors of first-level slopes (in other words,
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second-level predictors can be used to predict the relationship between first-level

variables and not the response group averages as in the means-as-outcome variables).

Variance components can also be modeled with covariances.

For this example, we applied a straightforward model-building design and to es-

timate parameters in all models, an expectation-maximization algorithm was run in

Matlab (The Mathworks, 2003). For the unconditional model, the parameters of in-

terest were σ2 and τ00, the first- and second-level variance components respectively,

as these describe how herbivore damage Yij varies both from plant to plant and patch

to patch. After estimating the unconditional model, it was determined that herbi-

vore damage did show differences across the patch (quadrat) scale (see results below).

In order to explain those differences, two separate models were estimated. First, to

determine whether the size of the plant (a level-one variable) predicted differences

in herbivore damage, a random-coefficients regression model (Table 1) was estimated

regressing mid-summer plant height against herbivore damage. The main parameter

of interest in this level-1 model was β1j , which describes the relationship between

plant height and herbivore damage in each group j. At the group level, the para-

meter γ10 describes the average slope of this relationship and u1j ∗ Xij) describes

how the slope of this relationship varies from group to group around that average

(the residuals after accounting for the overall average slope). The level-2 predictors

were plant species richness, canopy openness, and soil moisture. Because there was

no significant relationship between the plant height and herbivore damage (see re-

sults below), plant height was removed from the subsequent models, and the level-2

predictors were included in an means-as-outcome model (Table 1).
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Results and interpretation

In every model, the EM algorithm successfully converged in under 200 iterations. The

unconditional model estimated the variance at the first level, σ2, to be 656.6. The

variance at the second level τ00, was 192.12, which was significantly different from

0 (χ2 = 478, df = 19, P < 0.001). This indicates patch level variation in herbivore

damage to plants. To better quantify this variation, we determined the proportion of

variance in the system that is described by the patch level as the interclass correlation

coefficient: ρ = τ00/(τ00 + σ2). In this model ρ = 0.226, indicating that 23% of the

total variation in herbivory exists between patches of plants. From this starting point,

we can try to explain this variation at each level.

Mid-summer plant height was not related to herbivore damage (95% CI for γ10

was -0.87, 0.39, overlapping 0). In the means-as-outcome model, canopy openness and

soil moisture were not associated with patch level herbivore damage (95% CI forγ01

and γ02 were -1.03,1.68 and -35,06, 62.35 respectively, both overlapping 0). Species

richness, however, did show a negative association with patch-level herbivory (95% CI

for γ03 was -9.34, -3.40 with a point estimate of -6.37). By using the calculations of τ̂00

done in the ANOVA design and in the means-as-outcome design, we can determine the

between patch variation in herbivore damage accounted for by species richness. We

do so by calculating (τ̂00(ANOVA)−τ̂00(Species richness))/τ̂00(ANOVA) or 192.12 −

65.68/192.12 = 0.6581. Over 65% of inter-patch variation in herbivore damage is

explained by the sampled species richness of the patch.

What this hierarchical approach to these community relationships offers that sim-

ple linear models to don is the explicit partitioning of variation and its explanation

across scales. Every relationship identified takes into account the scale of the pat-

tern explained. In this example, we find that the majority of variation in herbivore
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damage (77%) occurs among stems. Although we did not test whether plants were

genetically related, because these plants are clonal and grow in patches, this vari-

ation indicates that a selective response to herbivore damage will be muted by the

distribution of damage within and not between genets (patches). It also indicates

that most environmental variables, which generally influence herbivore damage at

scales larger than the individual stem, likely have little influence on damage in this

system. It is more likely that herbivores forage according to cues (or convenience) at

the stem-level, and see patches of plants as being more or less equally accessible and

edible. The smaller amount of patch-level variation (23%) indicates some association

between herbivore damage and patch-scale biotic or abiotic characteristics, but not

strong. Because richness was found to be negatively associated with this patch-level

variation, community components could provide insight into this scale of damage that

simple environmental variables cannot. We now look at how more complex models

can be organized using HLM.

Three-level hierarchical Bayes model

The same computational power that has made the maximum likelihood estimation of

complex HLM analyses possible has also led to the advance of Bayesian methods of

model analysis. The Bayesian framework for analysis has recently been re-introduced

to ecologists as a useful approach to a range of questions, most significantly for un-

derstanding complex, hierarchical ecological problems (Ellison, 2004; Clark, 2005).

Among the appealing characteristics of these models is an ability to incorporate mul-

tiple experimental and observational datasets, and provide realistic parameter esti-

mation and prediction that incorporate all model uncertainties and process variation

(Wikle, 2003; Clark et al., 2005; Clark and LaDeau, 2006). Hierarchical Bayesian
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methods, where parameters of interest are treated as random variables and there-

fore have hyperparameters that describe their distributions, are easily able to model

nested data structures (Clark and Gelfand, 2006; Gelman et al., 2004). However, by

designing models with the structure of HLM, a clear interpretation of nested data

structures can be employed. Thus, the advantages of using Bayesian methods in an

HLM framework are similar to that of the maximum likelihood estimation. The key

difference is that Bayesian methods treat variance-covariance components as random

variables with distributions instead of point estimates (see below), and therefore offer

more realistic descriptions of these critical parameters (Raudenbush and Bryk, 2002).

We choose not to debate the relative merits of Bayesian and frequentist methods in

this paper, although the distinction can be important, especially as the hierarchical

Bayesian approach accurately distinguishes between error in models and biological

variation in models (Raudenbush and Bryk, 2002). We refer the interested reader to

work that explicitly and effectively tackles this issue in statistical ecology (Ellison,

1996, 2004; Clark, 2005). This paper instead focuses on the importance of analyzing

hierarchically structured data in general. We include both estimation methods to

show how either approach offers insight into the scale of ecological processes, while

acknowledging a growing interest in development and estimation of ecological data

with Bayesian approaches.

While sharing the same basic multi-level structure as the 2-level example, the 3-

level model builds on the 2-level in important ways. First, as a Bayesian model, all

parameters of the model are considered random variables to be estimated (Gelman

et al., 2004), and as such they are given prior distributions that are updated by the

data to yield full posterior probability distributions (see Appendix A for details).

Second, as with many ecological datasets, flowering is a discrete response benefiting

from a generalized linear model framework. It is important to be clear that the term
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‘hierarchical’ in ‘hierarchical Bayes’ refers to the use of hyper-parameters, meaning

that the parameters in a model (any model) have their own distributions with other

parameters that describe that distribution. The ‘hierarchical’ in ‘hierarchical linear

models’ refers not to the structure of the data used in the model. These distinctions

can be seen clearly in Figure II, a conceptual description of the three-level model

developed in this example.

Species, study site, and protocol Tipularia discolor is a wintergreen terrestrial

orchid found in mixed deciduous forests of eastern North America. In T. discolor’s

southern range, a plant’s single green leaf emerges above ground in late fall (end of

September) and remains until spring (March-April). Flowers, if produced, are found

on a single flowering stalk that that emerges in August, before the leaf emerges. Study

populations range from 250 to 480 m2 in size, each divided into 4 m2 cells within

which all plants were individually marked. Thus, the levels of the experiment were

the individual plants (flowering or not), cells that reflect microsite characteristics, and

the population-level grids that contain a range of cells. For this study, we use floral

surveys from the late fall of 2004. Predictor variables include plant size (measured

by the width of the emerging leaf), understory light levels and soil moisture at the

cell level, and soil pH and soil texture at the grid level (see Appendix A for a detailed

explanation of sampling protocol).

Model building and parameter estimation The 3-level Bayesian models were

fit using an MCMC sampling method run in WinBugs 1.4 (Spiegelhalter and Best,

2000), and we used the R computing package (R Development Core Team, 2005) for

calculating R2 following Gelman and Pardoe (2005) (see Appendix A for details about

the estimation algorithms and Appendix B for WinBugs code). Because we lack prior
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information to inform the likely values of the model parameters, each parameter was

given a non-informative, diffuse prior that allows the data to dominate the posterior

inference (Gelman et al., 2004) (see Appendix A for details).

Bayesian results and inference

We fit these models in a step-wise fashion starting with an unconditional model

and adding explanatory variables at the individual, cell, and population levels. All

subsequent inference from the model comes from the posterior distributions for the

parameters and the variance diagnostics. The posterior parameter distributions are

summarized in Table 4 for the unconditional and fully conditional models. The size

of individual plants had a positive effect on flowering probability, with a mean effect

of 2.1 and over 95% of the mass of the posterior of β1 located above 0. Note that

given the logit link function, this is an effect on the log-odds of flowering. At the

cell level, light availability had a positive effect on flowering, with a mean of 4.6 and

its 95% probability interval slightly overlapping zero. At the population level, soil

pH was significantly negatively related to flowering probability, with a mean of -2.94

and 95% interval from -5.61 to -1.12. The 95% intervals of all other explanatory

variables overlap zero and thus are not considered likely to differ from zero (Figure

II). Although we built these models based on parameter estimates, scoring models

for selection may also be used. The deviance information criteria was developed

to estimate the penalty term in hierarchical models, but its implementation proves

challenging and remains somewhat controversial (see Spiegelhalter et al., 2002 and

subsequent discussion).

The variance analysis of the unconditional model showed 34% of the variation

among individuals, 16% among cells, and 50% at the population level. Using the
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R2 approach of Gelman and Pardoe (2005) for estimating the explanatory power

of the covariates, we find that light levels explain 31% of the variation at the cell

level and pH explains 78% of the variation at the grid level (see Appendix A on

describing variance). Leaf width is clearly an important explanatory variable at the

individual level, given its posterior distribution significantly different from zero, but

because individual level variance is the constant π2/3 (Snijders and Bosker, 1999),

the percent variation explained by individual-level covariates in GLM models cannot

be well estimated. Note, however, that because we have partitioned variation across

scales, we can now estimate higher-level explanations of variance.

Model interpretation. As with the 2-level model, our inference about the ques-

tions of ecological interest in the 3-level model benefit from a hierarchical approach.

Factors at multiple scales can influence plant flowering, from individual level traits,

to microsite variation in abiotic resources and biotic impacts, to larger population

level canopy, soil, or topographic effects. Indeed, although there is often significant

variation from plant to plant in the likelihood of flowering, flowering synchronicity at

different scales can be observed in many plant populations, suggesting the need to

explicitly explore possible mechanisms at a range of scales (Satake 2004, Crone and

Lesica 2004).

From our initial calculations of variance partitioning (Tables 3 and 4) we learn

that as much of the variability in flowering resides among populations as within (50%

of the variation in flowering probability exists at the population level), and most of

the variation within populations is found among individuals (34%). At this individual

level, plant leaf size has a strong influence on the probability of flowering. Variation

in light availability within populations helps explain 31% of the variation from cell to

cell, but differences in light availability among populations do not contribute much
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to explaining overall differences in flowering. This supports the ecological hypothesis

that within-population variation in canopy light transmittance, such as light gaps,

is more influential than average light transmittance differences among populations,

which is plausible since these populations were all located in full canopy forest sites.

However, soil pH differences among the populations do help explain 71% of the vari-

ation that we see in flowering at this scale. Given the correlative nature of this study,

we cannot attribute the effects to soil pH in any mechanistic sense, but it is an inter-

esting finding nonetheless and suggestive that edaphic factors that vary on the scale

of populations are important in determining reproductive behavior of these orchids.

It is also important to recognize that without the explicit incorporation of scale into

this analysis of flowering probability, a researcher measuring light and flowering prob-

ability from a microsite perspective (quadrat to quadrat) might over-emphasize the

importance of light availability for flowering probability.

These inferences, taken together, illustrate how important it is to measure the

scale at which a life history trait varies and further record the scale at which biotic

and abiotic components of the system explain that variation. One might suspect

that with greater future deployment of micro sensor technologies for measuring the

environment at finer spatial and temporal scales, the ability to explore a range of scales

may increase dramatically, and using a statistical framework that can accommodate

multi-level analysis will be critical. In this study, for example, our exploration of light

effects were constrained to the patch level at which we could make measurements.

Were we able to measure light availability at the scale of individual plants, it would

be interesting to explore its fine-scale importance relative to leaf size.
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Towards a broader study of scale in ecology

Two paradigms have traditionally guided the discussion of scale and ecological sys-

tems: one describes ecological patterns as fundamentally scale-invariant (Harte et al.,

2005; Marquet et al., 2005), while the other focuses on ecological patterns as hier-

archical and distinct among scales (Leibold et al., 2004; Noda, 2004; Takada and

Miyashita, 2004; Wu and David, 2002). Clearly both of these conceptualizations of

ecological systems are appropriate depending on the question being asked (O’Neill

et al., 1986). Regardless of the paradigm, however, ecologists need to explain mech-

anisms that influence patterns at different scales (Huston, 1999). In the case of

scale-invariant systems, power law relationships, whether derived from a single pro-

cess (Marquet et al., 2005) or multiple processes across scales (Allen et al., 2001),

will remain only an intriguing mathematical artifact until specific mechanisms can

be identified that explain why the association between two variables does not dif-

fer across scales. Investigating patterns of species diversity, for example, will entail

measuring associations with species richness at different scales in order to develop a

common description of the number of species observed and the area considered and

potential explanatory variables (Gotelli and Ellison, 2002; Lyons and Willig, 2002).

Because HLM can explore the same variable at different scales, interactions between

variables, and describe the uncertainty in these relationships, it is well suited for such

an inquiry.

The hierarchical paradigm of ecological systems requires even closer attention to

associations across scales, as not only might the mechanisms change with scale, the

inferences drawn from those relationships might change (Cadotte and Fukami, 2005;

Fukami, 2004; Menge, 1992). HLM offers a powerful tool with which ecologists can

explore the associations between environmental and biotic variables at different scales,
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the strengths of those associations, the covariance between those associations, and the

propagation of uncertainty in those relationships across scales. Although experimen-

tal designs often structures data in a hierarchical manner, many sub-disciplines are

explicitly interested in biological hierarchies. Population ecology, ecological genet-

ics, and demography inherently deal with associations among individuals, within and

among populations, and the scale of inference about key variables can be crucial to the

ecological and evolutionary inferences (Buckley et al., 2003; Doak et al., 1992; Scott

et al., 2002). The processes driving species distributions unfold across environmental

gradients at a range of spatial and temporal scales, from individual generations within

microsites and populations to longer-term community level shifts over the course of

decades. Accounting for scale in such analysis will be essential to any fundamental

understanding of the role of ecological niches in structuring the biodiversity patterns

(Chase and Leibold, 2003; Menge and Olson, 1990; Pulliam, 2000). The study of

metapopulations and metacommunities, as well, are based fundamentally on a hier-

archical approach to populations. Studies in these fields could benefit greatly from

a more explicit incoporporation of predictive relationships between variables at the

sub- and meta-population scales.

