256,761 research outputs found

    Towards defining semantic foundations for purpose-based privacy policies

    Get PDF
    We define a semantic model for purpose, based on which purpose-based privacy policies can be meaningfully expressed and enforced in a business system. The model is based on the intuition that the purpose of an action is determined by its situation among other inter-related actions. Actions and their relationships can be modeled in the form of an action graph which is based on the business processes in a system. Accordingly, a modal logic and the corresponding model checking algorithm are developed for formal expression of purpose-based policies and verifying whether a particular system complies with them. It is also shown through various examples, how various typical purpose-based policies as well as some new policy types can be expressed and checked using our model

    DEEP: a provenance-aware executable document system

    Get PDF
    The concept of executable documents is attracting growing interest from both academics and publishers since it is a promising technology for the dissemination of scientific results. Provenance is a kind of metadata that provides a rich description of the derivation history of data products starting from their original sources. It has been used in many different e-Science domains and has shown great potential in enabling reproducibility of scientific results. However, while both executable documents and provenance are aimed at enhancing the dissemination of scientific results, little has been done to explore the integration of both techniques. In this paper, we introduce the design and development of DEEP, an executable document environment that generates scientific results dynamically and interactively, and also records the provenance for these results in the document. In this system, provenance is exposed to users via an interface that provides them with an alternative way of navigating the executable document. In addition, we make use of the provenance to offer a document rollback facility to users and help to manage the system's dynamic resources

    A framework for proving the self-organization of dynamic systems

    Get PDF
    This paper aims at providing a rigorous definition of self- organization, one of the most desired properties for dynamic systems (e.g., peer-to-peer systems, sensor networks, cooperative robotics, or ad-hoc networks). We characterize different classes of self-organization through liveness and safety properties that both capture information re- garding the system entropy. We illustrate these classes through study cases. The first ones are two representative P2P overlays (CAN and Pas- try) and the others are specific implementations of \Omega (the leader oracle) and one-shot query abstractions for dynamic settings. Our study aims at understanding the limits and respective power of existing self-organized protocols and lays the basis of designing robust algorithm for dynamic systems

    The Impact of Global Clustering on Spatial Database Systems

    Get PDF
    Global clustering has rarely been investigated in the area of spatial database systems although dramatic performance improvements can be achieved by using suitable techniques. In this paper, we propose a simple approach to global clustering called cluster organization. We will demonstrate that this cluster organization leads to considerable performance improvements without any algorithmic overhead. Based on real geographic data, we perform a detailed empirical performance evaluation and compare the cluster organization to other organization models not using global clustering. We will show that global clustering speeds up the processing of window queries as well as spatial joins without decreasing the performance of the insertion of new objects and of selective queries such as point queries. The spatial join is sped up by a factor of about 4, whereas non-selective window queries are accelerated by even higher speed up factors
    • 

    corecore