185 research outputs found

    Vertex covers by monochromatic pieces - A survey of results and problems

    Get PDF
    This survey is devoted to problems and results concerning covering the vertices of edge colored graphs or hypergraphs with monochromatic paths, cycles and other objects. It is an expanded version of the talk with the same title at the Seventh Cracow Conference on Graph Theory, held in Rytro in September 14-19, 2014.Comment: Discrete Mathematics, 201

    Covering complete partite hypergraphs by monochromatic components

    Get PDF
    A well-known special case of a conjecture attributed to Ryser states that k-partite intersecting hypergraphs have transversals of at most k-1 vertices. An equivalent form was formulated by Gy\'arf\'as: if the edges of a complete graph K are colored with k colors then the vertex set of K can be covered by at most k-1 sets, each connected in some color. It turned out that the analogue of the conjecture for hypergraphs can be answered: Z. Kir\'aly proved that in every k-coloring of the edges of the r-uniform complete hypergraph K^r (r >= 3), the vertex set of K^r can be covered by at most ⌈k/r⌉\lceil k/r \rceil sets, each connected in some color. Here we investigate the analogue problem for complete r-uniform r-partite hypergraphs. An edge coloring of a hypergraph is called spanning if every vertex is incident to edges of any color used in the coloring. We propose the following analogue of Ryser conjecture. In every spanning (r+t)-coloring of the edges of a complete r-uniform r-partite hypergraph, the vertex set can be covered by at most t+1 sets, each connected in some color. Our main result is that the conjecture is true for 1 <= t <= r-1. We also prove a slightly weaker result for t >= r, namely that t+2 sets, each connected in some color, are enough to cover the vertex set. To build a bridge between complete r-uniform and complete r-uniform r-partite hypergraphs, we introduce a new notion. A hypergraph is complete r-uniform (r,l)-partite if it has all r-sets that intersect each partite class in at most l vertices. Extending our results achieved for l=1, we prove that for any r >= 3, 2 <= l = 1+r-l, in every spanning k-coloring of the edges of a complete r-uniform (r,l)-partite hypergraph, the vertex set can be covered by at most 1+\lfloor \frac{k-r+\ell-1}{\ell}\rfloor sets, each connected in some color.Comment: 14 page

    More on Decomposing Coverings by Octants

    Get PDF
    In this note we improve our upper bound given earlier by showing that every 9-fold covering of a point set in the space by finitely many translates of an octant decomposes into two coverings, and our lower bound by a construction for a 4-fold covering that does not decompose into two coverings. The same bounds also hold for coverings of points in R2\R^2 by finitely many homothets or translates of a triangle. We also prove that certain dynamic interval coloring problems are equivalent to the above question

    Ramsey-nice families of graphs

    Get PDF
    For a finite family F\mathcal{F} of fixed graphs let Rk(F)R_k(\mathcal{F}) be the smallest integer nn for which every kk-coloring of the edges of the complete graph KnK_n yields a monochromatic copy of some F∈FF\in\mathcal{F}. We say that F\mathcal{F} is kk-nice if for every graph GG with χ(G)=Rk(F)\chi(G)=R_k(\mathcal{F}) and for every kk-coloring of E(G)E(G) there exists a monochromatic copy of some F∈FF\in\mathcal{F}. It is easy to see that if F\mathcal{F} contains no forest, then it is not kk-nice for any kk. It seems plausible to conjecture that a (weak) converse holds, namely, for any finite family of graphs F\mathcal{F} that contains at least one forest, and for all k≥k0(F)k\geq k_0(\mathcal{F}) (or at least for infinitely many values of kk), F\mathcal{F} is kk-nice. We prove several (modest) results in support of this conjecture, showing, in particular, that it holds for each of the three families consisting of two connected graphs with 3 edges each and observing that it holds for any family F\mathcal{F} containing a forest with at most 2 edges. We also study some related problems and disprove a conjecture by Aharoni, Charbit and Howard regarding the size of matchings in regular 3-partite 3-uniform hypergraphs.Comment: 20 pages, 2 figure

    Partitioning 3-colored complete graphs into three monochromatic cycles

    Get PDF
    We show in this paper that in every 3-coloring of the edges of Kn all but o(n) of its vertices can be partitioned into three monochromatic cycles. From this, using our earlier results, actually it follows that we can partition all the vertices into at most 17 monochromatic cycles, improving the best known bounds. If the colors of the three monochromatic cycles must be different then one can cover ( 3 4 − o(1))n vertices and this is close to best possible

    Colorful Strips

    Full text link
    Given a planar point set and an integer kk, we wish to color the points with kk colors so that any axis-aligned strip containing enough points contains all colors. The goal is to bound the necessary size of such a strip, as a function of kk. We show that if the strip size is at least 2k−12k{-}1, such a coloring can always be found. We prove that the size of the strip is also bounded in any fixed number of dimensions. In contrast to the planar case, we show that deciding whether a 3D point set can be 2-colored so that any strip containing at least three points contains both colors is NP-complete. We also consider the problem of coloring a given set of axis-aligned strips, so that any sufficiently covered point in the plane is covered by kk colors. We show that in dd dimensions the required coverage is at most d(k−1)+1d(k{-}1)+1. Lower bounds are given for the two problems. This complements recent impossibility results on decomposition of strip coverings with arbitrary orientations. Finally, we study a variant where strips are replaced by wedges
    • …
    corecore