123 research outputs found

    EVEREST IST - 2002 - 00185 : D23 : final report

    Get PDF
    Deliverable públic del projecte europeu EVERESTThis deliverable constitutes the final report of the project IST-2002-001858 EVEREST. After its successful completion, the project presents this document that firstly summarizes the context, goal and the approach objective of the project. Then it presents a concise summary of the major goals and results, as well as highlights the most valuable lessons derived form the project work. A list of deliverables and publications is included in the annex.Postprint (published version

    Autonomous functionalities for cognitive radio

    Get PDF
    This paper provides an overview on the research activities in autonomous functionalities for cognitive radio and networks, carried out in FP7/E3-project. The identified main research areas within this topic include opportunistic spectrum access and autonomous self-x functionalities for communication nodes. Opportunistic spectrum access delineates innovative topics concerning distributed cooperative spectrum sensing, collaborative MAC algorithms, distributed radio resource management algorithms, and control mechanisms for the opportunistic spectrum access. In autonomous self-x functionalities the research covers cognitive device management, autonomous RAT and operator selection and self-x features for autonomous elements, including autonomous decision making functionalities for RAT protocol configuration, negotiation on missing RAT protocol components, and functionality for dynamic configuration of RAT protocol components.Postprint (published version

    A Novel RSSI Prediction Using Imperialist Competition Algorithm (ICA), Radial Basis Function (RBF) and Firefly Algorithm (FFA) in Wireless Networks

    Get PDF
    This study aims to design a vertical handover prediction method to minimize unnecessary handovers for a mobile node (MN) during the vertical handover process. This relies on a novel method for the prediction of a received signal strength indicator (RSSI) referred to as IRBF-FFA, which is designed by utilizing the imperialist competition algorithm (ICA) to train the radial basis function (RBF), and by hybridizing with the firefly algorithm (FFA) to predict the optimal solution. The prediction accuracy of the proposed IRBF–FFA model was validated by comparing it to support vector machines (SVMs) and multilayer perceptron (MLP) models. In order to assess the model’s performance, we measured the coefficient of determination (R2), correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE). The achieved results indicate that the IRBF–FFA model provides more precise predictions compared to different ANNs, namely, support vector machines (SVMs) and multilayer perceptron (MLP). The performance of the proposed model is analyzed through simulated and real-time RSSI measurements. The results also suggest that the IRBF–FFA model can be applied as an efficient technique for the accurate prediction of vertical handover

    Routage et gestion de la mobilité dans les réseaux personnels

    Get PDF
    L'objectif de cette thèse est d'étudier des méthodes et des stratégies efficaces pour le routage et la gestion de la mobilité dans le cadre des réseaux personnels. Dans un premier temps, nous proposons le cadre de nos études: Personal Ubiquitous Environments (PUE). Un PUE est constitué d'un ensemble d'utilisateurs ayant des terminaux disposant d'interfaces réseau hétérogènes, et dont l'objectif est de mettre en oeuvre des mécanismes de coopération et de partage des ressources de manière totalement distribuée. Dans ce cadre, la thèse a proposé des solutions innovantes contribuant à améliorer la communication inter et intra réseau personnels. La première contribution porte sur le protocole PNRP (Personal Network Routing Protocol) dont le but est de développer un routage à base de politiques (policy-based routing) pour les environnements personnels. La seconde, intitulée ADD (Adaptive Distributed gateway Discovery), est un mécanisme totalement distribué pour la découverte de multiples chemins vers une passerelle vers un réseau opéré. De plus, étant donné que ces environnements sont hétérogènes par leurs compositions (réseaux d'accès, terminaux ...), une architecture de gestion de la mobilité qui permet une gestion unifiée de la localisation et de la mobilité sans coutures appliquant lénsemble des noeuds a également été traitée. Les résultats d'évaluation par simulation démontrent l'applicabilité et léfficacité des ces protocoles.The aim of this thesis is to investigate methods and strategies for efficient routing and mobility management in personal environments. The concept of Personal Ubiquitous Environments (PUE) is introduced which accommodates heterogeneous devices and access networks of different users and sustain the notion of sharing resources in a distributed manner. A prerequisite for achieving the resource (devices, networks) sharing in personal environments is the deployment of suitable communication protocols which establish efficient multi-hop routes betweens the devices of the PUE. Personal Network Routing Protocol (PNRP) has been developed to perform policy-based routing in personal environments. Moreover, in certain personal networking scenarios, the infrastructure network components (i.e. gateways) are more than one-hop distance from the user's devices; Adaptive Distributed gateway Discovery (ADD) protocol is thereby proposed to efficiently discover the multi-hop routes towards the gateway in a totally distributed manner. All the more, since the personal environments regroups heterogeneous access networks, an efficient mobility management architecture is proposed which offers unified location management and seamless handover experience to dynamic personal nodes. The proposed protocols are assessed by means of numerous communication scenarios; the simulation results demonstrate the applicability of the proposed protocols

    Joint radio resource management based on the species competition model

    Get PDF
    For optimal radio resource utilization in heterogeneous wireless networks, Joint Radio Resource Management (JRRM) is required. In distributed JRRM, each radio each access network (RAN) adjusts network parameters to affect user's RAN selection, thereby indirectly implementing joint radio resource allocation. The mathematical method for instructing such adjustment is lacking. In this article, the relationship between different RANs is mapped into the competition between species in the well-known L-V model developed by ecologists. Based on this model, an adjustment algorithm of distributed joint radio resource allocation is proposed. The simulation results show that compared with no adjustment or over adjustment, our adjustment algorithm can: 1) obtain proper resource allocation; 2) guarantee network coexistence. ©2006 IEEE.published_or_final_versio

    A flexible QoS-aware routing protocol for infrastructure-less B3G networks

    Get PDF
    International audienceCurrent mobile devices support multiple network technolo- gies and network composition via such devices can enable service provisioning across heterogeneous networks. One of the key challenges for realizing this view is inter-domain routing. Indeed, given the diversity of involved network technologies and infrastructures, a exible routing protocol that takes into account their quality properties and dynam- ics is an important requirement. In this paper, we present a exible quality-aware routing protocol for infrastructure-less B3G environments that enables discovery of routes with op- timal bandwidth, delay or cost according to the preference of each client. The protocol is based on the Optimized Link- State Routing (OLSR) protocol and is designed to enable computation of quality-aware routes in multi-network envi- ronments. We detail the protocol, discuss its deployment and provide experimental results

    Novel Model of Adaptive Module for Security and QoS Provisioning in Wireless Heterogeneous Networks

    Get PDF
    Considering the fact that Security and Quality-Of-Service (QoS) provisioning for multimedia traffic in Wireless Heterogeneous Networks are becoming increasingly important objectives, in this paper we are introducing a novel adaptive Security and QoS framework. This framework is planned to be implemented in integrated network architecture (UMTS, WiMAX and WLAN). The aim of our novel framework is presenting a new module that shall provide the best QoS provisioning and secure communication for a given service using one or more wireless technologies in a given time
    corecore