
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Jafari, Mohammad, Fong, Philip W. L., Safavi-Naini, Rei, Barker, Ken, &
Sheppard, Nicholas P. (2011) Towards defining semantic foundations for
purpose-based privacy policies. In Proceedings of the First ACM Confer-
ence on Data and Application Security and Privacy (CODASPY ’11), ACM,
Hilton Palacio Del Rio, San Antonio, Texas, pp. 213-224.

This file was downloaded from: http://eprints.qut.edu.au/40324/

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1145/1943513.1943541

http://eprints.qut.edu.au/view/person/Sheppard,_Nicholas.html
http://eprints.qut.edu.au/40324/
http://dx.doi.org/10.1145/1943513.1943541

Towards De�ning Semantic Foundations for

Purpose-Based Privacy Policies

Mohammad Jafari Philip W.L. Fong

Reihaneh Safavi-Naini Ken Barker

Nicholas Paul Sheppard

Abstract

We de�ne a semantic model for purpose, based on which purpose-

based privacy policies can be meaningfully expressed and enforced in a

business system. The model is based on the intuition that the purpose of

an action is determined by its situation among other inter-related actions.

Actions and their relationships can be modeled in the form of an action

graph which is based on the business processes in a system. Accordingly,

a modal logic and the corresponding model checking algorithm are devel-

oped for formal expression of purpose-based policies and verifying whether

a particular system complies with them. It is also shown through various

examples, how various typical purpose-based policies as well as some new

policy types can be expressed and checked using our model.

1 Introduction

Privacy policies and enforcement technologies are crucial for mitigating risks
involved in storage and processing of data in digital form and making such
systems safe and reliable. Purpose of access is one of the core concepts in
privacy which considers the data user's intent as a factor in making access
control decisions. This enables di�erentiating between access to the same piece
of data, even by the same person, when it is for a di�erent purpose. For example,
a patient may want to allow a physician to see the blood-test results for the
purpose of medical treatment ; but deny access to the same data by the same
person for a purposes such as research.

Purpose has been considered in major privacy legislations, such as the U.S.
Privacy Act (1974) and Canada's Federal Privacy Act (1983). These laws and
similar ones in other countries stipulate that personal information must be used
only for the purpose that was declared at collection time. More recent research
considers purpose a decision factor in privacy-oriented access control models [5,
2, 19] and in policy languages [27, 25, 20].

One major issue is that in nearly all existing models, purposes are treated
as opaque labels (i.e. a character string) with little or no semantics. This leads
to ambiguity and arbitrary interpretation of purposes in privacy policies, often

1

contrary to the interests of data owners. For example, if the privacy policy of a
company states that data collected from customers may be used for the purpose
of service improvement, this is likely to be very unclear to the customers who do
not get to have a clear understanding of what exactly this entails, under what
conditions it is violated, and how it is enforced.

Besides, and in our opinion as a consequence of such a lack of semantics, en-
forcing purpose-based policies continues to be a challenging problem. The main
di�culty in purpose enforcement is how to identify the purpose of an agent when
it requests to perform an action. Some common proposed mechanisms are self-
declaration in which the agent explicitly announces the purpose of data access
(e.g. [16]), and role-based enforcement in which the purpose is identi�ed based
on the agent's role in the system (e.g. [5]). The �rst method obviously cannot
stop a malicious agent from claiming false purposes. The second method has
been criticized to be ine�cient in capturing purpose of an action since roles and
purposes are not always aligned and members of the same organizational role
may practice di�erent purposes in their actions [15]. Therefore, identifying the
purpose of an action, or verifying a claimed purpose remains an open question,
partly because enough attention has not been paid to the link between actions
and their purposes.

This paper addresses these problems by: (a) developing a formalism with
which purpose, and its relationship to actions is clearly de�ned, and (b) design-
ing a corresponding mechanism using which the purpose of an action can be
identi�ed and thereby adherence to purpose-based policies can be veri�ed and
enforced.

Section 1.1 gives an overview of our work by discussing the concept of pur-
pose and how it relates to actions in Section 1.1.1, sketching our formal frame-
work in Section 1.1.2, and showing how our proposed framework will be used
in a practical scenario in Section 1.1.3. Section 1.2 goes over some related work
and Section 2 formalizes the basics for de�nition of purpose. Section 3 develops
a modal logic to articulate actions and their teleological relationships which is
the foundation for formally de�ning purpose-based policies. Section 4 de�nes
the form of a purpose-based policy in our model and illustrates how various ex-
amples of common purpose-based policies can be expressed using the developed
language. This section also demonstrates how our model is capable of expressing
new types of policies that are not considered in the current literature. Compli-
ance checking for policies is discussed in Section 5 by giving a model checking
algorithm that tests whether a given system adheres to some given policy. Sec-
tion 6 provides a further elaboration of several key points about the framework,
leaving Section 7 to make some concluding remarks.

1.1 Our Work

This section brie�y describes our conceptual framework, the formal tools that
we have developed on its basis, and a walk-through of how it can be used in
practice.

2

1.1.1 Conceptual Framework

Intentional actions are often assigned a purpose that refers to the aim and
rationale to perform them. One may ask or talk about the purpose of reading a
book, increasing salaries, or collecting information. Hence, everyday usages of
purpose presume a sense of teleology (or �nal aim) concerning the goal behind
executing an action and its ultimate consequences. Thus, the purpose of reading
a book may be to entertain, or by increasing salaries the ultimate intention may
be to attract high-quality workforce, and information may be collected to do
medical research.

Observing how purpose is used in the natural language reveals that purposes
often refer to an action or a set of actions. A web search for �for the purpose
of� yields top results such as: disseminating information, pricing, promoting,
language veri�cation, etc. all of which are names of some abstract actions.
Typical purpose names mentioned in privacy standards and guidelines also refer
to actions; for example, completion and support of activity and website and
system administration in P3P [27], or treatment and research in Healthcare
XSPA [21] and Dimitropoulos's report [8]. The correspondence of purposes and
actions has also been observed by others in the literature as it will be mentioned
in Section 1.2.

3

In the �rst place, purpose of an action is something that only exists in the
mind of the agent performing the action. However, an agent's purpose for an
action a�ects other actions performed, so, the set of actions that precede or
follow the action are a�ected by the agent's purpose. Thus, related actions can
be indicative of the purpose and the purpose of the action may be revealed by
looking at the actions that precede or follow it. For example, when someone
borrows money and later uses the money to pay a phone bill, it can be inferred
that the purpose of borrowing money has been to pay the bill. Conversely, it is
possible to enforce a purpose by restricting the surrounding actions. Thus, the
purpose of paying the bill can be enforced by forbidding the agent from doing
anything but making the payment as a consequence of borrowing the money.

Thus, purpose can be de�ned by the situation of an action within a larger
context containing other actions and the relationships among them. This con-
text can be de�ned as a network of relationships that capture the intention,
or more precisely, the purpose of the action. Accordingly, we can de�ne the
purpose of an action as its placement in a collection of other related actions;
we call such network of inter-related actions a plan. This is the fundamental
assumption that forms the basis of our purpose model in this paper.