The development of ecological theory, inference drawn from empirical studies,

and the confrontation of one by the other will be well served by a more expanded

use of tools for explicitly analyzing scale. As computational power increases and

data collection begins to reflect the potential for high-dimensional models, HLM can

serve to integrate sub-disciplines, which are often focused around specific levels of

organization.
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Table 1: Parameters in the combined multi-level model.

Parameter Description

The model: Yij = γ00 + γ01Wj + γ10Xij + γ11WjXij + u0j + u1jXij + rij .

Yij The estimated percentage of leaf damage for

individual plant i in patch. j.

Xij Initial height of individual plant i in patch j.

Wj Species richness in each patch j.

γ00 The grand mean of leaf herbivory.

γ01 The mean effect of patch species richness on

leaf herbivory.

γ10 The average slope of the relationship between

initial plant height and herbivore damage.

γ11 The average effect of patch species richness

on the relationship between plant height and

herbivore damage.

u0j The effect of patch j on leaf herbivory, hold-

ing species richness (W ) constant.

u1j The effect of patch j on the relationship be-

tween herbivore damage and plant size, hold-

ing species richness (W ) constant.

rij. The random effects on individual leaf

damage.
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Table 2: Various models described by hierarchical equations.

Model Description
Full regression model:

Yij = γ00 + γ01Wj +
γ10Xij + γ11WjXij +
u0j + u1jXij + rij .

Describes relationship between the individual leaf her-
bivory, initial plant height and patch-level species
richness.

One-way ANOVA with random effects:

Yij = γ00 + u0j + rij . Describes the grand mean of leaf herbivory (γ00), the
effects of patch on individual leaf herbivory (u0j), taking
into account individual variation in leaf herbivory (rij).

Means-as-outcomes regression:

Yij = γ00 + γ01Wj +
u0j + rij .

Estimates how the mean leaf herbivory for each patch
of plants can be predicted by species richness (Wj) tak-
ing into account the difference between patch variation
in leaf herbivory (u0j) and individual variation in leaf
herbivory (rij).

One-way ANCOVA with random effects:

Yij = γ00 + γ10(Xij −
X̄..) + u0j + rij.

Estimates the average patch leaf herbivory, accounting
for how the level-1 covariate (initial plant height (Xij))
influences herbivore damage within each patch.

Random-coefficients regression model:

Yij = γ00 + γ10(Xij −
X̄..) + u0j + u1j(Xij −
X̄..) + rij .

Describes leaf herbivory as a function of the average
slope of the regression between leaf herbivory and initial
plant size (γ00 + γ10(Xij − X̄..)) with estimates of three
error terms: the effect of patch j on the mean level of
leaf herbivory (u0j), the effect of patch j on the slope of
the regression relationship between leaf herbivory and
initial plant size β1j (u1j(Xij − X̄..), and the individual
variation in leaf herbivory (rij).
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Table 3: Variance Components of 3-level model.

Calculation Description

π2/3
(π2/3+τβ+τγ)

proportion of variance at level-1

τβ

(π2/3+τβ+τγ)
proportion of variance at level-2

τγ

(π2/3+τβ+τγ)
proportion of variance at level-3
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Table 4: Parameter estimates for three-level logistic models.

Unconditional model

Parameter Mean estimate Lower interval Upper interval

σ2
individual π2/3 constant

σ2
cell 1.58 0.37 3.86

σ2
grid 4.80 0.64 23.32

ρindividual 0.34

ρcell 0.16

ρgrid 0.50

Conditional Model: leaf width, light, pH

Parameter Mean estimate Lower interval Upper interval

σ2
individual π2/3 constant

σ2
cell 15.16 4.37 45.34

σ2
grid 2.77 .0042 16.58

Regression Coefficients

βlw 1.55 1.11 2.06

γpar 1.71 -.636 4.74

πph -2.94 -5.61 -1.12

Percent Variation Explained (R2)

Cell-level .31

Grid-level .78
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Figure 1: A conceptual map of the three-level model.
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Figure 2: Scale-explicit coefficient estimates. Solid lines represent 95% posterior
credible intervals for estimated effects of variables at three levels of the model. Those
intervals not overlapping the zero line may be considered significantly different from
zero. Leaf width of individual plants, microsite availability of light and moisture, and
population level soil pH and % sand content are considered. Light refers to winter
PAR readings.
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Part III

Quantifying the community: using

Bayesian learning networks to find

structure and conduct inference in

invasions biology
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This part was published in Biological Invasions, vol. 7, 2005, pp. 833-844.

Abstract

One of the key obstacles to better understanding, anticipating, and managing bi-

ological invasions is the difficulty researchers face when trying quantify the many

important aspects of the communities that affect and are affected by non-indigenous

species (NIS). Bayesian Learning Networks (BLNs) combine graphical models with

multivariate Bayesian statistics to provide an analytical tool for the quantification of

communities. BLNs can determine which components of a natural system influence

which others, quantify this influence, and provide inferential analysis of parameter

changes when changes in network variables are hypothesized or observed. After a

brief explanation of these three functions of BLNs, a simulated network is analyzed

for structure, parameter estimation, and inference. Discussion of this approach to

invasions biology is explored and expanded applications for BLNs are then offered.
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Introduction

Since Elton (1958) recognized the potential magnitude of the threat of biological inva-

sions, researchers have sought to determine the characteristics of invasive populations

(Baker, 1965) and their non-native habitats (Howard et al., 2004; Levine and D’ An-

tonio, 1999) that permit, catalyze or cause invasions. Intertwined in the problem of

how we can understand and manage the interface between a natural system and its

invader, however, lies the problem of how to understand the natural systems through

which invading populations spread (Parker et al., 1999).

Ecological communities, the biotic and abiotic context of invading organisms,

defy easy description, qualitatively and quantitatively (Peters, 1991). Lawton (1999,

p. 178) claims that one reason community ecology has struggled to derive general

laws that govern its components is that community components are highly interre-

lated and inferences from any one community are ‘contingent’ on conditions in that

community. In order to quantitatively describe the way in which components of a

community interact with a non-indigenous species (NIS), therefore, researchers must

better quantify these ‘contingencies’ of the community into which it invades.

Bayesian Learning Networks (BLNs) (also called Bayesian Belief Networks) were

developed in the fields of artificial intelligence and machine learning (Pearl, 1988) and

have been applied in such diverse fields as medical research Sakellaropoulos and Niki-

foridis (1999), structural engineering (Castillo et al., 1997), and genomics (Bockhorst

et al., 2003). BLNs have not been applied to community ecology or population biol-

ogy, yet are well suited to the study of combinations of direct and indirect processes

that fuel these systems (Wootton, 1994).

BLNs are graphical models, which represent variables as nodes in a network and

dependencies between these variables as arrows connecting the nodes (Figure 3)(all
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tables and figures referred to in this part are in an appendix at the end of the part).

There are other approaches to multivariate data with explicitly structured dependen-

cies, such as path analysis and structural equation modeling (SEM) that offer methods

of analyzing influence diagrams such as Figure 3 quantitatively. These methods suc-

cessfully test whether data fit a given graphical model using ordinary least squares or

other regression techniques (Shipley, 2000a), however, as will be discussed later, BLNs

provide three approaches to graphical models that no other method offers. BLNs can

use data associated with variables and quantify how those components influence one

another. Having estimated a likely network of dependencies between variables, BLNs

estimate the parameters that quantitatively describe the nature and strength of the

nodes and connections. Finally, BLNs can be used to anticipate changes in system

structure by re-estimating parameter values based on hypothesized changes in sys-

tem variables. Thus, structure learning, parameter estimation, and inference all offer

important methods towards a better understanding of the intricate connections of a

natural community and the populations within it.

This paper describes BLNs, paying special attention to the Gaussian network

model (modeling a network of continuous as opposed to discrete variables). The paper

then details the components and methods required to implement structure learning,

parameter estimation, and inference. Simulated data from a simple four-variable

network then uses these techniques in a hypothesized scenario in which an invasive

insect is defoliating indigenous trees of a forest canopy and an invasive understory

herb is responding to that defoliation. The paper concludes with a discussion of the

results of the simulation and a description of extended applications.
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What is a Bayesian Learning Network?

A Bayesian Learning Network is a multivariate distribution that contains within its

parameters the dependencies (and independencies) of the marginal variables it con-

tains (Geiger and Heckerman, 1994). Thus, using probability calculus, a system of

variables that have observations associated with them is described explicitly as a

joint probability distribution. From this distribution, we can tease apart the specific

parameters that describe the system’s components. We can also describe the relation-

ships between system components (effectively, the regression coefficients that describe

dependencies between system parts) and model the way in which uncertainty exists

and propagates through that network.

Because of the joint interdependence described by the multivariate distribution,

hypothesizing changes to any one variable in the system forces the reassessment of

the parameters of other variables in the system. In other words, by quantifying a

system as an interconnected whole, an adjustment in our knowledge of one variable

requires that we reassess our knowledge of all other variables. This feature of BLNs

is not unlike the scientific process at its most resourceful.

Formally, we designate a BLN as comprising two components, a network struc-

ture BS that describes the dependencies among the variables (Figure 3), and a set

of probabilities density functions, BP , that describe the relationships in the network

graph as a multivariate density function Geiger and Heckerman (1994). The graph-

ical representation of the network contains nodes that represent variables for which

data can or has been collected. The arrows connecting those variables reflect condi-

tional dependencies of the variables lower on the graph (‘children’) on those above

(‘parents’). A variable with no parents is called a ‘root’ node.
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Two assumptions must hold for the graphical representation of the variables to be

a Bayesian Learning Network. The graph must be a directed acyclic graph (DAG);

that is, it must contain no cycles and have arrows which delimit direction. The graph

must also obey the Markov condition, whereby each node in the graph is independent

of all other nodes given the value of that node’s parents. From probabilitiy theory,

we know that the joint probability distribution of a set of variables (the essential

quantitative description of a system that a BLN provides) equals the product of

the marginal probability distributions of those variables if the marginal variables

are independent. That is the joint probability p(X1, X3) equals the product of the

marginals, p(X1) × p(X3) if X1 ⊥ X3. In a BLN, however, we are assuming a great

deal of dependence between variables in the network (in Figure 3, X3 depends upon

X1 and X2, and so cannot fit into this simple description of a joint distribution).

That is, this joint probability that we want to derive will not equal the product of the

marginals. Remembering the Markov condition from above, however, we can make

the marginal probabilities of each variable in the network independent of all other

variables by incorporating the probabilities of the parents of each variable. That is

from (Geiger and Heckerman, 1994) we can see in Figure 3 that,

ρ(x1, x2, x3|ξ) =

3∏

i=1

ρ(xi|Πi, ξ), (7)

where ξ is the prior information about the system and Πi are the parents of variable xi.

Equation (7) dictates that to formulate our BLN, we need a graph that conveys which

variables are parents Πi of every variable xi. We need data from those variables with

which we can construct density functions of the variables and their parents. Finally,

we need prior information ξ on the distribution of these variables, which, as with
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any Bayesian analysis, can be modeled from expert information or as prior ignorance

(Bernardo and Smith, 1994).

Given, then, a graph BS, a probability distribution that describes that graph BP ,

and data D, we can find the structure of a group of variables, learn the parameters

of that structure, and perform inference using both the parameters and the graph

structure.

Structure Learning

Learning the structure of a certain system of variables requires that we hypothesize

a structure (propose a DAG), find the posterior probability of that DAG given prior

information and the data, and compare that probability to the probabilities of other

possible DAGs. The number of potential DAGs that can describe a given set of

variables increases super-exponentially with the number of nodes (Neapolitan, 2001),

so for more than five variables, a search algorithm must be used to explore the space

of potential graphs. To score the graphs, moreover, we need first to score a complete

network BSC
, which is any network that has arrows connecting every variable to

every other. After scoring this complete DAG, we use the variance-covariance matrix

obtained in its scoring to score every other DAG.

Probabilities of the data fitting a complete graph. To construct a multivari-

ate density function for any graphical representation of a system, we need to describe

a graphical relationship between the variables and then force the data in to a multi-

variate distribution described by that graph. From (Geiger and Heckerman, 1994) we

have a multivariate distribution described by continuous variables being multivariate

normal, with mean vector, ~m and the precision matrix T , which is the inverse of

the variance-covariance matrix Σ, or Σ−1; that is, ~x ∼ N(~m, T ). This multivariate
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distribution can also be written as the product of conditional independent normal

distributions, where each conditional distribution in the product is of the form

ρ(xi|x1, · · · , xi−1, ξ) = n(mi +

i−1∑

j=1

bij(xj − mj), 1/vi), (8)

and where mi is the unconditional mean of xi, vi is the conditional variance of xi,

given values of all xj that precede xi in the graph,, and bij is a linear regression

coefficient denoting the influence variable xj has on xi (akin to Yule’s partial regression

coefficients (Yule, 1907). If bij = 0, then no arrow connects xj to xi in the graph BS.

Because of Equation (8), a multivariate normal distribution describes any Gaussian

learning network and vice versa Geiger and Heckerman (1994).

An important step in translating a DAG into a multivariate normal distribution,

is building the conditional precision matrix. Shachter and Kenley (1989) offer an

algorithm to transform the variance vector, ~v, and the dependence parameters (bij |i <

j) into the precision matrix T . From (Shachter and Kenley, 1989), we define T (i) as

the i× i upper left submatrix of T , ~bi as the column vector (b1,i, · · · , bi−1,i), and ~b′i as

its transpose. T (1) is simply 1/v1, or the precision of the first variable. From there

we iteratively build the precision matrix as

Ti+1 =




T (i) +
~bi+1

~b′i+1

vi+1
−

~bi+1

vi+1

−
~bi+1

vi+1
− 1

vi+1


 . (9)

This precision matrix is important not only to the description of a system as a multi-

variate normal distribution, but for parameter learning and inference as will be seen

later.

Following from this multivariate normal description of the system, scoring a prob-

ability that this representation matches the data requires that we posit prior values
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for the mean vector (~m) and variance vector (~v). Although beyond the scope of this

paper, the Bayesian updating of the graph parameters requires several other steps

described in detail in Geiger and Heckerman (1994) and Neapolitan (2001). In short,

the prior distribution of the joint density function for ~m and T is the normal-Wishart

distribution. When this distribution is updated, using the data and precision matrix

from the algorithm in Equation (19) we end up with a multivariate t distribution.

From Box and Tiao (1973), we use a variation of the traditional multivariate t distri-

bution to score the complete DAG, BSC
:

p(D|BSC
, ξ) = (2π)−nm/2(

v

v + m
)n/2 c(n, α)

c(n, α + m)
|T0|

α
2 |Tm|

−α+m
2 , (10)

where n is the number of variables in the network, m is the number of observations

associated with those variables, v and α roughly represent the number of observations

used to determine prior estimates for other parameters (‘equivalent sample sizes’).

|T0| and |Tm| are the determinate of the prior and posterior multivariate precision

matrices respectively. Further,

c(n, α) =

[
2αn/2πn(n−1)/4

n∏

i=1

Γ(
α + 1 − i

2
)

]−1

This is our final posterior probability of the data given a posited complete Bayesian

network and some prior knowledge, or ρ(D|BS, ξ).

