
ar
X

iv
:1

60
4.

02
79

1v
1 

 [
m

at
h.

C
O

] 
 1

1 
A

pr
 2

01
6

Covering complete partite hypergraphs by

monochromatic components

András Gyárfás∗

Alfréd Rényi Institute of Mathematics

Hungarian Academy of Sciences

P.O. Box 127

Budapest, Hungary, H-1364

gyarfas.andras@renyi.mta.hu

Zoltán Király†

Eötvös Loránd University

Department of Computer Science and

MTA-ELTE Egerváry Research Group

Pázmány Péter sétány 1/C

Budapest, Hungary, H-1117

kiraly@cs.elte.hu

April 12, 2016

Abstract

A well-known special case of a conjecture attributed to Ryser (actually

appeared in the thesis of Henderson [7]) states that k-partite intersecting hy-

pergraphs have transversals of at most k−1 vertices. An equivalent form of the

conjecture in terms of coloring of complete graphs is formulated in [1]: if the

edges of a complete graph K are colored with k colors then the vertex set of K

can be covered by at most k− 1 sets, each connected in some color. It turned

out that the analogue of the conjecture for hypergraphs can be answered: Z.

Király proved [8] that in every k-coloring of the edges of the r-uniform com-

plete hypergraph Kr (r ≥ 3), the vertex set of Kr can be covered by at most

⌈k/r⌉ sets, each connected in some color.

Here we investigate the analogue problem for complete r-uniform r-partite

hypergraphs. An edge coloring of a hypergraph is called spanning if every

vertex is incident to edges of any color used in the coloring. We propose the

following analogue of Ryser conjecture.

In every spanning (r+t)-coloring of the edges of a complete r-uniform r-partite

hypergraph, the vertex set can be covered by at most t+1 sets, each connected

in some color.

We show that the conjecture (if true) is best possible. Our main result is

that the conjecture is true for 1 ≤ t ≤ r − 1. We also prove a slightly weaker
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result for t ≥ r, namely that t + 2 sets, each connected in some color, are

enough to cover the vertex set.

To build a bridge between complete r-uniform and complete r-uniform r-

partite hypergraphs, we introduce a new notion. A hypergraph is complete

r-uniform (r, ℓ)-partite if it has all r-sets that intersect each partite class in at

most ℓ vertices (where 1 ≤ ℓ ≤ r).

Extending our results achieved for ℓ = 1, we prove that for any r ≥ 3, 2 ≤
ℓ ≤ r, k ≥ 1 + r − ℓ, in every spanning k-coloring of the edges of a complete

r-uniform (r, ℓ)-partite hypergraph, the vertex set can be covered by at most

1 + ⌊k−r+ℓ−1
ℓ

⌋ sets, each connected in some color.

1 Introduction

For an edge-colored hypergraph H let Hi denote its subhypergraph consisting of
edges colored by i. The connected components of Hi are called monochromatic
components of color i, and a monochromatic component refers to a monochro-
matic component of color i for some i. Here connectivity is understood in its weakest
sense, a hypergraph is connected if either it has only one vertex or any two distinct
vertices can be connected by a sequence of edges each intersecting the next. Every
hypergraph can be uniquely partitioned into connected components. Components
with a single vertex are called trivial.

Given an edge-colored hypergraph H , let c(H) denote the minimum integer m

such that V = V (H), the vertex set of H , can be covered by m monochromatic
components of H . An edge coloring of a hypergraph is called spanning if every
vertex is incident to edges of any color used in the coloring. Note that in spanning
colorings every monochromatic component is non-trivial. The importance of this
definition is shown in Theorem 1.1.

A conjecture attributed to Ryser which actually appeared in [7] is that k-partite
intersecting hypergraphs have transversals of at most k − 1 vertices. An equivalent
form is formulated in [1] as follows: if K is a complete graph with a k coloring on its
edges, then c(K) ≤ k − 1. The conjecture is true for k ≤ 5 and seems very difficult
in general (further information can be found in [3], [6]). A particular feature of the
conjecture is that c(K) ≤ k is obvious since the monochromatic stars at any vertex
form monochromatic components. Note that the conjecture is obvious for colorings
that are not spanning.