Intuitively, a plan is a collection of interrelated actions together with various
relationships among them. Later in Section 2, we de�ne action graph as an
abstract model to capture such plans with only two types of relationships. These
two types of relationships are based on the following observations of two types
of purposes:

Purpose as a High-Level Action In some contexts, purpose refers to a more
abstract, or semantically higher-level action in a plan. Thus, doing something for
some purpose, actually means doing it as a part, or a sub-action, for that higher-
level action. For example, when Alice checks some patient's blood pressure for
the purpose of surgery, it means that checking the blood pressure is a part of
a more complex and abstract action of surgery. Similarly, when it is said the
a surgery is performed for the purpose of treatment, it is because the high-level
action of medical treatment includes surgery as a part.

In some contexts purpose refers to a desired state of a�airs, such as doing
some action for the purpose of happiness. In such cases we assume that the pur-
pose refers to the abstract action of reaching that state. Thus, doing something
for the purpose of happiness, can be interpreted as doing something as part of
the abstract action of pursuing happiness, which is the higher-level action.

Purpose as a Future Action In some contexts, purpose is used to indicate
that an action is performed as a prerequisite of another action in future. For
example, when Bob withdraws money from a bank account for the purpose of
paying the bills, it means the former action is done as a prerequisite to perform-
ing the latter.

4

1.1.2 Formal Framework

We develop formal tools for expressing and verifying purpose-based policies. A
formal model is developed for the business processes in the system. This can
be used to formalize the relationships between di�erent high-level and low-level
actions in a business system in the form of a graph. Correspondingly, a formal
language is also developed using which purpose-based policies can be expressed
about such business processes. The model checking algorithm can be used to
check whether the business processes in a particular system comply with the
policies.

1.1.3 Walk-Through

We motivate our framework by explaining how it can be used in practice. Sup-
pose there is an organizations with well-de�ned business processes. The aim is
to check whether the business processes in this organization comply with a set
of purpose-based privacy rules.

Step 1: Vocabulary A common terminology is necessary for referring to
system's actions so that business processes and policies can use the same vocab-
ulary. Low-level actions such as read, write, etc. are well-known and common
across many domains with clear and standard meanings. More complex and
abstract actions like surgery, marketing, etc. can be taken from standard vo-
cabularies that exist in many domains such as clinical systems in healthcare
(e.g. [22]). In this paper, we do not discuss how such a vocabulary is developed
and assume it exists.

Step 2: Abstract Model of Actions in the System The next step is to
make a formal model of actions in the system and their relationships. The action
names in such a model are taken from the common vocabulary and their rela-
tionships can be extracted based on the business processes in the system. This
model re�ects how the system works and is used to evaluate whether it complies
with the purpose-based policy. De�nition and explanation of this model is given
in Section 2.

Step 3: Policy Purpose-based policy is a set of rules about the purposes of
actions in the system. For example, one may want to make sure some data is not
used for the purpose of marketing, or patient �les are not modi�ed when used
for the purpose of research. Such rules come from di�erent origins; there are
global system-wide rules that apply to an entire organization or even multiple
organizations, and are usually authored by a management authority. For ex-
ample, a jurisdictional policy may stipulate that employee ethnicity data must
not be used for the purpose of promotions in any organization in the country.
On the other hand, there are data-dependent policies, such as patient consents,
that are speci�c to treatment of a particular piece of data and are e�ective only

5

if that piece of data is being processed. Such policies are usually de�ned by the
data owner.

Policy rules should be formalized using a language we develop in Section 3.
The atomic propositions in the language (e.g. marketing, research, and promo-
tion in the previous examples) are taken from the common vocabulary described
above. The semantics of the language is de�ned based on the formal model of
the actions in the system, and therefore, what is expressed in the language has
a clear meaning about the actions in the system and their relationships.

6

Step 4: Model Checking and Policy Enforcement Our �nal goal is to
test whether the system complies with the policies. Having a formal model
of the actions in the system and after formalizing the policy rules using the
developed language, a model checking algorithm is used to check whether the
model satis�ed the rules. The model checking algorithm can also be used to
enforce the policy at run-time by blocking access if the model did not comply
with it. For example, if Alice's consent requires that her blood test results
cannot be read for the purpose of research, the model checking algorithm can
be run when a read access is requested to her �le and test whether the purpose-
based rule is satis�ed.

1.2 Related Work

The conceptual link between purposes and actions has been observed by a num-
ber of others in the literature and can be considered supportive to our approach
of de�ning purpose using related actions.

van Sataden et. al. suggest that purpose names can be taken from the verbs
in a standard dictionary [26]. Similarly, Powers et. al. mention that business
purposes are a form of high-level action and argue that in high-level privacy
policies instead of referring to low-level actions such as read or write, high-level
business purposes such as treatment or diagnosis are used [23].

In the context of an object-oriented system, Yasuda et al. associate purpose
with the caller method [28]. For example, if the housekeeping method of a person
object calls the withdraw method of a bank account object, the implication is
that money is withdrawn for the purpose of housekeeping. This is consistent
with our de�nition of purpose in its �rst meaning that refers to a higher-level,
more abstract action.

In their development of a formal semantics for privacy policies, Breaux and
Antón propose to model purpose as an auxiliary related action [4]. For example,
the policy that data is collected for the purpose of marketing is taken to mean the
primary action of data collection is related to the auxiliary action of marketing
that happens later. This is very similar to our notion of purpose as a future
action.

HL7 Reference Information Model (�RIM�) speci�cations, a data model used
as the basis for designing many healthcare systems, mentions the has reason re-
lation between two actions for specifying that one is the reason for the other [11].
In this design, reason is similar to purpose of an action, especially in its sense
as as future action.

There are some proposals [9, 10, 6, 15] that suggest associating purpose with
the units of work in a system. They argue that tasks or work�ows, can be used
to identify the purpose of an action by looking at the higher-level unit of work in
which it takes place. The higher-level unit of work is basically equivalent to our
de�nition of more abstract actions, so this approach is consistent with the �rst
type of purpose as de�ned above. Our proposed model is more general and can
encompass these approaches as very simple special cases. Moreover, our work
extends earlier approaches by considering both meanings of purpose as future

7

event and more abstract action. Also, it allows multiple purposes to be present
for a single action which is a feature that is not considered in any other works
on purpose-based models as far as we are aware (see Section 6.6).

A di�erent line of research on obligations in access control systems is also
concerned about actions and how they relate to future actions (e.g. [12, 13]).
The part of our model that considers future actions has some similarities to this
line of work, but we are also concerned about other relationships among actions
which are not of interest in the study of obligations. Also, even in the study
of future actions we do not follow a strict linear notion of time and our model
allows multiple future actions whose order is immaterial (see Section 2).

As the formal language, we use modal logic to articulate the relationships
among actions. Temporal logic, which is a special type of modal logic, has been
used previously to formalize di�erent relationships between actions; for example,
control �ow [17] or obligations policies [12].

We introduce action graphs as an abstract model of di�erent actions in the
system and their order. Our model of action graph is similar to control �ow
graph used to assess programs in programming languages [1] and hierarchical
planning in the arti�cial intelligence literature [24].

2 Modeling Plans: Action Graph

Based on the discussion in Section 1.1.1, we de�ne a formalism for a plan that
captures the actions and two types of relationships among them. The action
graph can be thought of as an abstract model based of the business processes in a
system. We de�ne an action graph as a directed graph in which nodes correspond
to actions (both high-level and low-level) and edges denote the relationships
among them.

There are two types of edges each corresponding to one type of relationship
mentioned in Section 1.1.1: prerequisite-of and part-of. The prerequisite-of re-
lationship signi�es that one action is performed as an antecedent for another ac-
tion, and the part-of relationship indicates that one action is performed as part of
a higher-level more abstract action. For brevity, we will refer to the prerequisite-
of and part-of relationships, respectively as the F- and A-relationships, short for
future and abstract.