Scoring a DAG set. A DAG describing the relationship between n variables can

be represented by an n by n matrix where zeros represent no connection between vari-

ables and ones represent the conditional dependence of a child on a parent. Equation
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(11) is the coded matrix for the DAG displayed in Figure 3




0 0 1

0 0 1

0 0 0




. (11)

By changing the off-diagonal elements of this matrix, taking care not to create a

cycle within the graph, we can posit all 25 DAGs that can describe the relationship

between these three variables. Each DAG describes the conditional dependencies

between variables in a system. Having found the posterior probability of a complete

DAG (such as when the upper triangle of the DAG code is all ones), we then use the

prior and posterior precision matrices from the final derivation (10) (T0 and Tm) to

find the posterior probability of DAGs that are not complete (or assume independence

between some or all variables). To create a final posterior probability of an arbitrary

DAG, we apply the following equation extended from DeGroot (1970):

p(D|BS, ξ) =

n∏

i=1

p(DxiΠi|BSC
, ξ)

p(DΠi|BSC
, ξ)

, (12)

where, as in (7), Πi are the parents of Xi. From this, we need to find the various joint

and marginal probabilities as dictated by the structure of the DAG. Each probability

denoted in (12) is found from the multivariate t score from (10). This is achieved by

scoring the partial DAG as in Equation (10), eliminating in the calculation columns of

data and rows and columns of (T0 and Tm) that correspond to the variables not used

in the calculation of each component of (12). When all potential DAGs have been

scored (or a selection algorithm has been run on a subset of all possible DAGs), we

select the highest scoring DAG (or select the similar high-scoring DAGs) for analysis.
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Parameter estimation

Parameter estimation for Gaussian networks advances directly from the precision

matrix, T , built with the algorithm in (19). For example, if we build the precision

matrix for the three-variable network depicted in Figure 3, keeping in mind that the

term b21 = 0 and will therefore drop out, we get

T =




1
v1

+
b2
31

v3

b31b32
v3

− b31
v3

b31b32
v3

1
v2

+
b232
v3

− b32
v3

− b31
v3

− b32
v3

1
v3




. (13)

During the course of scoring a complete DAG, this matrix is filled with posterior values

based on prior estimates and the data. When any DAG is selected, the posterior values

of this matrix can be matched with the symbolic representations shown above and

then solved for the various parameters. For example, if the posterior value of T (3, 3)

is 27.5, then the posterior variance of variable 3 is equivalent to 1/27.5. Inserting

that number into other cells that contain v3 the entire matrix can be solved. These

posterior parameters then define the updated DAG model.

Inference

The application of inference calculation in BLNs consists of dictating a subset A of

the variables V in graph G that have been instantiated for particular hypothesized or

observed parameter values. The variable or variables in A are considered ‘evidence’.

Similarly, a latent variable or set of latent variables, A, that are not part of V and

that extend graph, G, can be created, and these exogenous influences calculated.

Inference algorithms, in their various forms, reconstruct the multivariate distribution

of the graph and its parameter values in light of the evidence, A. Calculating inference
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in a BLN is NP-hard (Neapolitan, 2001), and thus requires simulation algorithms for

graphs with many variables. In the simulated example for this paper, only four

variables are used and the symbolic inference algorithm of Castillo et al. (1997) is

used.

Simulation methods and results

In order to simulate data that could intuitively be applied to the context of invasions

biology, four variables were created to represent a simple network of a forest commu-

nity. Two major components of a forest floral community are the canopy tree species,

which can dictate light levels reaching the understory as well as soil and litter qual-

ity, and the understory plant community, which can contain seedlings and saplings

of the canopy tree populations, understory herbs, ferns, and shrubs, that provide re-

sources for a number of vertebrate and invertebrate herbivores, pollinators, and their

predators. Canopy openness (and the increased light available to understory plants)

has been shown to correlate with numbers of NIS (Charbonneau and Fahrig, 2004).

Further, NIS have been responsible for increasing canopy openness (Kizlinski et al.,

2002). In this simulation, the impact of a non-indigenous species (NIS) can thus be

modeled both directly and indirectly. Directly, an invasive plant may spread through

an understory community, out-competing indigenous species (Wiser et al., 1998). In-

directly, an invasive insect pest may change the canopy structure, allowing greater

light to reach the forest floor (Kizlinski et al., 2002). Therefore, the four variables in

the model are canopy openness, herbivore damage to an understory invasive plant,

invasive plant height, and seed production from that plant. After simulating the

data, finding the structure of this network, and estimating the posterior parameters

of the network, I apply inference algorithms to hypothesize increased light (decreased
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canopy cover) due to radical changes in forest canopy structure, reduced herbivory

on the invasive understory plant, and a combination of both of these scenarios.

Simulated data

Because these variables have very different measurement units and the structure and

parameter learning algorithms both use the covariance matrix in their calculations,

the data need to be standardized. This four-variable network was simulated using the

copula method (Perkins and Lane, 2003), where fifty observations of these variables

were generated from univariate uniform random variables that were filtered through

a multivariate normal copula. The correlation values used to design the network were

as follows: ρ21 = 0.27, ρ31 = 0.55, ρ41 = 0.0, ρ32 = −0.32, ρ42 = −0.81, and ρ43 = 0.7,

Thus, in this simulation, light through the canopy moderately influences herbivore

damage, but influences invasive plant height more strongly, and is independent of

seed set. Herbivory has a moderate negative association with plant height, but has

a strong negative correlation with seed set. Plant height, in this model, is strongly

correlated with seed production.

Structure learning

Because of the obvious physical relationships between these variables, the graph space

searched using the structure learning algorithms was limited to those maintaining

the designated order of these variables. That is, no graph that broke the order

(hypothesized that understory plant height influences canopy openness) was included

in the scoring search. This ordering is equivalent to weighting graphs with prior

probabilities of occurring that is either zero or one (Geiger and Heckerman, 1994).

A total of 64 graphs follow the order of simulated variables. All graphs were scored

50



using the structure algorithm described above. After scoring, an index of relative

scoring was applied, whereby the scores were summed and each score was represented

as a percentage of that total probability.

From the 64 possible graphical representations of the data, the complete network,

where every variable is connected in order, scored the highest, with 61.3% of the total

score. A second network, similar to the complete network excepting a missing edge

from X1 to X4 scored second best with 32.6% of the total scoring. Thus, all other 62

hypothesized graphical representations of the data combined to share the remaining

6.1% of the cumulative score. Although the complete network scored highest and

was selected for parameter learning, a network with no edge between ‘light’ and ‘seed

production’ scored a solid second, with no other DAGs scoring close to these.

Parameter estimation

The top scoring DAG from the structure learning algorithm was used for parameter

estimation. This DAG was entered into the algorithm in (19). Instead of using prior

estimates to build the variance-covariance matrix quantitatively, the symbolic Maple

kernel in Matlab (The Mathworks, 2003) was used to build the variance-covariance

matrix symbolically. Each cell in the four by four covariance matrix contains the

symbolic representation of the conditional variance and covariance of the variables.

For example, cell 1,1 contains ’σ2
1’, and cell 2,2 contains b′32σ

2
2 +b′32 b21 b′21σ

2
1 +b′31σ

2
1b21.

From the structure learning algorithms, we have updated (posterior) estimates of the
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variance-covariance matrix, which is

Σ∗ =




0.1344 0.0470 0.0796 0.0223

0.0470 0.1333 0.0154 −0.0480

0.0796 0.0154 0.1502 0.0861

0.0223 −0.0480 0.0861 0.1403




. (14)

With the symbolic representation of each cell in the updated variance-covariance

matrix and the cell values, the Maple kernel can be used to solve for each posterior

parameter value. For example, combining cell 1,1 of the solution and the symbolic

representation, we know that the posterior unconditional variance for the first variable

is σ2
1 = 0.1344 (this also is its conditional variance as the variable is a root node).

Proceeding through the two matrices, we collect all of the posterior parameter values

of the selected network. The results of this parameter estimation are shown in Table

5 and Table 6. In Table 5, the univariate (prior) regression parameters are shown

with their updated multivariate (posterior) estimates. In Table 6, the univariate

sample estimates for the variance are given, and the posterior unconditional and

conditional estimates for the variances of the variables are given. The mean vector,

~m is not shown, as it is unconditional and therefore calculated simply as the vector

of univariate sample means, or x.

Inference

Inference using BLNs has in two basic forms. BLNs can be used to hypothesize

changes in a network supposing a change in the distribution of one or more variables

inside (or outside) of that network. BLNs can also predict parameter values of the

network in the face of actually observed values in one or more variables. The nodes
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which have new distributions or values assigned tothem are termed the ‘evidential

nodes’, and the values of these nodes are termed ‘evidence’. Therefore, the goal of

inference is to determine parameters in one or more of the network’s nodes in the face

of evidence.

There are a number of methods to conduct inference with BLNs. With large

networks, a Markov chain Monte Carlo approach, such as Gibb’s sampling, is efficient

(Neapolitan, 2001). In this example, because the network contains only four variables,

I applied the symbolic inference approach of Castillo et al. (1997) . This approach

consists updating the network’s parameters given evidence using known properties of

multivariate distributions:

fi(xi|x1, · · · , xi−1) ∼ N

(
µi +

i−1∑

j=1

bij(xj − µj), vi

)
, (15)

We can use this relationship to incorporate hypothesized changes to a variable’s (or

variables’) parameter values or observed changes to the parameters in the network.

Specifics are detailed in Castillo et al. (1997).

In this simulation, three inference scenarios were applied to the network (Table 7).

The first scenario models the effects of an outbreak of a canopy pest on other network

variables assuming that canopy tree mortality would lead to an overall increase in

canopy openness by a standard deviation (from a mean of .5 to .8) and an increase

in the variation in canopy openness due to the patchiness of a particular, susceptible

tree species (σ2
1) from 0.1344 to .3. The second scenario models a decrease in average

herbivore damage to the invasive understory plant (µ2 = 0.2) combined with a reduced

variation in that damage across sites (from σ2
2 = 0.11 to 0.03). The third scenario

models the combined influence of the insect pest and herbivore damage. Unlike the

first scenario, however, while the mean canopy openness increases, the variance in
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canopy openness decreases from 0.1344 to 0.03. Results from these scenarios are

presented in Table 7.

Discussion

Structure and parameters

Of the three applications of BLNs to the simulated community, structure learning

is the least informative in the present example, as the network modeled consisted of

only four, highly correlated variables. The only two variables that were modeled with

independence (X1 and X4) were linked in the highest scoring (complete) network

(Figure 4). Structure learning, clearly, would be a more important application of

BLNs if more variables are explored and many more intuitive networks could reflect

the data. Networks with more than four variables, however, require search and score

methods that sample the space of possible graphs instead of employing comprehensive

searches. Successful methods that have been used in BLNs include genetic algorithm

(Larrañaga et al., 1996), neighborhood search (Cooper and Herskovits, 1992), and

others.

Once the structure of a network has been established, the parameters that de-

scribe and respond to that structure become the focus of the investigation. Because

BLNs combine information related to multivariate distributions, Bayesian statistics,

graphical representations of variable dependence, and inference, attending the many

ways parameter values and estimates operate in BLNs is both important and power-

ful. Although, at base, a multivariate normal distribution contains simply a vector

of means and a variance covariance matrix, because this distribution incorporates

various levels of dependencies between the variables, the parameters are effectively
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split between forms that are unconditional, which have no relation to values of the

other variables, and conditional forms that depend on the structure of the network

and the values of other variables in that network. When inference is conducted, the

conditional parameters change even as the unconditional parameters are unaffected.

Dependence parameters Because the construction and analysis of a BLN in-

corporates Bayesian calculations, the parameters have prior values and posterior es-

timates. This simulated network assumed a mean vector of zeros and a vector of

univariate variances of one. The univariate regression relationships between the vari-

ables were used as prior values to describe the dependencies within the network. In

Table 5, the basic trend and magnitude of the univariate regressions are mirrored in

the posterior estimates of bij . The difference between the prior and posterior values

can be thought of as the difference between a calculated correlation in the obser-

vations of two variables, versus the relative (conditional) relationships between the

variables when they are described by a single, multivariate distribution. Although

the structure search included nearly independent variables in the network, parameter

estimation allowed the quantification of that structure, which showed the relationship

between X1 and X4 to be trivial (b41 = −0.0885). In the terms of artificial intelli-

gence, the posterior values of the bij reflect our relative belief in the network structure

as indicated by our graph, G (Pearl, 1988). Our posterior belief that seed production

depends on canopy openness is very low. The sign of these regression parameters also

indicate the direction of the effect.

Variance components Variance parameters play an important role in BLNs. First,

the variance parameters can be conditional or unconditional, a difference which dic-

tates what we infer from the value of the parameter. Second, the variance components
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of a network effectively model our uncertainty in the role of the different variables

in the network and the way in which our uncertainty is structured by the network.

These two concepts of variance will be discussed here and in reference to conducting

inference.

Univariate sample variance is a straightforward calculation (Table 6). As these

variables are scaled to identical units by the copula method, their univariate sample

variances are very similar. The posterior estimates of variance, however, provide

two complimentary components of the multivariate parameters. The unconditional

variance is extracted from the symbolic form of the precision matrix constructed from

(19). This variance describes the posterior estimate of the variance of each variable

in the network independent of the variance communicated by the other nodes. In

a sense, it is not a completely unconditional parameter estimate because it is still

a part of a multivariate distribution (the truly independent variance parameter is

simply the sample estimate). Instead, the unconditional variance is the variance

that is independent of the variances of the other components. It is not, however,

independent of the dependencies between components. Because variables that occur

earlier in the network explain variables further down the network, when these variables

are removed from our calculation of later variables, later variables have more certainty

(or lower variance) because means of these variables are described, in part, by the

means of earlier variables (see Equation (7)). Therefore, variation around the mean is

incorporated into the dependence parameters, which leaves the unconditional variance

smaller the further down the network we go. The conditional variance is essentially

the opposite. With conditional variance, the variance of each variable contributes to

the variance of later variables proportional to the dependence parameters.

In Table 6 we see the unconditional variance and conditional variance of the first

node is the same. The parameters of this node depend on no others, and therefore our
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uncertainty in its mean value is the same when we take into account other parameters

or not. The conditional variance in the network gets larger, as uncertainty in early

variables propagates through the system proportional to the dependence parameters.

Conversely, in the unconditional variance, uncertainty in the shape of the parameters

decreases as uncertainty is attributed not to the variance, but to the dependencies

dictated by the network structure.

Means The primary parameter of interest is often the mean. This is the parameter

that gives us an understanding of biological characteristics of the system, such as

reproductive capacity, density, or light. Our uncertainty about the mean parameter

is intertwined in the network, and therefore, there is no use looking at how the

mean parameters behave without assessing the conditional variance of the variables.