Surprisingly, the problem for hypergraphs is easier, Z. Király in [8] showed that
if the edges of the complete r-uniform hypergraph K (r ≥ 3) are colored with k

colors, then c(K) ≤ ⌈k/r⌉ and this is best possible (the k = r case were already in
[1] extending the well-known remark of Erdős and Rado stating that a graph or its
complement is connected).

The problem naturally extends for sparser host graphs (or hypergraphs). Gyárfás
and Lehel conjectured that for k-colored complete bipartite graphs G, c(G) ≤ 2k−2
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(see [2]), here again c(G) ≤ 2k−1 is obvious. For the hypergraph case [4, 5] initiated
the study of c(H) when H has bounded independence number.

The main subject of the present paper is the case when the target hypergraph
K is a complete r-uniform r-partite hypergraph, i.e., when V = V (K) is parti-
tioned into nonempty classes V1∪ . . .∪Vr and the edges of K are the sets containing
one vertex from each class. Let cov(r, k) denote the maximum of c(K) when K

ranges over spanning k-colorings of complete r-uniform r-partite hypergraphs, and
COV(r, k) denote the maximum of c(K) when K ranges over (not necessarily span-
ning) k-colorings of complete r-uniform r-partite hypergraphs.

Throughout the paper we always assume r ≥ 3. Our introductory theorem
shows that only the spanning colorings are the interesting ones. For any positive
integer k we use the standard notation [k] = {1, 2, . . . , k}.

Theorem 1.1. If r ≥ 3, then COV(r, k) = k.

Proof. Let K be a k-edge-colored r-uniform r-partite complete hypergraph. Take
an edge e of K. Let C1, . . . , Cℓ be the monochromatic components with |Ci ∩ e| ≥
r − 1. As r > 2, clearly no two of them have the same color, so ℓ ≤ k. For every
vertex v ∈ V there is an edge f ∋ v with |f ∩ e| = r − 1, so v is covered by one of
these components.
For the sharpness let V1 = [k] and color each edge e by color e ∩ V1. �

We remark that if a coloring of the r-uniform r-partite complete hypergraph is
spanning, then all monochromatic components meet every class. An edge of color i

in a k-colored r-uniform hypergraph K is called essential if it is not contained in
monochromatic components of any color different from i. When cov(r, k) is studied
we may restrict ourselves to colorings having at least one essential edge in every
used color, since otherwise a color can be eliminated by recoloring all edges of that
color to some other color and the resulting hypergraph would still have a spanning
coloring and the same set of (maximal) monochromatic components. This concept
is established in [8] and works well in the proof of our initial result.

Theorem 1.2. cov(r, k) = 1 for every 1 ≤ k ≤ r ≥ 3.

Proof. Let e = {v1, . . . , vr} be an essential edge of color 1 in a complete r-uniform
r-partite hypergraph with vertex set V = ∪r

i=1Vi where vi ∈ Vi. Let Ri = e−{vi} and
denote by Col(Ri) ⊆ [k] the set of colors appearing on any edge of the form Ri∪{v′i}
(where v′i ∈ Vi). As Col(Ri) ∩ Col(Rj) = {1} for i 6= j, by the pigeonhole principle
there exists j such that Col(Rj) = {1}. Now Vj is covered by the monochromatic
component containing e (of color 1), and, as the coloring is spanning, it necessarily
covers the whole V . �

By Theorem 1.2 from this point we may assume that k = r+ t with some integer
t ≥ 1.

Conjecture 1. cov(r, r + t) = t+ 1 for every r ≥ 3, t ≥ 1.
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It is worth formulating this conjecture in dual form. Assume K is a complete
r-uniform r-partite hypergraph with a spanning k-coloring. Consider a new hyper-
graph H with vertex set V (K) whose edges are the vertex sets of the monochromatic
components in the coloring. The dual F of this new hypergraph H is a k-uniform
k-partite complete hypergraph whose edges are partitioned into r classes with the
property that any r edges from different partite classes have nonempty intersection.
As the coloring of K was spanning, monochromatic components have at least r ver-
tices. In this setting Conjecture 1 can be stated in terms of the transversal number
τ(F ), the minimum number of vertices intersecting all edges of F .