An example of such a graph is shown in Figure 1 where various purposes
can be identi�ed based on F- and A-edges. For example, the purpose of opening
the �le (node g), is to read its contents (node h), which is manifested by the
F-relationship between the two that says opening the �le is a prerequisite for
reading its content. Moreover, both opening and reading the �le are for the
purpose of loading the patient's information (node f). This means that opening
and reading the �le are part of the realization of the load patient's �le action.
Similarly, loading the patient's �le is in turn for the purpose of checking blood
pressure history (node e), and so on. Eventually, as the graph shows, all of the
actions in the graph are for the purpose of cancer treatment (node a) as they
are all part of the realization of this action.

8

Note that an action can be assigned numerous purposes. For example, the
action of opening the �le can at the same time be associated with the purpose
of reading the �le, surgery preparation, cancer treatment, etc.

2.1 De�ning the Model

The action graph is a directed graph with two sets of edges, each corresponding
to one type of relationship as discussed above. It is de�ned as AG = (V,A, F) in
which V is the set of vertices each of which corresponds to an action, and A and
F are subsets of V × V , and respectively correspond to A- and F-relationships.
We will use the shorter form uu′ instead of the more common (u, u′) to denote
pairs throughout this paper. The action graph satis�es the following conditions:

(a) A ∩ F = ∅,

(b) (V,A) is a tree with its root being the only sink vertex,

(c) uu′ ∈ F → ∃v. {uv, u′v} ⊆ A, and

(d) (V,A ∪ F) is a directed acyclic graph.

Intuitively, an action graph is a hierarchical work�ow, with nodes represent-
ing actions. Condition (a) says that the A� and F� relations cannot co-occur
between the same pair of nodes. Condition (b) requires that an action can only
be part of a single higher-level action, and there exists a single highest-level
action. Condition (c) settles that the prerequisite of an action should be part
of the same higher-level action. Finally, condition (d) forbids circularity in the
graph.

Based on the intuition that F� and A� relationships cannot be circular, we
assume that the action graph does not have a cycle, and hence property (d).
Real work�ows and business processes may however contain cycles which makes
it di�cult to build an action graph based on them. We leave solving this problem
as a future work and assume the action graphs is acyclic for the moment.

Theorem 1 extends property (c) to the re�exive transitive closure of the
F-relationship. The proof is given in Appendix A.

Theorem 1 uu′ ∈ F ∗ ⇒ ∃v. {uv, u′v} ⊆ A where F ∗ is the transitive closure
of F .

In order to accommodate action attributes into the model, we de�ne the
labeling function L. Suppose P is the set of all atomic propositions de�ned
by the vocabulary. These propositions can refer to di�erent facts about the
actions, such as their names, locations, etc. The labeling function L : V 7→ 2P

maps each action to the set of all atomic propositions that hold true for that
action, i.e. all of its attributes. The simplest of such attributes is the name of
the action; for example the node representing the surgery action is mapped to
a surgery proposition which belongs to the vocabulary. See Section 6.1 for a
discussion of other attributes such as authorized roles, location, etc. and how
they can be used to model more complex policies.

9

(a)

Cancer Treatment

(b)

Surgery

(c)

Surgery Preparation

(d)

Operation

(e)

Check Blood

Pressure History

(f)

Load Patient File

(g)

Open the File

(h)

Read the File

Figure 1: An example of an action graph as de�ned in Section 2. The F� and A�
edges are shown with dashed and solid arrows respectively. Actions are labeled
with letters for convenient later reference.

3 A Modal Logic for Formalizing Purpose-Based

Policies

Since purpose is captured in the form of A� and F�edges in an action graph,
de�ning purpose-based rules requires a language capable of expressing con-
straints on these relationships. For instance, if the purpose of marketing is
forbidden for action a, this is interpreted in the action graph as the restriction
that action a should not lead to marketing along F� and A�edges in the graph;
in other words, it must not be a prerequisite, nor be a part of, a marketing
action.

In this section, we de�ne a modal logic with di�erent modal operators use-
ful to capture such restrictions. There are four basic modal operators and two
derived forms. The six modal operators are analogous to the conventional tem-
poral logic operators, i.e. ♦, �, and ©, that are particularized for F� and
A�relationships. We will �rst give the formal de�nition of the syntax and se-
mantics of the language, and then, explain the meaning of the operators using
some examples.

The syntax of the language is presented in Backus-Naur Form as follows:

φ ::= > | p | ¬φ | φ ∧ φ | (A)φ | (F)φ | [A]φ | [F]φ (1)

where p is any atomic proposition.

10

The semantics of the language is de�ned by a satisfaction relation (|=) in the
context of a certain vertex v in the action graph AG = (V, F,A), and a labeling
function L. We write AG , L, v |= φ, or more simply v |= φ where the context is
clear; we also write v 6|= φ when it is not the case that v |= φ. The satisfaction
relation |= is de�ned as follows:

• v |= > always holds.

• v |= p holds i� p ∈ L(v).

• v |= ¬φ holds i� v 6|= φ.

• v |= φ1 ∧ φ2 holds i� v |= φ1 and v |= φ2.

• v |= (A)φ holds i� ∃vv′ ∈ A, v′ |= φ.

• v |= (F)φ holds i� ∃vv′ ∈ F, v′ |= φ.

• v |= 〈A〉φ holds i� ∃vv′ ∈ A∗, v′ |= φ.

• v |= 〈F〉φ holds i� ∃vv′ ∈ F ∗, v′ |= φ.

A∗ and F ∗ are the re�exive transitive closures of respectively A and F .
We also de�ne the following derived forms to facilitate expressing more com-

plex formulas:

⊥ def
= ¬>

φ1 ∨ φ2
def
= ¬(¬φ1 ∧ ¬φ2)

φ1 → φ2
def
= ¬(φ1 ∧ ¬φ2)

[A]φ def
= ¬〈A〉(¬φ)

[F]φ def
= ¬〈F〉(¬φ)

Based on the action graph of Figure 1, several examples are presented to
clarify the operators' meanings. To keep the examples simple, we assume that
the set of atomic propositions is the same as the set of vertices and the labeling
function is an identity in that each vertex maps to its name. In other words:
P = V and ∀v ∈ V. L(v) = v.

F�Next and A�Next (F)φ and (A)φ mean that φ is true at least in one
of the immediately following nodes along the F� or A�edges respectively. For
example, in the graph of Figure 1, we have c |= (F)d, since d is a next node
of c according to the F�relation (i.e. (c, d) ∈ F), and d |= d. Similarly, we
have e |= (A)(F)d, since c is a next node of e according to the A�relation (i.e.
(e, c) ∈ A), and c |= (F)d as discussed above.

11

F�Diamond and A�Diamond 〈F〉φ and 〈A〉φ mean that in the paths of
F�, or respectively, A�edges beginning inclusively from the current node, there
exists at least one node for which φ is true. For example, in the graph of
Figure 1, we have g |= 〈F〉(A)f because along the path of F�edges beginning
from g, there is a node, namely h, satisfying (A)f . Similarly, e |= 〈A〉(F)d,
because along the path of A-edges beginning inclusively from e, there is a node,
namely c, that satis�es (F)d.