The conditional variance is used, because, as will be explained in the discussion on

inference, our belief in the mean of any one variable depends on the certainty of our

belief in the means of the variables that influence it. Therefore, just as we see the

mean values changing in response to changes in other variables, our certainty in the

value of the later variables depends on our certainty in the values of earlier variables.

In scenario one, the mean of the first variable (canopy openness) is increased from

0.49 to 0.8. The variance of this variable is also increased. This change models what

we might see if an invasive pest defoliates a forest tree: a significant increase in light

reaching the canopy floor occurs, but it is highly patchy, as some areas of canopy

remain intact and others are completely opened. In this scenario, we see in Table

(7) that the average values for herbivore damage to the understory invader increases,

but not as much as the growth of that plant, which is responding favorably to the

increase in light. As seed output depends both on height and herbivory, this increase

is moderate. Very importantly, however, because of the patchiness of the canopy
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change, variance in (or uncertainty about) the change in network variables’ means

increases dramatically. Plant height, especially, varies widely under the disparate

light regimes.

Scenario two models a different type of inference. Instead of hypothesizing a

change in a variable’s distribution, we might actually measure a change in a variable

and want to predict how other variables may behave under this observed condition.

In this example, we find that herbivory on the understory invader has declined re-

markably across the forest, and that this measurement is fairly tight (we could model

complete certainty by making the variance of the evidential node approach zero). Be-

cause the variance of the evidential node does depend on the uncertainty in the first

node (in this example, again, we could lock in a certain value), the modeled change

is highly influential, but not exactly mirrored in the posterior estimate of σ2
2 (0.0465

instead of 0.03). In this scenario, not only do our estimates of the expected values for

X3 and X4 go down, as would be expected, our uncertainty in these estimates declines

also, as can be seen in the lower conditional variances of these variables. That is, we

expect a drop in reproductive output in the understory invader, and are more certain

that this decline will be observed.

The final scenario combines a measured increase in canopy openness and herbivory.

This evidence is fairly clear (the variance in both of these evidential nodes is low), and

this certainty is supported in the lower conditional variance around the mean values

of the non-evidential nodes. Both invasive plant height and reproductive output is

predicted to increase significantly under this scenario, in roughly equal amounts.
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Potential and expanded applications

The problem of understanding the impact an NIS can have on an ecological commu-

nity is two-fold. First, the threat that an NIS poses results from the features of the

invaded community that lead to changes in the population dynamics of the non-native

species. Second are the features of the non-native species that affect components of

the invaded community. The difficulty in discovering either of these processes emerges

from the inherent complexity of the invaded community. Populations of organisms

(native and non-native) respond simultaneously to multiple biotic and abiotic factors

at multiple spatial and temporal scales.

One strategy for trying to make sense of dynamic community systems has been

to isolate mechanisms or processes that are thought to be most important to the

population dynamic of interest. In controlled experiments, one to several components

of the system hypothesized to influence the populations of the organisms within it

are altered, while all other components are kept as invariant as possible. Controlled

experiments, however, take as preliminary assumptions that few processes dictate

population dynamics, and that these processes are known a priori.

Although some sample systems and long term research programs can provide

unique insights into the role of invasives (Turner et al., 2003), many important in-

vasions are researched after they have become destructive, and the potential system

components that enabled the invasion are extensive, highly correlated, and poten-

tially no longer present in the disturbed community. Every population of NIS at

every point in its non-native range is, in effect, an ecological experiment. While a

researcher must suppose that a few of many possible components of the system are

important to the population dynamics of the NIS, the NIS can explore many more

components over a longer time period. If these ‘experiments’ do not work, we do not
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identify the NIS as important or potentially dangerous. When the ‘experiment’ does

work, and the NIS population grows, we are at a disadvantage in trying to tease apart

the important pathways that led to the establishment and growth of the population.

In effect, we have little data on why invasions fail, and many possible reasons why

they succeed.

In the face of such complex dynamics, this paper advocates the application of

statistical and experimental approaches to NIS populations that explicitly incorpo-

rate multiple system components and pathways into the exploration and modeling

of invaded communities. Although a number of methods exist for these applications

Shipley (2000b), BLNs not only allow such exploration of system structure, and allow

the quantification of that structure, BLNs allow us to then model how our understand-

ing of the system may change in the face of new or hypothesized evidence. These

applications recommend BLNs for analyses that tackle the difficult but important

range of ecological data analysis from exploratory analysis to quantification to pre-

diction. Estimating the structure of complex networks using data can give invasions

biologists important information about which parts of complex and complicated nat-

ural systems may influence or be influenced, directly and indirectly, by non-native

populations.

Beyond these applications, however, BLNs can be used in conjunction with other

modeling techniques used in invasions biology, such as population matrix models,

ODE models, individual based and spatially explicit models. Including variables

in a BLN that can be incorporated into these other models (such as growth rates,

competition coefficients, or dispersal ability) can offer a more powerful understanding

of model components. BLNs can offer estimates of parameter values, show potential

direct and indirect influences on these values, model uncertainty in these parameters,

and predict changes in model parameters due to changes in the system that influences
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them. It is also possible to incorporate BLNs explicitly in an iterative model, whereby

output from one model can act as evidence in a BLN which then produces a change

in another network variable that can then be reincorporated into the model. In this

sense, BLNs can act as a powerful bridge between field observations, mathematical

models, and predictive applications. Because BLNs combine a DAG with parameter

estimates, directed graph theory can be applied to BLNs in order to determine causal

pathways in the system (Geiger and Heckerman, 1994; Shipley, 2000b). Within the

context of invasions biology, there should be no limits on the types of methods applied

to this complex and critical ecological problem.
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Figure 3: A three-node Bayesian Learning Network, with independence modeled be-
tween variables one and two. The dependencies between variables X1, X2, and X3

are designated by bij , where i is the node lower on the graph and j is the variable
that influences that node. µi and σi denote the unconditional mean and conditional
variance of the variables.
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4

3

Figure 4: The highest scoring DAG. Nodes reflect simulated components of a forest
system: 1) canopy openness, 2) herbivore damage to an invasive understory plant,
3) invasive plant height, and 4) invasive plant seed set. The dashed line indicates
an included edge that was not generated from the copula, but reflects a very weak
dependence in the parameter value of the connection.
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Table 5: Dependence parameters. Prior regression coefficients and posterior estimates
of the dependence between variables in the selected network.

Parameter Prior values Posterior estimates
b21 0.2834 0.3967
b31 0.5174 0.6967
b41 -0.0203 -0.0885
b32 -0.2448 -0.2781
b42 -0.7279 -0.4311
b43 0.5894 0.7139
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Table 6: Variance components of the network. Posterior unconditional and condi-
tional variances estimates. Prior values consisted of a vector of ones.

Parameter Univariate Posterior estimates
sample estimate Unconditional Conditional

σ2
1 0.0842 0.1344 0.1344

σ2
2 0.0824 0.1145 0.1333

σ2
3 0.0864 0.0928 0.1502

σ2
4 0.0740 0.0664 0.1403
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Table 7: Inference. Posterior parameter values and updated parameter estimations
based on inference from evidence. A star (*) denotes an evidential node.

Starting parameters Inference scenarios
1 2 3

σ2
1 0.1344 *0.3 0.1344 *0.03

σ2
2 0.1333 0.1535 *0.0465(0.03) *0.0337(0.03)

σ2
3 0.1502 0.2084 0.1492 0.1126

σ2
4 0.1403 0.1449 0.1206 0.1177

µ1 0.4851 *0.8 0.4851 *0.8
µ2 0.4901 0.6003 *0.2 *0.2
µ3 0.518 0.7046 0.3491 0.6754
µ4 0.5045 0.5566 0.4573 0.6782
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Part IV

The scale of seed fate in a

perennial herb
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Introduction

The production of viable seeds by a plant is often reported as a measure of fitness

(Mothershead and Marquis, 2000; Mena-Ali and Rocha, 2005; Louda and Potvin,

1995; Maron, 1998; Primack and Kang, 1989). Even among plants able to repro-

duce vegetatively, dispersing viable seeds can constitute an essential component of

overall plant population dynamics (Kanno and Seiwa, 2004; Verburg and During,

1998), determine spatial population structure (Rautiainen et al., 2004), allow escape

from competition (Nishitani et al., 1999), rescue locally extinct sub-populations in

a metapopulation (Stocklin and Winkler, 2004; Willi and Fischer, 2005; Dupre and

Ehrlen, 2002), maintain genetic diversity (Chung and Chung, 1999; Gabrielsen and

Brochmann, 1998), and propagate advantageous traits through a population (Slatkin,

1985). A detailed understanding of patterns of flower production, pollination, and

viable seed survival to dispersal is therefore essential to interpreting ecological and

evolutionary questions related to sexual reproduction in plants.

When an individual stem is sexually reproductive, flowers represent the result of

long-term (or potentially life-time in monocarps) investment in resource acquisition,

allocation, and growth (Metcalf et al., 2003), but this investment that does not guar-

antee successful sexual reproduction. During the interval between bud development

and the successful dispersal of viable seeds, a number of sub-processes can positively

and negatively affect the plant and drive the fate of seed set. The relative number of

flowers that a plant produces and the pollination of the those flowers contribute posi-

tively to overall viable seed dispersal. Flower and seed abortion and predation reflect

negative influences on final viable seed dispersal. Myriad biotic and abiotic influences

on these sub-processes create a network of potential interactions that ultimately dic-

tates the reproductive contribution of a mature stem. The environmental forces that
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affect the production of seeds can therefore exert a strong influence on strategies of

floral production, resource allocation, predation defense, and nectar production.

Plant species that exhibit both clonal and sexual reproduction (Washitani et al.,

1996) tend to grow as patches of clones that are produced vegetatively. Within these

‘genets,’ specific stems can become sexually reproductive (i.e., produce flowers and

set seeds). These two reproductive strategies, vegetative and sexual, result in a hi-

erarchically structured plant community comprised of genetically similar or identical

stems that exist in patches (Chung and Chung, 1999). The stems within patches can

vary in size, life history stage, and experience herbivores, pollinators, seed predators,

and pathogens that their clonal neighbors do not. Yet, environmental variables such

as soil moisture, soil nutrients, light, and temperature may remain relatively homoge-

nous across the patch. Thus the scale at which patterns of seed fate are measured

can play a large role in determining the importance of which processes ultimately

dictate the successful production of seed. Many hypotheses about the pattern of and

influences on these sub-components of seed production imply a focal scale at which

the process occurs. The implicit assumption of a particular scale at which seed fate

is determined has not been tested in one study, yet holds important consequences for

how inference can draw from an analysis. this study simultaneously measures how

seed set is influenced by production, pollination, abortion and predation at the stem

scale and the patch scale. The following subsection and Table 8 reviews hypotheses

that explain these components of seed fate at those two scales (Figure 5 displays the

relationship between these components of seed fate) (all tables and figures referred to

in this part are in an appendix at the end of the part).

Inflorescence and floret production. The number of inflorescences produced

by a plant represents its total potential reproductive output and reflects an explicit
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allocation of resources to those structures. Production of flowers is therefore viewed

as an important component of possible trade-offs, as investment in floral structures

may come at the expense of shoot growth, root growth, or vegetative reproduction.

Variation in the number of inflorescences produced by a stem or a genet may reflect

plant responses to various exogenous or endogenous processes at the scale of a patch of

plants sharing a similar micro–habitat, or at the stem-scale, where the plant responds

to finer scale physiological and biotic stimuli. Exogenous influences on inflorescence

production can include patch-level variables such as light levels (Gehring and Delph,

2006), soil nutrients (Munoz et al., 2005), or stem-level variables such as plant height

or biomass, leaf herbivore damage (Ehrlen, 2002, 1997; Hersch, 2006; Berjano et al.,

2006) or finer-scaled soil characteristics. Endogenous influences on inflorescence pro-

duction can include genotype (Karkkainen et al., 1999) (which is patch-level in clonal

plants), and stem-level components such as stem age (Ehlers and Olesen, 2004).

Pollination. Among plants that exploit animals as pollen vectors, pollination

efficacy can be highly variable and depend on biotic and environmental variables

(Herrera, 1995). Pollinator flight temperatures, floral recognition, nectar acquisition,

flower damage, and the color and size of flower corollas can all potentially influence

floral visitation and successful pollination (Proctor et al., 1996; Herrera, 1995; Lehtila

and Strauss, 1997; Louda and Potvin, 1995; Strauss, 1997). These mechanisms to

which the plant responds can operate at different scales. Environmental variables,

such as temperature and light are generally important at the scale of the patch, as

multiple stems share roughly the same micro-environment (and can even average the

environment using rhizomes (Salzman and Parker, 1985), but patches that are in gaps

or forest understory, or have different flowering densities can show different levels of

pollination due to light and temperature (Herrera, 1995). Mechanisms that influence
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pollination such as herbivore damage, nectar production, and stem height can show

both intra- and inter-patch variation.

Floret and seed abortion. After inflorescences are produced, individual flo-

rets and seeds or entire inflorescences may be aborted by the plant. This can occur

before or after pollination. Floret or seed abortion occurs when, after inflorescence

formation, resources are withdrawn from inflorescence development, stymying growth

and leading to the desiccation or decay of the entire inflorescence or individual seeds

within the inflorescence. Given that floral structures reflect allocation of resources, an

important question in the evolution of flower production revolves around why many

plant species produce far more flowers than the seeds that result from their polli-

nation (Burd, 1998; Ehrlen, 1991; Stephenson, 1981). Exogenous and endogenous

mechanisms can influence seed abortion patterns. Exogenous conditions that trigger

abortion include herbivore or floret damage (Balestri and Cinelli, 2003; Wise and

Cummins, 2006), extreme temperatures (Young et al., 2004), and limited resources

(Melser and Klinkhamer, 2001). Endogenous causes of seed abortion could include

‘poor’ genotypes of the seeds or the maternal plant (Karkkainen et al., 1999) or ampli-

fication of male flower function (pollen production) which can then be balanced with

resource availability for seed development through selective abortion (Burd, 1998).

Exogenous causes would more likely affect multiple stems, while endogenous causes

would more likely structure seed abortion at the stem (except the maternal genotype

hypothesis, whereby clones would be equally poor at producing viable seeds).

Floret and seed predation. Pre-dispersal seed predation has been shown to

adversely influence final seed production in a number of plant systems (Louda, 1982;

Louda and Potvin, 1995; Guretzky and Louda, 1997; Albrectsen, 2000; Pilson, 2000).
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Seed predators range from mammals, such as mice and deer (Herrera et al., 2002) to a

variety of insect larvae (Albrectsen, 2000). The pattern of larval seed predators may

be dictated by plant resources (Niesenbaum, 1996) or oviposition choices made by the

adult female flies or by the developmental status of seeds in the inflorescences. Factors

such as floral density and sunlight can all influence oviposition choice larval insect

seed predators (Brody, 1992; Ehrlen, 1996; Garcia-Robledo et al., 2005; Sheppard

et al., 1994) at the intra-patch scale. Intra-patch variation in seed predation could

be due to difference in the number of mature, pollinated seeds that a stem produces.