Conjecture 2. Assume that the edges of a k-uniform k-partite hypergraph F with
minimum degree at least r ≥ 3 are partitioned into r classes so that any r edges
from different classes have nonempty intersection. Then τ(F ) ≤ k − r + 1.

In Section 2 we show that Conjecture 1 (if true) is best possible, and it is “almost”
true, i.e., cov(r, r+ t) ≤ t+2 for every t ≥ 1 (Theorem 2.6). We also prove that the
conjecture is true for 1 ≤ t ≤ r − 2 (Theorem 2.5). Our most difficult result makes
one further step, proving Conjecture 1 for t = r − 1 (Theorem 2.7).

In Section 3 we investigate c(H) for hypergraphs “between” complete and com-
plete partite, in order to build a bridge between the results proved in Section 2 and
the results of [8]. We call a hypergraph (r, ℓ)-partite if its vertex set is partitioned
into r nonempty classes, such that the intersection of any edge and any class has at
most ℓ vertices. We call a hypergraph complete r-uniform (r, ℓ)-partite if it contains
all r-element sets as edges which meet every partition class in at most ℓ vertices.
Let cov(r, ℓ, k) denote the minimum number of monochromatic components needed
to cover the vertex set of any complete r-uniform (r, ℓ)-partite hypergraph in any
spanning k-coloring. For 2 ≤ ℓ ≤ r we determine exactly the values of cov(r, ℓ, k).
We conclude our paper by summarizing the results achieved. Our main result is
Theorem 3.5, stating that

cov(r, ℓ, k) = 1 +
⌊k − r + ℓ− 1

ℓ

⌋

for every r ≥ 3, k ≥ 1 + r − ℓ, 1 ≤ ℓ ≤ r, except for the cases (ℓ = 1 and k ≥ 2r),
where only we could prove a slightly weaker upper bound.

2 Results for complete r-uniform r-partite hyper-

graphs

2.1 Lower bound

Construction 1. For t ≥ 1, r ≥ 3, k = r + t, we define a complete r-uniform
r-partite hypergraph K(r, t) with a k-coloring of its edges as follows. The vertex set
V of K(r, t) is partitioned into r classes, V1, . . . , Vr. The first class V1 has

(

k

t

)

vertices
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associated to the t-element subsets of [k]. For 2 ≤ j ≤ r set Vj = A1
j ∪ · · · ∪ Ak

j ,
where the Ai

j-s are disjoint and have
(

k−1
t−1

)

vertices. Fix an arbitrary linear order on
every Ai

j .
First we define special edges of color i for any i ∈ [k]. Consider the set Wi of

(

k−1
t−1

)

vertices of V1 associated to t-sets of [k] containing i.

• Special edges of color i are the
(

k−1
t−1

)

edges whose vertex from Wi is the ℓ-th
in lexicographic order, and for all 2 ≤ j ≤ r whose vertex from Vj is the ℓ-th
in the fixed linear order of Ai

j for ℓ = 1, . . . ,
(

k−1
t−1

)

. Thus special edges of color
i form a matching for all i, i = 1, . . . , k.

• Non-special edges with vertices v1 ∈ V1, . . . , vr ∈ Vr get their color as the
smallest c ∈ [k] such that c is not in the set associated to v1 and vj /∈ Ac

j for
all 2 ≤ j ≤ r.

Note that every non-special r-tuple v1, . . . , vr gets a color because the conditions
forbid at most t+ r − 1 colors. Observe also that a special edge of color i is always
disjoint from any other edge of color i. Consequently a special edge of color i

forms a monochromatic component of color i having r vertices, we call them small
monochromatic components.

We claim that the coloring given is spanning. Suppose first that v ∈ V1 repre-
senting wlog the set [t] ⊂ [k]. For any 1 ≤ i ≤ t, v is in a special edge of color i.
On the other hand, for any t < i ≤ r+ t we can select vertices v2 ∈ Aj2

2 . . . , vr ∈ Ajr
r

so that the upper indices jt take all values except i from t + 1, . . . , t+ r. Then the
non-special edge v, v2, . . . , vr is colored by i.