F�Box and A�Box [F]φ and [A]φ mean that along the paths of F�, or
respectively, A�edges beginning inclusively from the current node, all of the
nodes satisfy φ. For example, in the graph of Figure 1 we have g |= [F](A)f ,
since along the only path of F�edges beginning inclusively from g, all of the
nodes (i.e. g and h) satisfy (A)f . Similarly, we also have g |= [A](c → 〈F〉d),
because along the path of A�edges beginning from g, the formula c → 〈F〉d is
true for all nodes. Note that since A�edges by de�nition form a directed tree
there is only one such path.

Theorem 2 is crucial in simplifying policy formulas (see the proof in Ap-
pendix A).

Theorem 2 Any formula of the form 〈∗〉...〈∗〉φ in which ∗ can be either of A
or F is equivalent to:

• 〈A〉φ if it has the form 〈A〉nφ,

• 〈F〉φ if it has the form 〈F〉nφ,

• 〈F〉〈A〉φ if it has the form 〈F〉n〈A〉mφ (m,n ∈ N),

• and 〈A〉〈F〉φ otherwise.

Similarly, [∗]...[∗]φ in which ∗ can be either of A or F , is equivalent to:

• [A]φ if it has the form [A]nφ,

• [F]φ if it has the form [F]nφ,

• [F][A]φ if it has the form [F]n[A]mφ (m,n ∈ N),

• and [A][F]φ otherwise.

4 Purpose-Based Policy

A purpose-based policy is a set of rules based on the purposes of actions. A
simple example of such rules is to forbid reading a some piece of information
for the purpose of marketing. In this paper, we only consider purpose-based
authorization policies, i.e. those policies that allow or forbid some actions in
the system based on their purposes. More complex types of policies that go

12

beyond a yes-or-no decision about an action are left as future work but brie�y
glanced at in Section 6.3.

Based on our conceptual framework (Section 1.1.1), we assume that a purpose-
based policy can be expressed in the form of a set of restrictions on an action
graph. For instance, the simple policy that a �le should not be read for the
purpose of marketing, can be interpreted as a restriction that the action of read-
ing the �le should neither be part of marketing action, nor be a prerequisite
for a future marketing action. The modal logic de�ned in Section 3 provides a
language to express such restrictions, so, we can de�ne the purpose-based policy
by assigning formulas of that language to actions. A purpose-based policy will
be a set of such rules.

On this basis, we de�ne the purpose-based policy POLICY as a set of formu-
las of the form ai → φi in which ai's are action names (i.e. atomic propositions
belonging to the vocabulary), and φi's are formulas belonging to the modal logic
language de�ned in Section 3. Each such rule states that the purpose-based for-
mula φi should hold when action ai is to be performed. If this is not the case,
the action graph in question (and hence the corresponding business process) is
deemed as non-compliant, or a reference monitor blocks the action.

An action graph AG = (V,A, F) satis�es a policy if all the rules of the policy
hold in all of its nodes:

∀v ∈ V.∀r ∈ POLICY .v |= r

4.1 Types of Policy Rules

This section describes several types of rules in purpose-based policies that can
be expressed using the developed language. The current purpose-based policies
found in the literature fall into the �rst three types discussed here. The rest are
new types that are a contribution of this paper.

4.1.1 Required Purposes

One type of rule is to require that some action be for some particular purpose;
for example, �action a must be for the purpose of treatment�. To formulate
this, one should essentially say that the treatment purpose should be visited at
some point by traversing along F� or A�edges. According to Theorem 2 any
formula of such a form can be reduced to either 〈A〉〈F〉treatment, or one of:
〈A〉treatment, 〈F〉treatment, or 〈F〉〈A〉treatment. Since the latter three cases
all imply the former, the disjunction of the four is equivalent to the former, and
hence, the rule can be written in the following form:

POLICY 3 (a→ 〈A〉〈F〉treatment)

13

Since in our model, it is possible that an action be associated multiple purposes
(see Section 6.6), a rule can require more than one purpose. For example,
an action may be required to be both for the purpose of order-processing and
delivery. Using the logical conjunction, this can be formulated as:

(〈A〉〈F〉order-processing) ∧ (〈A〉〈F〉delivery)

4.1.2 Forbidden Purposes

There are cases where a purpose must be forbidden for an action; for example,
�action a should not be for the purpose of marketing�. This is actually the
negation of the type discussed in Section 4.1.1 and can be formulated as:

POLICY 3 a→ (¬〈A〉〈F〉marketing)

or equivalently, as:

POLICY 3 a→ ([A][F]¬marketing)

4.1.3 Compound Forbidden and Required Purposes

A rule may arbitrarily forbid or allow purposes. For example, a rule may forbid
performing action a for the purpose of marketing unless the treatment purpose
is also involved. In other words, it should either be that the marketing purpose
is not involved, or both marketing and treatment are present. Using the types
of rules already discussed in Sections 4.1.1 and 4.1.2, we can write this as:

POLICY 3 a→ (〈A〉〈F〉marketing→ 〈A〉〈F〉treatment)

4.1.4 Order-Based Rules

There are cases where the order of purposes matters; for example, suppose
that an insurance company covers the costs of the activities performed for the
purpose of surgery, but it also wants to make sure that the surgery is in turn
for the purpose of treatment, and not for other purposes such as cosmetics, or
birth control. In such cases, not only the presence of certain purposes, but also
their order is important. The above rule, for instance, requires that the surgery
purpose appear and also be in sequence with the treatment purpose. The �rst
part (existence of the surgery purpose) is a simple rule of the type discussed in
Section 4.1.1. The latter part dealing with the order is a new type with which
we are concerned here.

As shown in Section 4.1.1, the requirement that the treatment purpose should
appear is formulated as 〈A〉〈F〉treatment and this should hold for the surgery
node, hence:

φ = (surgery→ 〈A〉〈F〉treatment)

Now, we want to say that φ should hold at all of the nodes accessible from the
current node, that is the right-hand side of the implication must hold for any

14

surgery node visitable by traversing along the A� and F�edges. This can be
stated using a formula of the form discussed in Theorem 2, which is eventually
reduced to the following simple form according to that theorem:

POLICY 3 a→ ([A][F] (surgery→ 〈A〉〈F〉treatment))

Note that a simpler rule that requires both surgery and treatment purposes does
not necessarily describe the same requirement. Imagine a scenario where some-
one wants to perform a cosmetic surgery but has a blood pressure problem that
makes such a surgery dangerous and therefore needs to go through a treatment
process to cure that problem �rst. In such a case, both treatment and surgery
purposes are involved, but the order is contrary to what is desired, that is, the
treatment is for the purpose of surgery.

It is possible to simplify order-based rules by assigning them to a di�erent
node in the action graph. For instance, the above rule can be simpli�ed by
�nding all the surgery nodes (accessible from a) and requiring them to be for
the purpose of treatment by a simpler rule of the type discussed in Section 4.1.1:

POLICY 3 surgery→ (〈A〉〈F〉treatment)

This can help an organization to simplify such rules by converting them into
a simpler form and assigning them to di�erent nodes of the action graph.

4.1.5 Distance-Based Rules

Another possible type of rules limits the distance between the purpose and the
action in order to forbid access even for valid purposes, when they are very
indirect and rendered irrelevant due to the degree of indirectness. For example,
a rule may allow access for treatment purpose only within a distance of 3, or in
other words, when the treatment purpose is involved but there are at most two
other intervening purposes.