This study does not seek to prove the causes of seed fate, but to organize the

many possible influences by measuring the scale at which these processes occur. Ob-

servational studies are conducted in situations where controls cannot be assigned by a

researcher and are instead incorporated not in the experimental design but in the sta-

tistical analysis. Because the processes that influence seed fate operate in concert in

nature, and are themselves influenced by the environment, this study was conducted

by taking measurements in the field and then using statistical models to tease apart

effects. A full Bayesian estimation of hierarchical linear models (HLM) was used to

estimate variation floral production, pollination, seed abortion and predation in the

understory herb Eurybia chlorolepis (Asteraceae) at two scales: that of the ramet

(the reproductive stem in a clonal or rhizomous plant) and that of the patch (the

cluster of ramets, often genetically identical stems that share common microhabitat

features).

An important part of this study was designating the unconditional (unexplained)

variation in the response variables at the two scales. HLM effectively estimates the

variance components of these variables. Employing a hierarchical Bayesian approach

to the estimation of HLM model parameters enables a level of analysis that max-

imum likelihood methods cannot achieve. Bayesian HLM accurately describes the
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distribution of regression and variance components across scales, uses knowledge of

parameters at the stem scale to support the estimation of components at the patch

scale (and vise versa), and models biological variation as well as statistical uncer-

tainty (Clark and Gelfand, 2006; Clark, 2005). Furthermore, the very nature of the

variables of interest (such as inflorescence and seed abortion and seed predation) lead

to significant non-ignorable missing data. A computational approach to estimating

the Bayesian model parameters, a Gibbs sampler (Gelfand et al., 1990) constructs

models every iteration for hundreds of iterations. This is an ideal tool for estimating

these missing data (Gelman et al., 2004).

Site, species, and methods

Site

Data were collected from plots in the Cosby Ranger District, Cocke County, Tennessee

in Great Smoky Mountains National Park (GSMNP). Twenty quadrats (1m×1 m)

were established in three extant populations of E. chlorolepis within a single water-

shed. Within these quadrats, all ramets of E. chlorolepis were labeled in 2004 (total

ramets = 877). A subset of these patches were used in this analysis of seed fate. Of

the 20 patches, eight of them contained enough reproductive stems with inflorescence

heads to use in data analysis, and these eight quadrats contained a total of 136 repro-

ductive ramets with at least one inflorescence head. Of the twelve patches excluded

from this analysis, four patches had no reproductive stems, and eight patches had four

or fewer reproductive stems with flowers, which provides too few samples to estimate

the parameters for the conditional models at the inter-patch scale. All eight patches

included in this analysis were located in a five hectare area of old-growth hemlock
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and mixed hardwood forest. A minimum inter-patch distance of 10m was maintained,

and each patch was set within a larger colony, separated from other colonies by at

least 10m. Thus, each patch was separated from other patches not just by space but

by forest understory with no stems of E. chlorolepis.

Species

Mountain aster, Eurybia chlorolepis (Burgess) Nesom, is an understory perennial

herb found in the middle elevations of the Southern Appalachians. E. chlorolepis

reproduces vegetatively through the propagation of new ramets from the base of old

ramets and from ramets growing from a rhizome. The rhizome that connects ramets

of E. chlorolepis is found just below the soil surface. Roots from the rhizome and

ramets are generally shallow. Flowering stems produce composite inflorescences that

are hermaphroditic and generalist pollinated.

The life-cycle of E. chlorolepis has a typical perennial stage structure (Figure 6)

(Horvitz and Schemske, 1995). Sprouts new growth in the winter in the form of

small (1− 3cm leaf length) two- to four-leaved ramets. These remain small until the

spring, when they grow as either juvenile plants in the form of rosettes (Figure 7a) or

as reproductive individuals with inter-nodal stems Figure 7b). Reproductive forms

can reach 0.5m in height. In August and September, reproductive ramets produce

inflorescences consisting of many small disc and ray florets Figure 7c). These inflo-

rescences have yellow disc flowers when producing pollen or are receptive of pollen.

The disc flowers become white, red, or pale red when no longer actively reproduc-

tive (Figure 7c). During October, pollinated ovaries mature to seeds that are gravity

and water dispersed. Seeds germinate during the winter and produce seedlings that

emerge in spring (Figure 7d). Seedlings grow the entire next year as small juveniles
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(they do not become directly reproductive). Thus, most patches of plants connected

by rhizomes are at least several years old.

Although the data from this study were collected in one year, these populations

had been monitored for four. Plants in the two years previous to this study produced

virtually no seeds. The first of those years was unusually moist and mollusk predators

devastated the patches broadly and evenly. The second year was unique in experienc-

ing the remnants of three hurricanes within a several weeks with concomitant record

rainfall. All reproductive stems wilted during this period because of root saturation.

Reproductive stems and inflorescences in 2005 were abundant and similar to levels in

2002, the first year of monitoring, but not of seed collection. This study, therefore,

was conducted in a year when all patches were experiencing positive conditions for

seed production, and thus the differences in seed output between stems and patches

would highlight potential differences in site and plant qualities.

Methods

Collection and measurement methods

All inflorescence heads were collected after seed set in September and October, 2005.

Because of the remote nature of the patches, daily collection trips were not feasi-

ble, however, wholesale collection might have underrepresented seed predation (as

the seeds would have been removed from the natural patches before seed predators

had done damage). This balance between realistic development to dispersal and the

comprehensive collection of seeds was maintained as best possible, resulting in a sig-

nificant, but incomplete collection (see ‘Missing data’ below). Inflorescence heads

were returned to the lab and refrigerated at 4◦C until analysis.
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A suite of stem variables was collected. Stem height and leaf damage were mea-

sured after plants reached their maximum annual height in late August, 2005. Herbi-

vore damage to leaves may continue, but late August marks the peak pre-reproductive

plant state. Herbivore damage was estimated by assigning a visual percent leaf-

damaged to each leaf of every stem. Individual leaf damage was then averaged across

a stem to give an estimate of total stem-level leaf damage. Most damage was done by

the larval form of a leaf mining beetle (Sumitrosis inaequalis (Hispinae)), mollusks,

and, more rarely, an assortment of Lepidopteran larvae, Orthoptera, and adult beetles

(including the adult form of S. inaequalis). Stem age was estimated by the variable

‘Old nodes’ (ON) refers to nodes on the caudal root of plant stems resulting from

the die-back of previous reproductive stems. These nodes represent a rough estimate

of stem age (juveniles can follow reproductive stems and leave no node, therefore

complicating the direct estimation of ramet age). Plant biomass was estimated from

the regression of twenty dried and weighed E. chlorolepis stems (minus inflorescence

heads -removed so that estimated stem biomass could be used to predict inflorescence

production) against plant height and leaf herbivory. The regression was significant

(P < .01), and these two predictor variables explained over %80 of plant biomass.

Inflorescence number reflects the number of inflorescence heads produced by any one

stem.

Patch-level variables collected consisted of soil moisture, canopy light transmit-

tance, richness, and percent ground cover. Soil moisture was measured as gravimetric

water content (GWC), the percent of water in the soil found from dividing the dry

weight of the mix of five samples from immediately around a patch subtracted from

the wet weight, divided by the wet weight. Light was measured using hemispherical

photos taken from 1m above the ground at the center of every patch. These photos
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were then filtered into canopy cover and openness. Using Gap Light Analyzer soft-

ware (Frazer et al., 1999), estimates of direct, diffuse, and total light transmittance

through the canopy at each patch were calculated. Direct light transmittance was

used in analyses as it is most likely to be important in the dark forest understory.

Plant species richness was determined at each patch in mid-July. Percent ground

cover was calculated from digital photos of patches taken 1.6m above ground. These

photos were filtered using Adobe Photoshop to a threshold of white and black reflect-

ing vegetative cover and bare ground respectively. Ground cover, as a variable, is the

percentage of pixels in the photograph of a patch that are white.

Determining seed fates

Seeds were removed from the receptacle and counted using a dissecting microscope and

classified as follows. Aborted seeds (Figure 8d) are distinguished by their black color,

often diminished length, and brittle texture. Inflorescence heads that never open

are found to share these qualities of aborted seeds and assigned the class ‘aborted’.

The primary source of seed predation on E. chlorolepis is a tephritid fly (insect larva

are difficult to identify without adult forms), a family of common seed predators

of composite flowers (Albrectsen, 2000). Adult female flies lay a single egg in an

inflorescence. Based on the pattern of seed predation around a ramet’s inflorescence

heads, one or two larvae move around the ramet and eat seeds, molting through

instars, until forming a casing in which they metamorphose into adult flies. Over

the course of development, larvae shift from feeding within seeds, as is evidenced by

entrance holes (Figure 8e) to consuming entire seeds(minus the pappus). Additional

damage was associated with an unidentified lepidopteran larva (on three inflorescence

heads) (the larvae shared similar form, but were withered and unidentifiable). In
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investigating pollination, there are clear morphological differences between pollinated

(‘viable seed’ (VS)) and unpollinated (‘inviable seed’ (IS)) seeds. Inviable seeds are

long and thin, wrinkled, soft, and usually range in color from light green to dark

brown (Figure 8b). Viable seeds are long and cylindrical, hard-shelled, and deep

brown (Figure 8c). Seeds termed ‘viable’, in this study, are further distinguished

into those that have been predated (‘eaten viables’ (EV). ‘Pollinated seeds’ therefore

include VS and EV seeds.

Statistical Methods

Hierarchical models and the Gibbs sampler

The method employed to measure associations across scales was hierarchical linear

models (HLM) (Raudenbush and Bryk, 2002). HLM consists of nested regression

models that describe distinct levels of hierarchical data and explain how relationships

within the dataset can be explained by other variables at the same or other scales.

The first level (the ‘stem-level’ in this study) of an HLM in its linear form is the

simple regression equation (all notation follows Raudenbush and Bryk (2002)),

Yij = β0j + β1jXij + rij . (16)

Here Yij is a measured response variable, which has a group-level (‘patch-level in this

study) intercept β0j and is related to an individual-level predictor variable Xij by the

group-level regression coefficient β1j . These β parameters are termed ‘group’ variables

because the residual error of the estimated relationships between the Yij response

variable to the Xij predictor variables, rij, is assumed in a simple linear regression

model to be distributed normally with a mean of zero and variance σ2. Because
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the response variable Y is associated not only with the individual i observations,

but is nested within the j groups, the residuals can not be assumed to be normally

distributed (violating this assumption would constitute pseudo-replication (Hurlbert,

1984)). To correct this aggregation in HLM, the first level relationships are modeled

not around an overall intercept and slope, but around the intercept and slope of each

of the j = 1, . . . , J level-2 groups. This corrects for the clustering of the error term

and ‘re-normalizes’ the residual error. Doing this however, results not in a single

regression, but effectively in J different regression equations. To obtain an overall

estimate of the relationships between the response variable and the predictors, the J

are collected into two, higher-level regressions:

β0j = γ00 + γ01Wj + u0j, (17a)

and

β1j = γ10 + γ11Wj + u1j, , (17b)

where γ00 and γ01 are the level-2 coefficients for the intercept and slope respectively

of these level-2 regression models (in other words, the γ parameters are group-level

equivalents of the β parameters at the individual level). Wj is a level-2 predictor,

and behaves as the Xij does in equation (16). The level-2 random effects u0j and u1j

are assumed to be distributed normally with means of zero and variances of τ00 and

τ11 respectively. The covariance between these random effects is τ01. Equations (17a)

and (17b) are substituted into equation (16) to get the combined model that simul-

taneously describes the relationships between all predictors and response variables

including their error terms at the two levels:

Yij = γ00 + γ01Wj + γ10Xij + γ11WjXij + u0j + u1jXij + rij. (18)
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The fundamental difference between this combined model and models typical of single-

level models is that instead of having independent random errors with constant vari-

ance (the rij term), the error term of equation (18) takes the form u0j + u1jXij + rij .

Distributions are now rij ∼ N(0, σ2) and that u.j ∼ N(0, τ..), where τ is the variance-

covariance matrix of the u.j terms, whose diagonal elements describe the variance

of each u parameter. The τ variance-covariance matrix of the second level models

becomes an important set of parameters as it describes between-group variance and

determines whether higher-level relationships between variables are needed, signifi-

cant, or explanatory.

An important part of the analyses presented here is a model termed the ‘uncondi-

tional model’ which is effectively a one-way ANOVA whose factors are the two levels

of scale. This model estimates the variance components of the above model with no

predictors which describes variation at the stem and patch scales for all seed fates

and predictors. This unconditional model can be evaluated and the proportion of

variance calculated as ρ, the interclass correlation coefficient: ρ = τ00/(τ00 + σ2).

Percentage of variation explained by predictor variables can then be incorporated

into conditional models that seek to explain this initial variance structure. As con-

ditional models are built by subtracting estimates of the residual variance from

the unconditional variance and then dividing that by the unconditional variance

((σ2
UNCON − σ2

REGRESS)/σ2
UNCON). This sequence of model-building first and fore-

most establishes the scale structure of the data and then asks questions according to

that structure.

The Bayesian estimation of the full conditional models approximates the joint

posterior distribution of the intercepts and slopes of all lower-level groups (the β

parameters), the higher-level intercepts and slopes (the γ parameters), and the lower-

and higher-level variance components (σ and T respectively). Seltzer et al. (1996)
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solved this joint distribution and derived conditional and marginal distributions in

a Gibbs sampler (Gelfand et al., 1990) that approximates the integrations necessary

for this solution. This can be done similarly with group level variation using the τ

parameters.

Seltzer et al. (1996) developed a Gibbs sampler that generalizes the normal dis-

tribution for the β parameters to a Student’s t-distirbution. When within-group

parameters are estimated (β∗
j ), the estimates draw from two sources: the estimate of

each group’s parameter vector (βj) and the overall population parameter estimates

(γ). When estimated assuming a normal distribution for the β parameters, groups

that have estimated values for the βj parameters far from the population value tend

to be pulled inward towards those γ estimates. This is termed ‘Bayesian shrinkage,’

as the range of group estimates ‘shrink’ towards the population estimate depending

on sample sizes within groups (Gelman et al., 2004; Raudenbush and Bryk, 2002).

This shrinkage gives less weight to outliers and can augment low sample sizes in some

groups with information derived from the overall population and other groups. In

this study, extreme group values may indicate ecological processes at work and not

sampling deviations. Although the same principle works in this study, by using a t-

distribution with low degrees of freedom (∼ 8) (which has longer tails than a normal

distribution) reduces the weight given to the population values.