On the other hand, let v ∈ Ai
j for some 1 < j ≤ r, 1 ≤ i ≤ k. Clearly v is in a

special edge of color i. For any c 6= i such that 1 ≤ c ≤ k we can take any vertex
w ∈ V1 associated to a t-set A of [k] such that c, i /∈ A. Set B = [k]\ (A∪{i}∪{c}).
Then from the (r−2) Vt-s where t /∈ {1, j} we can pick a set of r − 2 vertices with
distinct superscripts in B. These vertices together with v, w define an edge that
must be colored with c. Thus the coloring of K(r, t) is spanning.

Theorem 2.1. cov(r, r + t) ≥ t + 1 for every r ≥ 3, t ≥ 1.

Proof. Consider the hypergraph K(r, t). Note that the union of at most t large
monochromatic components do not cover V1. Let their colors be c1, . . . , cs with
s ≤ t, and take any t-set that contains {c1, . . . , cs}; the vertex in V1 associated to
this set is not covered.

The uncovered vertices of V1 must be covered by small monochromatic compo-
nents, and every such component can contain just one vertex of V1. Therefore we
need

(

k−s

t−s

)

> t− s small monochromatic components to cover them, thus altogether
we need more than s+ (t− s) = t monochromatic components to cover the vertices
of K(r, t). �
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2.2 Upper bounds

We need some additional notation. We assign vectors of length k to every element
of the base set V = V1∪ . . .∪Vr. For v ∈ V the ith coordinate v(i) of the associated
vector v is the serial number of the monochromatic component of color i containing
v. The Hamming distance of two vertices δ(v, w) = δ(v,w) is the number of places
the two associated vectors differ.

Statement 2.2. For i = 1, . . . , r let vi ∈ Vi. Then there exists c ∈ [k] and an

integer s, such that vi(c) = s for all i ≤ r.

Proof. The edge e = {v1, v2, . . . , vr} is colored by a color, say, by color c. Then
the vertices of e belong to the same monochromatic component of color c. �

Lemma 2.3. Either cov(r, r + t) = 1, or for any two vertices v, w from different

classes, δ(v, w) ≤ t+ 1.

Proof. Wlog v ∈ V1, w ∈ V2 and v = 1 . . . 1 and w = 1 . . . 12 . . . 2, where the
number of ones is at most r− 2. As the coloring is spanning and no monochromatic
component covers V , we can choose v3, . . . , vr, such that vi ∈ Vi and vi(i− 2) > 1.
However, this contradicts to Statement 2.2. Thus the number of twos in w is at
most t+ 1, so δ(v, w) ≤ t+ 1. �

Lemma 2.4. If cov(r, r + t) > 1 and w1, . . . , wℓ are vertices from different classes,

then for J = {j ∈ [k] | w1(j) = w2(j) = . . . = wℓ(j)} we have |J | ≥ r + 1− ℓ.

Proof. If ℓ = r, then this statement coincides with Statement 2.2. Otherwise
suppose |J | ≤ r − ℓ and J = {j1, . . . , j|J |}. We may choose at most r − ℓ vertices
u1, . . . , u|J | from the classes not having a wi with ui(ji) 6= w1(ji), contradicting to
Statement 2.2. �

Theorem 2.5. cov(r, r + t) ≤ t + 1 for every 1 ≤ t ≤ r − 2 and r ≥ 3.

Proof. Suppose the statement does not hold. First we claim that for any i 6= j and
for any a ∈ Vi, b ∈ Vj we have δ(a, b) ≤ t. Suppose not, wlog a ∈ V1, b ∈ V2, such
that a = 1 . . . 1 and b = 1 . . . 12 . . . 2, where b ends with q 2-values, and q ≥ t + 1,
consequently q = t + 1 by Lemma 2.3.

As two monochromatic components do not cover V , there exists d ∈ V3, such
that d(t + r) > 2. By the assumption we have a vertex c ∈ Vi for some i with
c(j) 6= 1 for j = 1, . . . , t+ 1.