Distance-based policies are a bit more complex to formulate. First, we con-
sider exact (rather than maximum) distances. For example, a distance of 2 for
treatment can be formulated with the following which captures di�erent cases
of a distance of 2. These cases are shown in Figure 2.

(A)2treatment ∨ (F)2treatment

∨(F)(A)treatment ∨ (A)(F)treatment

Higher distances can be formulated similarly, with longer formulas. A max-
imum distance rule then, can be formulated by the disjunction of all distances
lower than the maximum; for example, 3, or 2, or 1, for the maximum distance
of 3. The following notation [3] can facilitate formalizing distance-based rules.
Note that * is used to represent either of F or A:

〈∗〉≤dφ def
=

∨
0≤i≤d

(∗)iφ

15

t

s

x

x s t x s

t

s

x

t

Figure 2: Four cases for a treatment (t) purpose at the distance of two.

research

read �le

treatment treatment

read �le

research

Figure 3: An example showing how the di�erence between purpose as
prerequisite-of and purpose as part-of can a�ect the policy.

4.1.6 Other Miscellaneous Rules

In all rule types discussed so far, we have treated A� and F�relationships sim-
ilarly and did not distinguish between purposes resulting from these two rela-
tionships. However, there are cases where the rule is based on such a distinction.
As an example, consider the following two scenarios:

• A patient's data is used in some research project, and the results of the
research will eventually be used to improve the treatment of some disease.

• The patient's data is used in the course of treatment, but the results of
the treatment will later be used for research purposes.

In both cases the data is used for the purpose of research and treatment,
but the di�erence between purpose as part-of and purpose as prerequisite-of
distinguishes them. Figure 3 shows these two scenarios. Thus, the patients can
be more precise in their consent to allow the data be used only as part of a
treatment process and not as part of some research that will subsequently be
used in treatment. Such a rule can be formulated as:

〈A〉treatment

Figure 3 illustrates how this rule allows the �rst case, but denies the latter. Note
that a simpler rule of the type discussed in Section 4.1.1 that require treatment
purpose, would be satis�ed by both cases, contrary to what is desired.

As another example, consider a case where a customer is giving contact infor-
mation to a company and does not like this information to be used for marketing
purposes with the exception of receiving free promotion product samples. Thus,
the rule is that access is not allowed for marketing unless there is also a delivery
purpose involved as part of the marketing. Note that a delivery that leads to

16

marketing, that is, done as a prerequisite for a marketing action in future, is
not allowed because it may, for example, correspond to the case where an item
is delivered and the address is kept for later use when sending marketing mails,
which is unacceptable to the customer. Such a case can be formulated as:

〈A〉〈F〉marketing→
(〈A〉〈F〉delivery ∧ [A][F] (delivery→ 〈A〉marketing))

This rule says that if the marketing purpose is present, the delivery purpose
must also be present and it must be part of a marketing purpose.

5 Model Checking

Model checking is the problem of deciding whether or not a node in a given
action graph satis�es a formula. The input to the algorithm is the formula φ,
an action graph AG, a certain node v, and the labeling function L; the output is
a yes-or-no answer that indicates whether AG,L, v |= φ holds. In other words,
model checking is the process of testing whether a plan adheres to a policy rule.

Figure 5 outlines a model checking algorithm. This algorithm is based on
the standard model checking algorithm for CTL [7] and the model checking
algorithm for history-based access control policies [18], so we only give a brief
discussion here.

The main idea of the algorithm is that evaluating a formula at a certain
node can be performed recursively by (a) evaluating its subformulas on that
node, and (b) evaluating it on the current and immediately proceeding nodes
along the F� and A�edges in the action graph. For example, checking 〈A〉φ can
be performed recursively by checking whether φ holds in the current node, and
〈A〉φ holds in any of the immediately next nodes along A-edges.

Using dynamic programming, the result of this recursive algorithm can be
built bottom-up. For this purpose, a mechanism is needed for ordering both
subformulas and the nodes of the action graph so that the two-dimensional array
of the dynamic programming can be formed. For ordering the subformulas, we
use the post-order traversal of the abstract syntax tree of the formula. Figure 4
shows an example of such a tree. This guarantees that the subformulas of
a complex formula are evaluated �rst and allows evaluating a formula in a
bottom-up manner, beginning from the atomic propositions. The algorithm for
post-order traversal is straightforward. For ordering the nodes of the action
graph, we rely on a topological sort based on A� and then F�edges, beginning
from the sink. As an example, the order of nodes for the action graph of Figure 1
is: a, b, d, c, e, f, h, and g.

The algorithm �lls a two-dimensional array, like the one of Figure 6, in which
each cell indicates whether or not the corresponding sub-formula holds true at
the corresponding node. It begins by evaluating the �rst sub-formula (an atomic
proposition) on the �rst node of the action graph (the sink node) and continues
to �ll the array using the following rules:

17

[A]

[F]

→

〈A〉

〈F〉

a

b

Ê a
Ë 〈F〉a
Ì 〈A〉〈F〉a
Í b
Í b→ 〈A〉〈F〉a
Ï [F](b→ 〈A〉〈F〉a)
Ð [A][F](b→ 〈A〉〈F〉a)

Figure 4: The abstract syntax tree of the formula [A][F](b→ 〈A〉〈F〉a) and the
ordered set of its subformulas based on its post-order traversal.

• Evaluation of an atomic proposition on a node n is simply checking whether
it is a member of L(n).

• Evaluation of logical operators are done based to the rules of logic. Note
that because of the post-order traversal, the operand subformulas are al-
ready evaluated.

• Formulas of the form (A)φ and (F)φ are evaluated by checking whether φ
is evaluated as true at least in one of the nodes immediately following the
current node along the A� and F�edges respectively. Note that because
of the topological sort, proceeding nodes are already evaluated and the
results already exist in the table.

• Formulas of the form 〈A〉φ and 〈F〉φ are evaluated to true if they are true
for one of the immediately proceeding nodes along the A� and F�edges
respectively, or if φ has been evaluated to true for the current node.

• Formulas of the form [A]φ and [F]φ are evaluated to true if they are true in
all immediately proceeding nodes, respectively along the A� and F�edges,
and also φ has been evaluated to true at the current node.

Figure 6 shows the dynamic programming array evaluated for the formula
of Figure 4 on the action graph of Figure 1. We have assumed a simple labeling
function that maps nodes to their names as a proposition. Note that this algo-
rithm will end up evaluating the formula for all nodes in the action graph; it can
be changed to halt as soon as it evaluates the formula on the particular node
of interest. It is also noteworthy that for evaluating multiple formulas it will be
more e�cient to extract all the subformulas and then evaluate all formulas in a
single pass.

18

Input: AG = (V,A, F), L, φ
Output: Res: evaluation of φ on every node in AG.