HLM regressions All response variables and predictor variables were included in

unconditional models 10. Data were transformed according to column 2 in Table 10

to meet assumptions of normality and pull mass of variable density away from ex-

treme right-skewness, which enables better interpretation of variation (Gelman et al.,

2004; Legendre and Legendre, 1997). All posterior estimates of coefficients used the

median of the Gibbs sampler output because in some asymmetrical distributions (e.g.,
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variance parameters), the posterior median is a better indicator of a point estimate

of the parameter (E(θ)) than the mean, and in symmetrical distributions they are

effectively identical (Gelman et al., 2004). Diagnostics of interest from the posterior

distributions of parameters included medians, upper and lower 95% probability in-

tervals, and percentage of posterior mass above zero for regression coefficients. This

last diagnostic is an important way of describing trends in the data, as probability

intervals do not have the same meaning in the Bayesian context as in frequentist

contexts and the distribution of mass sampling (unlike sample-size based statistics) is

a straightforward way to think of the probability that a parameter differs from zero

Gelman et al. (2004); Raudenbush and Bryk (2002).

After building the unconditional models, biologically meaningful predictor vari-

ables were singularly incorporated into models based on the scale at which variance

was evident. Regressions were not built to explain patch-level variation if little was

evident. Output diagnostics again returned mean, median, posterior probability in-

tervals, and percentage of mass above and below zero. For regressions with significant

gamma parameters, the median of variance parameters were used to calculate the in-

terclass correlation coefficient (ρ) (Raudenbush and Bryk, 2002). These models and

an unconditional model for viable seed number were then run against patch-level

predictors in the same manner. Because there were only eight patches of plants, a

hold-out bootstrap was run on all unconditional models of response variables to de-

termine the potential influence of individual patches on regression estimates. Because

initial results showed no significant influence of any one patch, the hold-out was not

done for predictor variables or higher-level models.

Missing data. The iterative structure of the Gibbs sampler was used to estimate

missing data. The process was conceptually similar to that employed by Gelman
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et al. (2004). In the Bayesian context, missing data can be treated as unknown

components of the HLM model, similar to other model parameters, and estimated

by using a prior and the observed data and integrating over the rest of the unknown

parameters. In this way the missing data are estimated simultaneously with the

hierarchical regression parameters. The protocol for estimating missing data entailed

identifying the types of missing data, assigning those data priors, and then building

a posterior estimate of those data using the Gibbs sampler.

While seeds were being counted from each inflorescence, any potentially missing

data were noted for that inflorescence. The missing data consisted of four ‘process’

categories: seeds that may have dispersed, had been aborted, had been eaten, and or

those seeds that had been aborted because the inflorescence never opened. Aborted

seeds were disintegrated, eaten seeds were designated when a casing, frass, or web-

bing was evident in the inflorescence, and dispersed seeds were indicated when there

were absent seeds from mature inflorescences or seeds loosed from the receptacle (the

base of the pedicel to which seeds are attached to the inflorescence (Figure 8 f)) The

dispersed data are termed ‘potenitally’ missing because, for example, inflorescences

may have seeds loosely attached to the receptacle which could indicate that some

seeds were dispersed before collection. This would be noted as dispersed missing data

and every iteration of the sampler would determine whether these data were missing

with a certain probability built through the prior. The priors for the Gibbs sampler

were derived from two functions. The first was the regression equation of total seeds

per inflorescence against receptacle width (that is how many seeds would be expected

from each inflorescence based on the width of the receptacle) using the regression

models in (Table 9). Different regressions were used because these processes reflect

different seed sizes (e.g., dispersed seeds tended to be mature and larger than aborted

seeds, and therefore represented fewer missing seeds given the same receptacle width).
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The regressions produced a posterior estimate of seed numbers distributed normally

with a mean designated by the intercept and slope and a variance based on the resid-

uals. The second part of the process took these prior distributions and numerically

integrated them over the model using the Gibbs sampler. At each Gibbs step, each

receptacle with missing data had an estimated number of seeds drawn from the pro-

cess distributions. If that number was greater than the observed number of seeds, the

difference between observed and estimated was filled using a draw from a multinomial

distribution whose proportions of aborted, dispersed, eaten, viable and inviable seeds

depended on the observed seeds in the inflorescence. If, for example, fifteen seeds were

estimated to be missing due to dispersal, and of twenty-one observed seeds in that

inflorescence fourteen were inviable and seven were viable, the fifteen seeds would be

drawn from a multinomial distribution with 66% probability of a drawn seed being

inviable and 34% chance of the seed being viable. This numerically integrates the

missing data over all parameters because although in one run, a particular missing

data set will result from the estimation algorithm and then used in the HLM model,

the next step a different missing data set will be used. Over the 2000 Gibbs runs, the

data will approach a posterior distribution, just as all parameters do.

Results

The Gibbs sampler for all models converged within 200 iterations (the ‘burn-in’), and

all models were run for 2000 iterations after (Figure 9). Post-hoc tests indicated that

autocorrelation was minimal among MCMC runs (Gelman et al., 2004) (Figure 9).

Because of skewed distributions for variance components, medians were used for all

analyses (Gelman et al., 2004). The three components of output analyzed were the γ

parameters, which reflect across-patch associations between variables, β parameters,
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which indicate within-patch associations between variables, and the percentage of

mass of the posterior distribution above zero.

Missing data were based on regressions shown in Table 9 and the 487 inflorescence

heads determined to be complete. These complete heads yielded 17, 731 total seeds.

Missing data were normally distributed with fairly narrow variances (Figure 10).

After missing data estimates, a median value of 21,544 seeds were used in regressions

(Figure 10). The relative numbers of seeds determined to be part of the seed fates

are in the boxes of Figure 5.

In the unconditional models. variance in both the response and predictor vari-

ables was highly skewed towards stem-level variation (Table 10). Aborted and pre-

dated seeds varied almost entirely from stem-to-stem (93.0% and 90.7% respectively).

Pollination was run including and excluding aborted seeds as it is impossible to deter-

mine whether aborted seeds were in fact pollinated or if they were aborted before the

florets were receptive. Predated seeds that aren’t wholly eaten can be identified as

either pollinated or not (EV or DS respectively). ‘Early’ pollination, which included

seeds that may have been pollinated and then aborted, showed greater patch-level

variation (21.9%) than ‘late’ pollination (8.3%). Only the percent of viable seeds and

number of viable seeds showed greater than 25% variation at the patch level (26.4%

and 29.1% respectively).

Predictor variables that could be measured at the stem-level showed more patch-

level structure than seed fate variables (Table 10). Still, only plant height and leaf

damage showed greater than 25% variation at the patch level (26.5% and 33.9%

respectively). Biomass and leaf number showed slightly less patch-level structure

(20.1% and 21.4% respectively). Old nodes varied the least at the patch level of all

predictor variables (13.8%). By this estimate, patches showed relatively similar ages

while stems differed in age structure.
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Bootstraps of the hold-out patches (Figure IV) shows that no individual patch

had undue influence on variance estimation for the seed fate variables. Because there

was so little patch-level variation to begin with, this is not completely surprising. But

even with variables with higher patch-level structure, such as total viable seeds and

percent viable seeds, all patches fall equally around the full-model estimates.

Conditional models of stem-level variance were built for all variables. Only total

seed number per plant showed significant responses from stem-level variables biomass

and leaf number across all patches (γ01) (Table 11, Figure 12. Plant biomass was

associated with total seed number positively, explaining 40.7% of stem-level variation

in total seed number. The patch-level regression coefficients for this relationship

(βj) showed differences in mass distribution between patches (Figures 13). patches

4 and 8 showed lower regression slopes than the others. This variation is explained

by the τ11 cell in the variance covariance matrix of the β parameters (the 2x2T

matrix). The τ11 parameter median was 7.278, with a probability interval of 1.150

and 42.160. Although broad, this shows significant deviation from zero, meaning that

the relationship between seed total and biomass differs significantly between patches.

The percentage of all seeds that were pollinated and avoided predation (%viable)

were predicted by no stem-level predictors (Figure 14). Although not significant

across patches, inflorescence heads showed between patch variation (Figure 16). The

τ11 parameter median for this relationship was 0.017, with a probability interval of

0.002 and 0.121. No patch-level predictors showed an association with the variation

in slopes documented for total seeds against plant biomass or percent viable seeds

and inflorescence number.

Only three response variables showed enough patch-level variation to warrant the

construction of patch-level conditional models: percentage of seeds per plant that

were viable, total number of viable seeds per plant, and percentage of seeds per plant
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that were pollinated. No model was constructed for Patch-level conditional models

for percent viable seeds showed no significant predictors. Direct light predicted 38.5%

of patch-level variation in absolute seed number (density mass above zero was 95.1%).

Inflorescence heads per patch and patch species richness did not influence early

patch-level variation in percentage of seeds pollinated. Direct transmitted light and

soil moisture, however, both explained patch-level variation in the percentage of early

pollinated seeds per stem (35.3% and 39.0% respectively) (density mass above zero

was 90.9% and 98.3%. These were run in a multiple regression. Both variables

maintained a strong positive density, with a probability mass above zero of 85.1%

and 95.6% for direct light and soil moisture respectively indicating little collinearity.

The patch-level variance of the multiple regression had a median of 0.0017 giving a

combined reduction in patch-level variance of 62.0%. A regression was run with an

interaction term, but it was not significant.

Of all response variables modeled, the log of absolute viable seed number had

the highest patch-level variation (29.13%, Table 10), with a variance component of

τ = 0.4927 (Figure 15). Direct light transmittance from the hemispherical photo

measurements showed a trend in explaining this variance. 94.3% of the posterior γ01

mass was above zero. The posterior median patch-level variance component given

direct light τ00.LIGHT was estimated as 0.276. Therefore 43.96% of the patch-level

variance in viable seeds per plant was explained by direct light transmittance. Soil

moisture also showed a high positive relationship with overall viable seeds produced

per plant from patch to patch (98.4% of the posterior γ01 mass was above zero).

These predictors were combined in a multiple regression and the posterior masses of

light and soil moisture were 94.8% and 97.8% above zero. γ01 values were 0.469 and

7.887 for light and soil moisture respectively. The patch-level variance of the multiple
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regression had a median of 0.087 giving a combined reduction in patch-level variance

of 82.3%.

Discussion

Spatial patterns of seed production can determine ecological and evolutionary dy-

namics of plant populations (e.g., species presence/absence or abundance (Maron and

Kauffman, 2006), source-sink dynamics (Pulliam, 2000, 1988), metapopulation struc-

ture (van Groenendael et al., 2000), genetic diversity (Hamrick et al., 1992), genotype

fitness (Karkkainen et al., 1999), and Allee affects (Willi and Fischer, 2005)). This pa-

per models floral production, pollination, seed predation, and seed abortion, to test

how these processes that ultimately determine final seed set are structured across

the natural hierarchical scale of a clonal plant species. The most striking result of

this study is that most of the myriad processes that influence the development and

dispersal of viable seeds in the studied population combine to influence seed develop-

ment primarily on the scale of the stem and not the patch. The high proportion of

stem-level variation relative to patch-level variation indicates that the production of

inflorescence heads, their development, pollination, predation, and abortion are pri-

marily the provenance of ramets and not patches of ramets or genets. This pattern

suggests that stem-level hypotheses are most likely responsible for seed fate in the

studied population (Table 8).

Total seed production in plants has been shown to be influenced by factors that

would likely operate on a patch-scale. Several, as in this study, are mediated through

their influence on plant growth, where patch-level variables correlate with larger plant

size that in turn leads to increased flower production. Munoz et al. (2005) showed that

nitrogen addition to Chuquiraga oppositifolia (Asteraceae), an Andean alpine shrub,
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significantly increased plant growth, flower size, pollination, and ultimately final seed

set compared to controls. Fertilization also increased plant size and floral produc-

tion of Ipomopsis aggregata (Polemoniaceae) Campbell and Halama (1993). Lee and

Bazazz (1982) found that in populations of Cassia fasciculata (Leguminosae), water

addition and removal of competitors increased plant size, which was positively re-

lated to fruit production. Another patch-level predictor of seed set can be general

maternal plant genotype. Some genets will naturally grow larger and produce more

seeds (Campbell, 1997). In a clonal plant, large genotypes will occur in patches, as

clonal stems should show similar growth patterns. In this study, nearly 86% of the

variation in the production of seeds was found a the scale of the individual stem.

This strong stem-scale seed production in E. chloroepis indicates that patch-level

differences in resources and genetic differences between clonal clusters is not strong.

Within patches, however, stem biomass predicted 41% of the stem-level variation in

seed production. So although the resource pathway that leads to larger size and in

turn greater overall seed production may exist, it is guided at a finer scale. This

could indicate fine-grain heterogeneity in soil and light resources (intra-specific com-

petition), or trade-offs within the genet. Although Salzman and Parker (1985) show

that rhizome connections averaged stress (an conversely resources) across the genet.

Including viable seeds and predated viable seeds in calculating the incidence of

pollination, this study found that 19.1% of all seeds were pollinated. There was a

higher degree of patch-level variation (21%) than for any other variable save unpre-

dated viable seed production (which is the product of pollination). E. chloroepis is

pollinated by generalist insect pollinators (pers. obs.). Light has been documented

to be of direct importance to pollination primarily through its influence on insect

pollinators (Herrera, 1995). Insect pollinators require temperatures high enough to
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support flight metabolism and in a forest understory, direct sunlight is the most com-

mon source of micro-habitat temperature changes. In a study of the effect of floral

traits on pollination success, Herrera (1995) found no floral trait (e.g., corolla width,

disk width, nectar production) predicted pollinator presence, but light and temper-

ature did predict pollinator visits. In this study, light and soil moisture positively

related to pollination and combined to explain 62.0% of the patch-level variation,

indicating a possible link between temperature and foraging. When modeled alone,

light and soil moisture explained 35.3% and 39.0% of the variance respectively. The

positive relationship between soil moisture and pollination could be an indirect path-

way. Holtsford (1985) showed that Calochortus leichtlinii (Liliaceae) produced more

seeds per fruit in a water treatment. He posited that the water reduced stress and

allowed the plant to mature more seeds. Because this study takes into account seed

abortion, which was almost entirely a stem-to-stem process, the relationship between

soil moisture and patch-level pollination variation may be more cryptic.

The predation of pre-dispersed seeds has been documented as an important in-

fluence on total seed production, with implications for population viability, plant

abundance, and flowering phenology (Lee and Bazazz, 1982; Maron and Kauffman,

2006; Albrectsen and Nachman, 2001; Wright and Meagher, 2003). In this study,

19.8% of all seeds were categorized as predated (over 4,250 seeds), and 91% of the

variation in seed predation occurred at the stem level. No regressed predictors cre-

ated significant models (Table 11). This structure of the pattern of seed predation

eliminates some patch-level environmental cues as causes of seed predation (similar

to the patterns found in pollination). Because seed predation, as with pollination,

reflects both the characteristics and influences on the plant as well as the predator

(in this case almost always a tephritid fly), the mechanisms behind this pattern can
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be multiple and complex. Search behavior of predators, temporal staggering of in-

florescence development (some stems have buds earlier than others, which will be

differentially exploited depending on the prevalence of predators), and the finer tem-

poral environment that might control both (periods of rain may dampen predator

oviposition). Although it is impossible in a broad study to precisely define the causes

of observed seed predation, the fact that it exists on a stem-level scale eliminates

maternal genotype, patch-level environmental effects, and patch-level cues (such as

inflorescence density).