1 Subformulas= post-order traversal of φ's abstract syntax tree
2 Nodes = Topological sort of AG.V
3 Res //stores the results
4 foreach (n in Nodes)
5 foreach (f in Subformulas)
6 if (f.isAtomic())
7 Res[f,n]=(f ∈ L(n))
8 else if (f.operator== ¬)
9 Res[f,n]=¬(Res[f.operand,n])

10 else if (f.operator== ∧)
11 Res[f,n]=Res[f.operand1,n]∧ Res[f.operand2,n]
12 else if (f.operator== (A))
13 Res[f,n]=false
14 foreach (a so that (n,a) ∈ AG.A)
15 if (Res[f.operand,a]==true)
16 Res[f,n]=true
17 else if (f.operator== (F))
18 Res[f,n]=false
19 foreach (a so that (n,a) ∈ AG.F)
20 if (Res[f.operand,a]==true)
21 Res[f,n]=true
22 else if (f.operator== 〈A〉)
23 Res[f,n]=false
24 if (Res[f.operand,n]==true)
25 Res[f,n]=true
26 else
27 foreach (a so that (n,a) ∈ AG.A)
28 if (Res[f,a]==true)
29 Res[f,n]=true
30 else if (f.operator== 〈F〉)
31 Res[f,n]=false
32 if (Res[f.operand,n]==true)
33 Res[f,n]=true
34 else
35 foreach (a so that (n,a) ∈ AG.F)
36 if (Res[f,a]==true)
37 Res[f,n]=true
38 return Res

Figure 5: The pseudo-code of the model checking algorithm.

The correctness of the algorithm can be checked by noticing that the recur-
sive part of the dynamic programming calculation matches the de�nition of the
operators. The complexity of the algorithm is O(|φ|(e+ n)) in which |φ| is the
size of the formula (i.e. the total number of atomic propositions and operators),
e is the number of edges in the action graph, and n is the number of its nodes.
Note that based on the loops of line 4 and 5 of Figure 5, all subformulas (with
a total number of |φ|) are evaluated at each node. The evaluation in the worst
case needs examining that node and all of its outgoing edges. If di shows the
out-degree of the ith node, the complexity is O(|φ|((1 + d1) + ... + (1 + dn)))
which in turn yields O(|φ|(e+ n)).

19

a b d c e f h g
Ê a 1 0 0 0 0 0 0 0
Ë 〈F〉Ê 1 0 0 0 0 0 0 0
Ì 〈A〉Ë 1 1 1 1 1 1 1 1
Í b 0 1 0 0 0 0 0 0
Î Í→Ì 1 1 1 1 1 1 1 1
Ï [F]Î 1 1 1 1 1 1 1 1
Ð [A]Ï 1 1 1 1 1 1 1 1

Figure 6: The dynamic-programming array for evaluating the formula of Fig-
ure 4 on the action graph of Figure 1.

6 Discussion

Several additional aspects of this work should be considered:

6.1 Modeling More Complex Policies

The labeling function L maps actions to the set of propositions that hold true
for that node (see Section 3). So far, we have only used very simple labeling
functions that map each node to its name as a proposition. However, the labeling
function can model other attributes of actions, such as the authorized roles,
input data types, time and location constraints, etc. This enables de�ning more
complex policies, particularly those that combine purpose constraints with other
types of constraints, e.g. role-based, or time- and location-based. For example,
a policy that settles any action for the purpose of research must be limited to
business hours can be formulated as the following, assuming that biz-hours is a
proposition that holds true for actions that are restricted to business hours:

[A][F](〈A〉〈F〉treatment→ biz-hours)

Another interesting example is the case of an action's location which can
be important in privacy policies. Suppose that third-party is a proposition
that is true for actions performed by collaborator organization, and false for
actions that are performed within the organization. Using such a scheme, an
inter-organizational work�ow can be modeled as a single uni�ed action graph
in which the location of actions is captured using this third-party attribute. A
policy rule such as �reading for the purpose of research is not allowed by third
parties� can then be modeled as:

[A][F](reading ∧ 〈A〉〈F〉research→ ¬ third-party)

Note that these formulas do not consider the semantics of the biz-hours or
third-party propositions; but, given that the evaluation of this proposition is
otherwise taken care of, they regulate the relationships between purpose-based
rules and other types of constraints in a system. We leave further exploration
of this extension as a future work.

20

6.2 Setting Distance-Based Policies

Since the granularity of an action graph depends on how the system is designed,
distance-based policies (recall Section 4.1.5) are very system-dependent. For
example, a maximum distance of three may be very far in one system and very
close in another, based on the granularity of the action graph. Therefore, the
policy maker should be aware of the internal structure of the system to build
meaningful distance-based policies. This can be true in case of organizational
policies where the policy maker is aware of the details of the organization and
the systems in use, but in cases such as the ethics consent in healthcare, the
policy maker is an outsider to the organization and such policies cannot be
meaningfully settled.

Distance can also be de�ned between two purposes and make the ground for
a new type of policy. For example, one scenario may require that the surgery
purpose be within 3 steps of the treatment purpose. We did not discuss such
policies here, as we could not imagine a pragmatic case for them.

6.3 Purpose-Based Obligations

Obligations are commitments that should be incurred after an agent performs
an action [12]. Currently our model only considers allowing or blocking an
action based on the purpose-based policy. A further step would be to enable
assigning obligations to agents as a result of performing an action. For example,
the billing system in a hospital may charge a patient's or insurer's account with
di�erent amounts, depending whether the surgery is for the purpose of treatment
or cosmetics. Or, di�erent fees may be charged when a movie is played for
the purpose of entertainment or education. We did not discuss purpose-based
obligations in this paper but believe it is an interesting topic of future work.

6.4 Obligations and the F-Relationship

Suppose action a is related to aF by an F- relationship. At run-time, if the
reference monitor allows an agent to perform a based on a purpose-based policy
that relies on the performance of aF , it can be said that it is under the condition
that the action aF is performed in future. In fact, if aF is not performed the
policy would be violated. This matches the classic notion of obligation and the
reference monitor can issue an obligation in such cases.

This observation points out the relationship between obligation policies and
purpose-based policies which is another interesting topic for future work.

6.5 Use of First-Order Predicate Logic

The logic we have built for formalizing purposes is a modal logic over a propo-
sitional logic. However, using propositional logic has a scalability problem. For
example, if there are one million health records in a system, atomic propositions
should be used to express the policy regarding each of them which will make

21

the system very complex. In other words, lack of quanti�ers and predicates
may lead to scalability issues in formalizing policies. On the other hand, �rst-
order predicate will make the veri�cation of policies undecidable in the general
case. One direction of future work could be to extend the logic to �rst-order
logic and then study the conditions under which an e�cient algorithm for policy
evaluation can be developed.

6.6 Multiple and Nested Purposes

The current literature generally assumes that a single purpose is associated with
an action. In practice, however, a single action may have multiple purposes that
are independent or tangentially related. For example, the purpose of reading
a book may be both to enjoy the literature and to prepare for an exam. In
turn, the purpose of preparing for the exam may be to pass the course and
subsequently to get a degree. One can observe that a single action may be
associated with a chain of multiple nested purposes and/or multiple independent
purposes. Capturing this broader aspect of purposes is one contribution of our
model.

6.7 Simpli�ed Version of the Logic

If we simplify the logic to only contain the A�relationships, the action graph
will be reduced to a directed tree. In such a tree, the purposes of an action
can be captured as a chain of nested purposes and a simpli�ed version of our
logic, resembling a simple temporal logic, would be adequate to express the
restrictions on such a chain. This simpler case of the model allows the chain
of nested purposes to be associated with the stack context in a programming
language, or a work�ow as it shows the hierarchy of nested actions each of which
is being performed as part of the other. Therefore, a reference monitor can be
implemented very straightforwardly by watching the stack. This result has not
appeared in the literature yet but is available through our tech report series [14].