Seed abortion, the withholding of resources to a formed bud, inflorescence head, or

ovule, showed almost no patch-level variation. An estimated 12.5% of all 21, 544 seeds

analyzed were aborted. 94% of the variation in the percentage of all seeds on a plant

that were aborted varied from stem to stem and not from patch to patch. Although

seed abortion can be influenced by herbivore damage (Krupnick et al., 1999), nutrient

levels (Volis et al., 2004), and other forms of stress (Volis et al., 2004; Sun et al.,

2004), this system shows that variation in seed abortion does not differ from patch

to patch even though there are clear distinctions between patches in variables that

could conceivably influence seed abortion patterns (Figure IV). None of the regressed

stem-level independent variables predicted the variation in seed abortion (Table 11).

These results point to a micro-allocation strategy by the stems, whereby individual

seeds and buds are aborted due to differential pollination, production, and resource

acquisition (Ehrlen, 1991; Melser and Klinkhamer, 2001). These three factors can

easily confuse a simple census and would have to be experimentally tested to better

determine the mechanisms responsible for seed abortions. Another potential cause of

stem-level abortion is seed genotype. Wiens et al. (1987) show that in predominantly

outcrossing hermaphroditic plants early genetic load from self-crossed pollen can lead

to a number of genetic anomalies that lead to seed abortion. Thus, although stress
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and resource variability is often cited as the reason plants produce far more fruits than

seeds (Burd, 1998; Lee and Bazazz, 1982; Ehrlen, 1991), poor offspring genotype may

also influence this ratio.

The processes that influence sexual reproduction in plants can have important in-

fluences on the ecological and evolutionary dynamics of a species. This study shows

that when considering the many components of seed fitness, scale is essential in de-

veloping models that reflect true variation in important variables. In this study, E.

chlorolepis seed fate dynamics were dictated almost entirely at the stem-scale. This

suggests that processes such as within-genet resource allocation and poor offspring

genotype are likely responsible for how many viable seeds are produced and dispersed

by reproductive stems.
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Table 8: Hypotheses for the patterns of seed fate at the stem scale and patch scale.

Seed fate Scale Hypothesed mechanisms

Floral production Stem Biomass, allocation within genet, insect
damage or pathogens.

Patch Maternal genotype, resources, environmental
stress, broader insect damage or pathogens.

Pollination Stem Ideosycratic response of pollinators to cues,
staggared maturity of inflorescences, stag-
gered temporal effects over the course of seed
development.

Patch Environmental cues such as light, micro-
patch temperature, inflorescence density.

Seed abortion Stem Re-allocation of resources within a stem to
bolster growth of already pollinated inflores-
cences, facilitating male flowers, response to
stem-level damage or pathogens, poor seed
genotype.

Patch Environemental stress reducing allocation of
resources to all inflorescences on all patch
stems, poor maternal genotype.

Seed predation Stem Idiosyncratic or within-stem scale cues for
seed predators (number of pollinated seeds,
nectar production), staggered temporal ef-
fects over the course of seed development.

Patch Environmental covariates fostering increased
seed predation, inflorescence density.
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Table 9: Missing Data Estimation Distributions. were derived from regressions on
observed complete inflorescence heads that met the criteria denoted. TOT is the total
number of seeds assigned to an inflorescence head with receptacle width ‘RW.’

Process Criteria Distribution

Dispersed seeds DS < 5; AS < 5 TOT ∼ N(22.52 + 5.3 ∗ RW, 4.132)

Eaten seeds DS < 15; AS < 5 TOT ∼ N(16.03 + 7.38 ∗ RW, 4.172)

Aborted seeds DS > 15 TOT ∼ N(11.05 + 10.75 ∗ RW, 4.952)

Aborted heads AS > 15 TOT ∼ N(6.71 + 13.48 ∗ RW, 4.722)
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Table 10: Posterior medians of unconditional models for response and predictor vari-
ables.

Variable Transformation σ2 τ00 ρ Stem Var ρ patch Var

R
e
sp

o
n
se

V
a
r
ia

b
le
s

Total seeds log(TOTAL) 0.5486 0.091 0.8578 0.1422

% pollinated
q

V S+EV +1

TOTAL+1
0.0163 0.0046 0.7805 0.2195

% pollinated (late)
q

V S+EV +1

TOTAL−AS+1
0.0238 0.0021 0.9172 0.0828

% aborted log( AS+1

TOTAL+1
) 2.5869 0.1935 0.9304 0.0696

% predated log( DS2+EV +1

TOTAL−AS+1
) 2.7683 0.2831 0.9072 0.0928

% viable
p

V S/TOTAL 0.0232 0.0084 0.7356 0.2644

Total viable log(V S + 1) 1.1986 0.4927 0.7087 0.2913

P
re

d
ic

to
r

V
a
r
ia

b
le
s

Height HEIGHT 75.011 27.040 0.735 0.265

Total inflor. log(TOTinflor) 0.4531 0.1106 0.8038 0.1962

Leaf damage
√

HERB DAM 0.022 0.0113 0.6611 0.3389

Biomass BIOMASS 0.0277 0.0069 0.7992 0.2008

Leaf no. log(LEAF NO + 1) 0.1105 0.03 0.7862 0.2138

Old Nodes ON 70.7346 0.118 0.8616 0.1384
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Table 11: First-level models.

Predictor γ01 CI Mass > 0 Var. explained

Total seeds
Biomass −0.021, 4.989 0.973 0.407
Leaf number 0.229, 2.585 0.986 0.419
Herbivore damage 2.140, 1.465 0.270 −
Old nodes −0.242, 0.652 0.848 −

% aborted seeds
Herbivore damage −4.060, 4.883 0.538 −
Old nodes −0.619, 0.894 0.614 −
Leaf number −2.236, 2.327 0.543 −

% predated seeds
Height −0.059, 0.092 0.675 −
Herbivore damage −3.041, 4.650 0.696 −
Biomass −3.277, 4.197 0.657 −
Inflor. number −0.640, 1.251 0.744 −

% pollinated seeds (early)
Height −0.010, 0.008 0.346 −
Inflor number −0.083, 0.100 0.620 −
Biomass −0.508, 0.293 0.364 −

% pollinated seeds (late)
Height −0.008, 0.008 0.4585 −
Inflor. number −0.140, 0.080 0.251 −
Biomass −0.457, 0.418 0.450 −

% viable seeds
Biomass −0.465, 0.423 0.535 −
Inflor. number −0.115, 0.152 0.622 −
Leaf number −0.238, 0.200 0.370 −
Old nodes −0.094, 0.052 0.2225 −

107



Figure 5: Diagram of the temporal process of seed production to dispersal with the
observed variables in the boxes. Note that viable seeds includes eaten viable seeds
and eaten seeds includes those that are viable. Pollinated includes both viable and
eaten viable.
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Figure 6: Stage diagram of E. chlorolepis. Stages are in circles (S = seed, SD =
seedling, J = juvenile, and R = reproductive), and transitions, reproduction, and
survival are shown as arrows.
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Figure 7: Photographs of E. chlorolepis. The juvenile stage shows leaves in a rosette
form (a), while the reproductive form has inter-nodal stems (b). Inflorescences show
disc and ray flowers (c). Disc flowers show various stages (colors) of reproductive
receptivity. A seedling is shown with one of two cotyledons (d).

110



Figure 8: Photographs of E. chlorolepis seeds. Size of unpollinated seeds beside a
U.S. dime (a), an unpollinated (inviable) seed, (b) a viable seed (c), aborted seeds
(d), an eaten viable seed (e), and the receptacle (f).
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Figure 9: The γ parameter of the unconditional TOTseed model shown converging
quickly on its posterior distribution.a) Correlation versus lag time shows that beyond
immediate time-steps, there is no autocorrelation in the Gibbs sampler.
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Figure 10: Histograms of posterior seed numbers by fate. Red lines indicate 2.5 and
95% quantiles. The blue line indicates the median. Note that in this figure, the
designations are as in Table 10 where ‘viable seeds’ does not include ‘eaten viables’,
etc.
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Figure 11: Bootstrap of seed fates holding out patches. Red line shows value of
variation with all patches included.
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Figure 12: The log of total seeds was regressed against first-level predictor variables.
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Figure 13: The patch-to-patch differences in the relationship between biomass and
total seeds.
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Figure 14: The percent of viable seeds produced by a plant was regressed against
first-level predictor variables.
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Figure 15: The patch-to-patch differences in the log of viable seeds per plant.
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Figure 16: The patch-to-patch differences in the relationship between inflorescence
number and absolute number of viable seeds.
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Figure 17: The inter-patch differences for predictor variables.
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Part V

Bottom-up effects of a canopy

invader
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Introduction

The hemlock wooly adelgid (Adelges tsugae) is transforming forest ecosystems in

the eastern United States by killing up to 99% of the eastern hemlock trees (Tsuga

canadensis) it infests (Orwig and Foster, 1998). Native to Asia, this insect was most

likely introduced to North America and was first observed in British Columbia in 1922

and two years later in Oregon (Annand, 1924). A subsequent introduction occurred

in Eastern North America in 1951 (Stoetzel, 2002). By 2005, it had spread to the

southern Appalachians where T. canadensis is an important component of old growth

cove forests, but had not yet defoliated trees in its new range.

The influence of an invading species on the ecological systems it colonizes is rarely

limited to the direct effects it exerts on species through interactions such as competi-

tion and predation. Cascading or indirect effects exist by default in dynamical systems

such as forests, especially when a regime can be shifted by the input of one or more

invasive pest species (Parker et al., 1999; Simberloff and Von Holle, 1999; Ghazoul,

2004). The effects of T. canadensis mortality on forest understory plants is an indirect

effect of the invading A. tsugae because defoliation immediately alters the understory

light environment and can ultimately change soil pH, nutrient levels, and moisture

availability (Kizlinski et al., 2002; Orwig, 2002). Clearly the response of understory

plants species to such change is difficult to predict, as are any longer-term changes

in species composition and population and community dynamics. Nevertheless, the

influence of T. canadensis on understory herbs depends largely on how tightly species

in the herb community adhere to specific environmental niches in the understory that

depend on the canopy trees. This invader is a candidate for such indirect effects.

Within the mixed-deciduous forests of the eastern United States, T. canadensis is
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one of the few evergreen species in moist cove forests in which hardwoods predomi-

nate. The soil profile and light regime beneath T. canadensis canopies are distinct

from deciduous trees that share habitat with T. canadensis, and T. canadensis lies at

the end of the continuum of low nutrient tolerance and light response functions com-

pared to deciduous trees (Bigelow and Canham, 2002). High T. canadensis mortality

has been shown to drastically change the forest ecosystem (Jenkins et al., 1999).

Even though T. canadensis shows a distinct contribution to the forest ecosys-

tem, the impact of its loss on understory plant populations is not simple. The de-

terminants of population growth can be uncertain and high dimensional in natural

systems (Clark, 2003). It is not straightforward to map a species to the areas it is

found. Soil quality (e.g., texture, cation exchange capacity, organic matter content,

pH, and nutrients), soil moisture, climate variables, and light regimes constitute a few

of the many potential environmental variables that can dictate where a specific plant

species is found. Further, mechanisms such as competition or dispersal limitation can

exclude individuals from habitat that would otherwise be considered an appropriate

‘niche’ (Hutchinson, 1959; Pulliam, 2000). Conversely, when taking into account de-

mographic functions such as reproduction and growth, an observed population may

not indicate that the habitat is its appropriate niche, as the population may not be

growing or viable in that location (a population ‘sink’) (Pulliam, 1988). To find influ-

ences on the spatial distribution of a plant species, environmental variables, dispersal

ability, competition, and population dynamics must all be considered. Further, these

mechanisms may not operate consistently or exclusively.

This study models the multiple mechanisms that can govern the spatial pattern of

a clonal herb to evaluate whether patchy plant distributions map to particular features

of the forest understory. In the study forest, T. canadensis is an important species

that is distributed among many other tree species, so that although it is clear that
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T. canadensis holds an important role in the forest, it is difficult to assign a spatial

correlation between the presence of any one tree and the environment experienced by

the understory plants (unlike say aspen copses in the western United States). Using

observational data and a novel statistical technique that constructs and estimates a

network of interactions, however, these ambiguities can begin to be addressed. A

population of Eurybia chlorolepis (Asteraceae) (Burgess) Nesom (mountain aster)

and its habitat features offers a good system to study the role of understory niche in

determining causes of population distributions and consequences of forest change.

E. chlorolepis is an understory perennial herb that is found in discrete patches in

the old growth cove forests in the Southern Appalachians where T. canadensis is a

dominant species (Heard, M., unpublished data). Several features of E. chlorolepis

biology and the forest it inhabits are responsible for its patchy spatial pattern and

recommend it for this study. As a clonal herb, E. chlorolepis grows in patches of ram-

ets connected by rhizomes. These ramets can have either juvenile or flowering forms.

Thus, E. chlorolepis can reproduce vegetatively from either form, or sexually from

the flowering form. Vegetative growth improves the establishment of a clonal plant,

especially in varied or stressful habitats (Stocklin and Winkler, 2004; Takada and

Nakajima, 1996). Production of seed through out-crossed pollination allows plants to

disperse to new environments, escaping intra-specific competition or resource limita-

tion (Stocklin and Winkler, 2004; Takada and Nakajima, 1996; Volis et al., 2004). E.

chlorolepis seeds disperse by gravity and water, and as topography of the forest is un-

even, they cannot reach all optimal habitat. The percentage of stems within a patch

that flower varies greatly across the understory environment, with many patches per-

sisting for years with no sexually reproductive forms at all (unpublished data). This

variation in sexual reproduction in different patches creates a clear source-sink dy-

namic even among long-lived patches. As features of the understory environment lead
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to source patches and sink patches, dispersal is limited even in sexually reproductive

patches, E. chlorolepis is likely to respond significantly to the types of changes in the

forest ecosystem predicted by the mortality of T. canadensis (Jenkins et al., 1999).

The goal of this study is to estimate which parts of this system are most important

to E. chlorolepis seed production, and therefore to which features population-wide E.

chlorolepis persistence is most sensitive. To accomplish this, I use Bayesian learning

networks (BLN), a flexible method for quantifying a complex network of variables.

BLN offers a statistical approach that can structure and quantify direct and indi-

rect associations in a graphical model, can incorporate new information to improve

or reassess parameters of that network, and can be used for prediction or inference

(McMahon, 2005; Neapolitan, 2001; Pearl, 1988).

Methods

Site

The population of E. chlorolepis that was used in this study spanned three sites

in a watershed in Cosby Ranger District in Great Smoky Mountains National Park

(GSMNP). Twenty patches of plants were located across these three sites. The three

sites contained 10, 6, and 4 patches and showed slight differences in both plant density

and soil profile. However, all patches demonstrated similar correlational relationships

across the patches as within them, so the 20 sites were pooled for analysis. Each

patch was at least 20m from any other and had at least a 10m space between its

colony and any other colony. Within each of the twenty patches, a single 1m×1m

quadrat was established. These quadrats held at least fifteen stems, ensuring that all

quadrats were well-established, and were not newly colonized.
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Species

Mountain aster, Eurybia chlorolepis (Burgess) Nesom, is an understory perennial

herb found in the middle elevations of the Southern Appalachians. E. chlorolepis

reproduces vegetatively through the propagation of new ramets from the base of old

ramets and from ramets growing from a rhizome. The rhizome that connects ramets

of E. chlorolepis is found just below the soil surface. Roots from the rhizome and

ramets are generally shallow. Flowering stems produce composite inflorescences that

are hermaphroditic and generalist pollinated. The life-cycle of E. chlorolepis has a

typical perennial stage structure (Figure 18) (Horvitz and Schemske, 1995) (all tables

and figures referred to in this part are in an appendix at the end of the part). Ramets

sprout new growth in the winter in the form of small (1 − 3cm leaf length) two- to

four-leaved stems. These remain small until the spring, when they grow as either

juvenile plants in rosette form (Figure 19a) or as sexually reproductive individuals

with inter-nodal stems (Figure 19b). Flowering stems can reach 0.5m in height.

Variable collection

In order to measure niche associations, a number of abiotic measurements were made.

Soil moisture was measured as gravimetric water content (GWC), the percent of

water in the soil found from dividing the dry weight of the mix of five samples from

immediately around a site subtracted from the wet weight, divided by the wet weight.

Soil variables were collected from soil samples taken in 2004 in the same manner as

the gravimetric water content protocol. Samples were sent to A & L Laboratories

in Memphis, Tennessee for soil nutrient analysis, soil pH, organic matter content

and NO3 content. Light was measured using hemispherical photos taken from 1m

above the ground at the center of every site. These photos were then filtered into
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canopy cover and openness. Using Gap Light Analyzer software (Frazer et al., 1999),

estimates of direct, diffuse, and total light transmittance through the canopy at each

site were calculated. Direct light transmittance was used in analysis as it is most

likely to be important in the dark forest understory.

Plant species richness was recorded at each site in mid-July. Percent ground cover

is the total plant cover calculated from digital photos taken 1.6m above patches.

These photos were filtered using Adobe Photoshop to a threshold of white and black

reflecting vegetative cover and bare ground respectively. Ground cover, as a variable,

is the percentage of pixels in the photograph of a site that indicate cover (white

pixels). The variable ‘Old nodes’ (ON) refers to nodes on the caudal root of plant

stems resulting from the die-back of previous flowering stems. The number of nodes

on a root gives a rough estimate of stem and site age and past flowering patterns.

Statistical Methods

To construct the graphical model of the sites, pairwise correlations were calculated.

Sixteen soil variables were recorded from the soil analysis and entered into a principal

component analysis to reduce the data set to fewer, uncorrelated variables. The

components returned by that analysis were then set in a correlation analysis with

other collected varaibles. One component was shown to correlate with population

variable of E. chlorolepis. that component was then regressed on the soil variables

and significant ones were re-entered into the correlation analysis. By returning those

original soil variables into the network, a subset of the many soil variables could be

used for model building. Correlated variables are confusing when there are many,

but a network approach to ecology requires correlation insomuch as they can be

interpreted. From the final correlation analysis, a set of variables were selected that
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showed strong associations (P < 0.10) (Figure 20). A graphical model was then

constructed according to these associations and plant ecology and biology.

To analyze the graphical model, I used Bayesian Learning Networks (BLNs). In

this approach, the graphical model constructed from the correlations is translated

into a directed acyclic graph (DAG). The arrows connecting those variables reflect

conditional dependencies of the variables lower on the graph (‘children’) on those

above (‘parents’). A variable with no parents is called a ‘root’ node. Two assumptions

must hold for the graphical representation of the variables to be a Bayesian learning

network. The graph must be a DAG; that is, it must contain no cycles and have

arrows which delimit direction. The graph must also obey the Markov condition,

whereby each node in the graph is independent of all other nodes given the value of

that node’s parents.

When combined with the data, a DAG can be represented as a multivariate normal

distribution with a covariance matrix that incorporates the correlations implied by

the structural model. An important step in translating a DAG into that multivariate

normal distribution is building the conditional precision matrix. Shachter and Kenley

(1989) offer an algorithm to transform the variance vector, ~v, and the dependence

parameters (bij |i < j) into the precision matrix T . From (Shachter and Kenley,

1989), we define T (i) as the i × i upper left submatrix of T , ~bi as the column vector

(b1,i, · · · , bi−1,i), and ~b′i as its transpose. T (1) is simply 1/v1, or the precision of the

first variable. From there we iteratively build the precision matrix as

Ti+1 =




T (i) +
~bi+1

~b′i+1

vi+1
−

~bi+1

vi+1

−
~bi+1

vi+1
− 1

vi+1


 . (19)
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Parameter estimation for BLN advances directly from this six by six cell precision

matrix, T , built with the algorithm in (19). The DAG developed from pairwise

correlation analysis was used for parameter estimation. This DAG was entered into

the algorithm in (19). Instead of using prior estimates to build the variance-covariance

matrix quantitatively, the symbolic Maple kernel in Matlab (The Mathworks, 2003)

was used to build the variance-covariance matrix symbolically. Each cell in the six by

six covariance matrix contains the symbolic representation of the conditional variance

and covariance of the variables. For example, cell (2,2) of the solution gives a symbolic

representation as:

β13 ∗ σ2
1 ∗ β ′

12 + β23 ∗ σ2
2 + β23 ∗ β12 ∗ β ′

12 ∗ σ2
1 = −0.1456. (20)

With the symbolic representation of each cell in the updated variance-covariance

matrix and the cell values (ten equations in all, from the diagonal and the upper

triangle of the matrix), the Maple kernel can be used to solve for each posterior

parameter value.

Results

Sixteen soil variables were recorded from the soil analysis and entered into a principal

component analysis to reduce the data set to four principal components. These com-

ponents explained over %93 of the variation in the 16 variables. The third principal

component of the soil variables showed significant associations with plant variables in

the pairwise correlations. All variables were standardized to make regression and vari-

ance components in the network more easily interpretable. The sixteen soil variables

were then entered into a multiple regression with the third principal component as a
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response variable. Percent potassium cation exchange capacity, total cation exchange

capacity, nitrate, and buffer pH were highly significant predictors of this principal

component (R2 = 0.97). These were reentered into the pairwise correlation analysis.

In this way, from sixteen variables, a subset were determined to be orthogonal and

capture variation in soil values. Figure 20 shows the results of the pairwise correla-

tions. These included the total E. chlorolepis density (plant number per quadrat),

percent ground cover, the listed soil variables, plant species richness in the patches,

the average number of old nodes per plant per site, and the response variable, the

proportion of all stems in the site that were sexually reproductive.

A network was constructed from the variables with significant correlations. After

running the covariance algorithm, a network was estimated. Figure 21 shows the com-

pleted graphical model, the posterior estimates of the regression coefficients (besides

the arrows), and the conditional variances of the variables (in the legend). Condi-

tional variances reflect the variation in a variable taking into account its dependency

on parent variables. Because these variables were standardized, their unconditional

variances are all 1.0. In this network 57% of the variation in percent flowering repro-

ductive stems was explained by this network.

Discussion

The network resolved from the correlation analysis combined two soil variables (buffer

pH and cation exchange capacity (CEC)) with four biotic variables (plant species rich-

ness in a patch, the average number of old nodes per stem at a patch, the number of

stems per patch, and the response variable for this graphical model, the percentage of

all stems that were at the reproductive stage in a patch). The resolved model (Figure

130



21) shows a combination of direct and indirect associations influencing the percent-

age of reproductive stems in a patch. The graph also shows the resolution of two

independent collections of variables (‘cliques’ in the terminology of graphical models)

relating to the two soil variables: one shows buffer pH directly and positively asso-

ciated with the percentage of flowering stems, and the other collection incorporates

cation exchange capacity (CEC) into several indirect pathways to the percentage of

flowering reproductive stems. CEC is associated negatively with old nodes and plants

per patch. Those variables are positively associated with the percentage of reproduc-

tive stems. Richness positively associates with the average number of old nodes. The

two soil components are closely related in their ecosystem function, yet given the rest

of the network, they are not associated.

The soils in these sites have extremely high acidity. Average active soil pH (not

buffer pH) was 3.98, with a range from 3.6 to 4.6 (upper and lower %95 intervals

were 4.12 and 3.84) (4.0 is the pH of acid rain). In soils this acidic, changes in pH

(which are on the log scale) can influence nutrient availability and uptake Xiong et al.

(2003); Zak et al. (1994). The active pH, or pH to which plant roots are exposed at

any given time can fluctuate significantly. Buffer pH indicates how resistant a soil is

to changes in pH. Low buffer pH indicates soil with high stored acidity. Low buffer

pH can indicate high organic matter content in the soil or organic content that is

not easily broken down (low nitrogen exchange). In the case of these sites, that

organic matter can vary from leaf litter from hemlocks, rhododendrons, or deciduous

trees(Finzi et al., 1998). Hemlock have been shown to have particularly strong effects

on soil acidification and the concomitant effects on nutrient availability in the soil

(Finzi et al., 1998), showing high lignin content and low nitrogen turnover ?Jenkins

et al. (1999) .

131



CEC measures the potential for ion exchange in soils, specifically positively charged

ions (cations). Although CEC is commonly associated with the ability to resist acid-

ification, because high CEC can indicate a large fraction of base cations(Ca, Mg, K

and Na), high CEC also can indicate a resistance to changing acidification when acid-

ity is high. This combination indicates that although low active pH may be tolerated

by plants, the consistency of that low pH may keep E. chlorolepis from garnering

enough nutrients to recruit juveniles to reproductive forms. The pattern of hem-

locks, the most common tree in this watershed (Heard, M., unpublished data) may

determine the soil buffer pH and CEC levels, and therefore structure the source-sink

(juvenile-reproductive) patterns of E. chlorolepis.

In a study comparing hemlock forests with varying ranges of mortality, Jenkins

et al. (1999) found that forests with high hemlock mortality had higher net N miner-

alization, nitrification, and N turnover. The negative association between features of

a hemlock dominated soil profile and population sinks of E. chlorolepis predicts two

potential, opposite responses in this population. E. chlorolepis would be predicted

to respond positively to the higher N turnover in the soil initially. However Jenkins

et al. (1999) warn that this release of N could result in significant leaching, whereby

in a high-precipitation environment like these cove forests, the released nitrogen could

be lost from the system.

E. chlorolepis demonstrates many of the difficulties that arise in interpreting plant

population response to the environment. Because it is perennial, polycarpic (flower-

ing in multiple years), and clonal, E. chlorolepis patches are well equipped to persist

through difficult years. This life-history strategy can lead to difficulties in general-

izing, or predicting population dynamics (Crawley, 1990). In the forest understory,

there are many candidate explanations for perennial plant recruitment to sexually re-

productive forms. Examples of processes that both positively and negatively influence
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recruitment include light Brokaw (1985); Silvertown (2004), soil quality (Xiong et al.,

2003; Wardle et al., 2003), herbivores Carson and Root (1999); Maron et al. (2002),

competition Denslow (1980); Gustafsson and Ehrlen (2003), and climate Bell et al.

(1995); Dzwonko and Gawronski (2002). This study suggests that soils are indeed im-

portant to E. chlorolepis population dynamics by determining the ability for ramets

to transition from juvenile to adult status. This study sheds light on a possible shift

in these soil influences if hemlock mortality is substantial. Because fungi, bacteria,

and the litter of other plants are all a part of this forest system, further research

on the more complex cycles and spatial patterns of soils would aid in predicting the

indirect effects of the adelgid invasion on the forest understory community.
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Appendix: Tables and Figures
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Figure 18: Stage diagram of E. chlorolepis. Stages are in circles (S = seed, SD =
seedling, J = juvenile, and R = reproductive), and transitions, reproduction, and
survival are shown as arrows.
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Figure 19: Photographs of E. chlorolepis. The juvenile stage shows leaves in a rosette
form (a), while the reproductive form has inter-nodal stems (b). Inflorescences show
disc and ray flowers (c). Disc flowers show various stages (colors) of reproductive
receptivity. A seedling is shown with one of two cotyledons (d).
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P a i rw ise Cor rel at i on s
V a r i a ble by  V a r ia b le Co r r e l ati on S i gn i f  Pr o b P l o t  C orr

r ep. s ite p er c_ cov er 0 . 37 5 2 0 . 10 3 0

ON. b in. s ite p er c_ cov er 0 . 09 6 7 0 . 68 4 9

ON. b in. s ite r ep. s ite 0 . 42 9 3 0 . 05 8 9

p la nt . n o p er c_ cov er -0 . 04 2 2 0 . 85 9 8

p la nt . n o r ep. s ite 0 . 46 9 4 0 . 03 6 8

p la nt . n o ON. b in. s ite 0 . 45 7 5 0 . 04 2 5

b u ! er . pH p er c_ cov er -0 . 21 6 3 0 . 35 9 6

b u ! er . pH r ep. s ite 0 . 41 3 1 0 . 07 0 2

b u ! er . pH ON. b in. s ite 0 . 22 8 2 0 . 33 3 1

b u ! er . pH p la nt . n o 0 . 01 8 7 0 . 93 7 6

c a tio n .e x c h .c a p p er c_ cov er 0 . 24 5 1 0 . 29 7 6

c a tio n .e x c h .c a p r ep. s ite -0 . 03 7 7 0 . 87 4 6

c a tio n .e x c h .c a p ON. b in. s ite -0 . 44 4 6 0 . 04 9 5

c a tio n .e x c h .c a p p la nt . n o -0 . 49 6 5 0 . 02 6 0

c a tio n .e x c h .c a p b u ! er . pH -0 . 15 5 6 0 . 51 2 3

r ic hne s s p er c_ cov er 0 . 01 6 3 0 . 94 5 6

r ic hne s s r ep. s ite 0 . 34 2 2 0 . 13 9 7

r ic hne s s ON. b in. s ite 0 . 52 4 6 0 . 01 7 6

r ic hne s s p la nt . n o -0 . 06 6 1 0 . 78 1 9

r ic hne s s b u ! er . pH 0 . 15 8 4 0 . 50 4 9

r ic hne s s c a tio n .e x c h .c a p -0 . 14 4 1 0 . 54 4 3

Figure 20: Pairwise correlations show the direction and strength of relationships
between variables.

140



buffer pH

richness cation exchange

old nodes

% reproductives

plants/site

0.404
0.010

0.696

0.498

-0.3440.460 -0.345

32

541

6

σ2
1

σ2
2

σ2
3

σ2
4

σ2
5

σ2
6

=  0.978

=  0.958

=  0.950

=  0.602

=  0.602

=  0.430

Figure 21: The network illustrates the relationship between soil variables and com-
ponents of E. chlorolepis site life-history characteristics. Conditional variances are in
a legend at the bottom right.
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