6.8 Other Types of Relationships

In our current model of action graph, we only consider two types of relation-
ships between actions. These two have obviously an implication of purpose as
we discussed in Section 1.1.1. Other types of relationships such as temporal
precedence or causality exist between actions and they may also be captured
in an extended model of the action graph. Deciding whether or not to include
other types of relationships in the action graph and how they may or may not
imply a purpose is a topic of future work.

7 Conclusion

We developed a framework for expressing and enforcing purpose-based privacy
policies. We de�ned the semantics of an action's purpose in terms of its situation

22

among other related actions. A modal logic was developed to enable expressing
restrictions about the relationships among actions; thereby expressing purpose-
based policies. Finally, a model checking algorithm was described to check the
compliance of a system with such policies. We also showed how our framework is
capable of formalizing common purpose-based policy rules and also introduced
some new types of such rules. The main future work is to evaluate the model
by studying a practical case of formalizing and enforcing purpose-based policies
in a business system.

References

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools, 2nd Edition. Addison-Wesley, 2006.

[2] C. A. Ardagna, S. De Capitani di Vimercati, and P. Samarati. Enhancing
user privacy through data handling policies. In Data and Applications
Security, pages 224�236, Sophia Antipolis, France, 2006.

[3] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[4] T. D. Breaux and A. I. Antón. Deriving semantic models from privacy
policies. In IEEE POLICY'05, pages 67�76, Stockholm, Sweden.

[5] J.-W. Byun, E. Bertino, and N. Li. Purpose based access control of complex
data for privacy protection. In SACMAT '05: Proceedings of the tenth ACM
symposium on Access control models and technologies, pages 102�110, New
York, NY, USA, 2005. ACM.

[6] W. Cheung and Y. Gil. Towards privacy aware data analysis work�ows
for e-science. In Proceedings of the 2007 Workshop on Semantic e-Science
(SeS2007), Vancouver, Canada, pages 17�25, July 2007.

[7] E. M. Clarke and E. A. Emerson. Design and synthesis of synchroniza-
tion skeletons using branching-time temporal logic. In Logic of Programs,
Workshop, pages 52�71, London, UK, 1982. Springer-Verlag.

[8] L. L. Dimitropoulos. Privacy and Security Solutions for Interoperable
Health Information Exchange. http://healthit.ahrq.gov/portal/

server.pt/gateway/PTARGS_0_241358_0_0_18/IAVR_ExecSumm.pdf,
2006.

[9] S. Fischer-Hübner. IT-Security and Privacy: Design and Use of Privacy-
Enhancing Security Mechanisms. Springer, Berlin, Germany, 2001.

[10] Q. He. Privacy enforcement with an extended role-based access control
model. Technical Report TR-2003-09, North Carolina State University,
2003.

23

[11] Health Level Seven Inc. HL7 Reference Information Model, ANSI/HL7 V3
RIM, R1-2003, 2003.

[12] M. Hilty, D. Basin, and A. Pretschner. On obligations. In ESORICS 2005:
Proceedings of the 10th European Symposium On Research in Computer
Security.

[13] K. Irwin, T. Yu, and W. H. Winsborough. On the modeling and analysis of
obligations. In CCS '06: Proceedings of the 13th ACM conference on Com-
puter and communications security, pages 134�143, Alexandria, Virginia,
USA, 2006.

[14] M. Jafari. Nested purposes. Technical report, (unpublished), December
2009.

[15] M. Jafari, R. Safavi-Naini, and N. P. Sheppard. Enforcing purpose of use
via work�ows. In WPES '09: Proceedings of the 8th ACM workshop on
Privacy in the electronic society, pages 113�116, 2009.

[16] M. Jawad, P. S. Alvaredo, and P. Valduriez. Design of PriServ, a privacy
service for DHTs. In International Workshop on Privacy and Anonymity
in the Information Society, pages 21�26, Nantes, France, 2008.

[17] T. Jensen, D. Le Metayer, and T. Thorn. Veri�cation of control �ow based
security properties. pages 89 �103, Oakland, CA, USA, May 1999.

[18] K. Krukow, M. Nielsen, and V. Sassone. A logical framework for history-
based access control and reputation systems. J. Comput. Secur., 16(1):63�
101, 2008.

[19] Q. Ni, E. Bertino, J. Lobo, and S. B. Calo. Privacy-aware role-based access
control. IEEE Security and Privacy, 7(4):35�43, 2009.

[20] Organisation for the Advancement of Structured Information Standards.
Privacy policy pro�le of XACML v2.0. http://docs.oasis-open.org/

xacml/2.0/access_control-xacml-2.0-privacy_profile-spec-os.

pdf, 2005.

[21] Organisation for the Advancement of Structured Information Standards.
Cross-Enterprise Security and Privacy Authorization (XSPA) Pro�le of Se-
curity Assertion Markup Language (SAML) for Healthcare Version 1.0,
2009.

[22] I. H. T. S. D. Organization. SNOMED CT, Systematized Nomenclature of
Medicine-Clinical Terms. http://www.ihtsdo.org/snomed-ct/.

[23] C. S. Powers, P. Ashley, and M. Schunter. Privacy promises, access control,
and privacy management. In ISEC '02: Proceedings of the Third Interna-
tional Symposium on Electronic Commerce, pages 13�21, Research Triangle
Park, North Carolina, US, 2002. IEEE Computer Society.

24

[24] S. J. Russell and P. Norvig. Arti�cial Intelligence: A Modern Approach
(3rd Edition). Prentice Hall, 2009.

[25] M. Schunter and C. Powers. The Enterprise Privacy Authoriza-
tion Language (EPAL 1.1). http://www.zurich.ibm.com/security/

enterprise-privacy/epal, 2003.

[26] W. van Staden and M. S. Olivier. Purpose organisation. In ISSA2005: Pro-
ceedings of the Fifth Annual Information Security South Africa Conference,
Sandton, South Africa, 2005.

[27] World-Wide Web Consortium. The Platform for Privacy Preferences 1.1
(P3P1.1) Speci�cation, 2006.

[28] M. Yasuda, T. Tachikawa, and M. Takizawa. A purpose-oriented access
control model. In Proceedings of Twelfth International Conference on In-
formation Networking, pages 168�173, Jan. 1998.

A Proofs

Theorem 1 uu′ ∈ F ∗ ⇒ ∃v {uv, u′v} ⊆ A where F ∗ is the transitive closure
of F .

Proof

uu′ ∈ F ∗ implies either uu′ ∈ F , in which case ∃v {uv, u′v} ⊆ A holds based
on the property (c), or there exist u1, ..., un, so that:

uu1 ∈ F ∧ u1u2 ∈ F ∧ . . . ∧ unu′ ∈ F

Applying property (c) for each of the terms yields
∃v1 {uv1, u1v1} ⊆ A, ∃v2 {u1v2, u2v2} ⊆ A, and so on.
And since according to the property (b) (V,A) is a tree, u1v1 ∈ A ∧ u1v2

implies v1 = v2. Similarly it follows that all vi's are the same and hence Q.E.D.
�

Lemma 1 The following is a valid formula:

〈F〉〈A〉φ↔ 〈F〉φ ∨ 〈A〉φ

Proof Assuming that v satis�es the left-hand side, and based on the de�nition
of 〈F〉, it follows that ∃v′ ∈ V.vv′ ∈ F ∗ ∧ v′ |= 〈A〉φ. Extending the de�nition
of 〈A〉, it follows that:
∃v′ ∈ V.∃v′′ ∈ V.vv′ ∈ F ∗ ∧ v′v′′ ∈ A∗ ∧ v′′ |= φ
If v′ = v′′ it follows that ∃v′ ∈ V.vv′ ∈ F ∗ ∧ v′ |= φ which in turn leads to:

v |= 〈F〉φ.
Now suppose that v′ 6= v′′. The fact that vv′ ∈ F ∗ implies that ∃u.{vu, v′u} ⊆

A according the Theorem 1. On the other hand, v′v′′ ∈ A∗ implies one of the

25

v . . . v′

u

...

v′′

u′

. . .

Figure 7: Proof of Lemma 1.

following cases when v′ 6= v′′: (A.1) v′v′′ ∈ A
(A.2) ∃v′, v′u′ ∈ A ∧ u′v′′ ∈ A∗.

In case (A.1), v′v′′ ∈ A, and since we already had v′u ∈ A it follows that
u = v′′ as (V,A) is a tree. Then, since v′′ |= φ, it follows that u |= φ, and as
vu ∈ A, it follows that v |= 〈A〉φ which implies the right-hand side.

Now consider Figure 7 for case (A.2). since we have already proved that
v′u ∈ A, the fact that v′u′ ∈ A implies u = u′ as (V,A) is a tree, which leads to
the conclusion that vv′′ ∈ A∗, since we already proved that vu ∈ A above, and
have u′v′′ ∈ A∗ from the assumption of case (A.2). And as v′′ |= φ, we have
v |= 〈A〉φ which implies the right-hand side.

Proving the converse is easy since it straightforwardly follows from the se-
mantic de�nitions that each of the terms in the right-hand side imply the left-
hand side. �

Lemma 2 The box and diamond operators are idempotent, i.e. the following
are valid formulas for all n ∈ N:

〈F〉nφ↔ 〈F〉φ
〈A〉nφ↔ 〈A〉φ
[F]nφ↔ [F]φ
[A]nφ↔ [A]φ

Proof For the diamond operators, we only prove the case for 〈A〉 as the
proof for 〈F〉 is straightforwardly similar. Also, we only need to prove the case
〈A〉〈A〉φ↔ 〈A〉φ and the general case for n follows inductively.

According to the de�nition of 〈A〉, v |= 〈A〉〈A〉φ implies ∃v′ ∈ V.vv′ ∈ A∗ ∧
∃v′′ ∈ v.v′v′′ ∈ A∗ ∧ v′′ |= φ. But then, it follows by transitivity that vv′′ ∈ A∗.
Therefore, v |= 〈A〉φ. Now, suppose v |= 〈A〉φ. Then, ∃v′ ∈ A.vv′ ∈ A∗∧v′ ∈ φ.
Note that vv ∈ A∗. Thus, v |= 〈A〉〈A〉φ.

For the box operators, we can prove that [F]2φ ≡ [F]φ as follows, using the
�rst part of the theorem:

[F][F]φ↔ ¬¬[F][F]φ↔ ¬〈F〉¬[F]φ↔ ¬〈F〉〈F〉¬φ
↔ ¬〈F〉¬φ↔ [F]φ.

26

�

Theorem 2 Any formula of the form 〈∗〉...〈∗〉φ in which ∗ can be either of A
or F is equivalent to:

• 〈A〉φ if it has the form 〈A〉nφ,

• 〈F〉φ if it has the form 〈F〉nφ,

• 〈F〉〈A〉φ if it has the form 〈F〉n〈A〉mφ (m,n ∈ N),

• and 〈A〉〈F〉φ otherwise.

Similarly, [∗]...[∗]φ in which ∗ can be either of A or F , is equivalent to:

• [A]φ if it has the form [A]nφ,

• [F]φ if it has the form [F]nφ,

• [F][A]φ if it has the form [F]n[A]mφ (m,n ∈ N),

• and [A][F]φ otherwise.

Proof We begin by the �rst part about diamond operators. Applying Lemma 2
to remove all consecutive repetitions of 〈A〉 and 〈F〉 will reduce the formula
either to one of the trivial cases, or to one of the following forms (n ≥ 2):
(A.1)(〈A〉〈F〉)nφ
(A.2)(〈A〉〈F〉)n〈A〉φ
(A.3)(〈F〉〈A〉)nφ
(A.4)(〈F〉〈A〉)n〈F〉φ

Case (A.1):

(〈A〉〈F〉)nφ↔ 〈A〉〈F〉〈A〉〈F〉(〈A〉〈F〉)n−2φ
↔ 〈A〉〈F〉〈A〉φ′

27

where φ′ = 〈F〉(〈A〉〈F〉)n−2φ. Applying the Lemma 1 we will have 〈A〉(〈F〉φ′∨
〈A〉φ′) and since diamond operators can be distributed over disjunctions, it fol-
lows that 〈A〉〈F〉φ′ ∨ 〈A〉〈A〉φ′ and then 〈A〉〈F〉φ′ ∨ 〈A〉φ′. But this yields to
〈A〉〈F〉φ′ since 〈A〉φ′ → 〈A〉〈F〉φ′. Replacing φ′ and applying Lemma 2 we will
have:

〈A〉〈F〉〈F〉(〈A〉〈F〉)n−2φ↔ 〈A〉〈F〉(〈A〉〈F〉)n−2φ
↔ (〈A〉〈F〉)n−1φ

This will recursively lead to 〈A〉〈F〉φ.
Case (A.2): Applying case (A.1) we will get 〈A〉〈F〉〈A〉φ and then by ap-

plying Lemma 1:

〈A〉(〈F〉φ ∨ 〈A〉φ)↔ 〈A〉〈F〉φ ∨ 〈A〉〈A〉φ
↔ 〈A〉〈F〉φ ∨ 〈A〉φ

And since 〈A〉φ→ 〈A〉〈F〉φ, if will follow that 〈A〉〈F〉φ.
Case (A.3): Rewriting the formula as 〈F〉(〈A〉〈F〉)n−1〈A〉φ and applying the

result of case (A.1) we will get to 〈F〉〈A〉〈F〉〈A〉φ. And then using Lemma 1:

〈F〉〈A〉〈F〉〈A〉φ↔ 〈F〉〈F〉〈A〉φ ∨ 〈A〉〈F〉〈A〉φ
↔ 〈F〉〈A〉φ ∨ 〈A〉〈F〉〈A〉φ
↔ 〈F〉φ ∨ 〈A〉φ ∨ 〈A〉(〈F〉φ ∨ 〈A〉φ)
↔ 〈F〉φ ∨ 〈A〉φ ∨ 〈A〉〈F〉φ ∨ 〈A〉〈A〉φ
↔ 〈F〉φ ∨ 〈A〉φ ∨ 〈A〉〈F〉φ

And since 〈F〉φ → 〈A〉〈F〉φ and 〈A〉φ → 〈A〉〈F〉φ the formula can be sim-
pli�ed to 〈A〉〈F〉φ.

Case (A.4): Using the result of case (A.3), it follows that 〈F〉〈A〉〈F〉φ and
then 〈F〉〈F〉φ ∨ 〈A〉〈F〉φ, and again, since 〈F〉φ → 〈A〉〈F〉φ this is equivalent
to 〈A〉〈F〉φ.

The second part, for box operators can be proved straightforwardly by ap-
plying the result of the �rst part:

[∗]...[∗]φ↔ ¬¬[∗]...[∗]φ↔ ¬〈∗〉...〈∗〉¬φ
↔ ¬〈A〉〈F〉¬φ↔ [A][F]φ

�

28