If i > 1, then by Lemma 2.3 δ(a, c) ≤ t+1 and so c(j) = 1 for j = t+2, . . . , t+r.
As t + 1 ≤ r − 1, δ(b, c) ≥ 2t + 2, so i = 2. Now δ(d, b) ≤ t + 1 and δ(d, c) ≤ t + 1

but δ(b, c) = 2t+ 2, so d has to agree with either b or c in every coordinate where
b and c differ. However, this is not the case for the (t+ r)-th coordinate.

If i = 1, then by Lemma 2.3 δ(b, c) ≤ t+1 and so c(j) = b(j) for j = t+2, . . . , t+

r, as t+1 ≤ r− 1. Now δ(d, a) ≤ t+ 1 and δ(d, c) ≤ t+ 1 but δ(a, c) = 2t+ 2, so d
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has to agree with either a or c in every coordinate where a and c differ. However,
this is not the case for the (t+ r)-th coordinate and the claim is proved.

Let a, b, c as before, now q ≤ t, so we have δ(a, c) ≥ t+ 1 and δ(b, c) ≥ t+ 1 but
this contradicts to the claim because either c 6∈ V1 or c 6∈ V2. �

Theorem 2.6. cov(r, r + t) ≤ t + 2 for every 2 ≤ r − 1 ≤ t.

Proof. Suppose the statement does not hold. First we claim that there exist
i 6= j, a ∈ Vi, b ∈ Vj , such that δ(a, b) ≥ r − 2. Wlog a∅ ∈ V1 with a∅ = 11 . . . 1.
For each J ⊆ [k], |J | = t+2, there exists a vertex aJ with aJ(j) 6= 1 for each j ∈ J .
(Note, that for J 6= J ′, aJ = aJ ′ is possible.) These vertices have Hamming distance
δ(aJ , a∅) > t+ 1 from a∅, consequently, by Lemma 2.3, they all are in V1. Take any
vertex b ∈ V2, we claim that δ(b, aJ) ≥ r−2 for either J = ∅ or for a |J | = t+2. Let
I = {i | b(i) = 1}. If |I| < t + 2, then δ(b, a∅) ≥ r − 2 and we are done, otherwise
take any J ⊆ I with |J | = t + 2. Now obviously δ(b, aJ) ≥ t + 2 ≥ r + 1, proving
the claim.

By the claim we have wlog b1 ∈ V1, b2 ∈ V2 where b1 = 11 . . . 1 and b2 =

22 . . . 211 . . . 1, and b2 starts with r − 2 + q twos (q ≥ 0). If two monochromatic
components cover V , then we are done, otherwise we have bi ∈ Vi for i = 3, 4, . . . , r,
such that bi(i−2) > 2. Take also a vertex d ∈ V , where d(j) 6= br(j) for r−2 < j ≤
r−2+q and d(j) 6= 1 for r−2+q < j ≤ r+t; this involves (r+t)−(r−1)+1 = t+2

coordinates, by our assumption such a vertex must exist.
Thus d ∈ Vi for some 1 ≤ i ≤ r. Take the edge e = {bj | j 6= i}∪{d}, it is colored

by some color c. Observe that d differs form both b1 an b2 in the last t + 2 − q

coordinates, so c ≤ r − 2 + q. If c ≤ r − 2, then we have i1, i2 ∈ [r]− {i} such that
bi1(c) 6= bi2(c), so r − 2 < c ≤ r − 2 + q. However, if i < r, then br(c) 6= d(c),
otherwise b1(c) 6= b2(c). Thus c does not exist, contradiction. �

2.3 The case t = r − 1

Theorem 2.7. cov(r, 2r − 1) = r if r ≥ 3.

Suppose the statement does not hold, let k = 2r−1 and fix a k-colored r-uniform
r-partite hypergraph K where c(K) ≥ r + 1 (and the coloring is spanning).

Claim 2.8. For any i 6= j and a ∈ Vi, b ∈ Vj we have

r − 1 ≤ δ(a, b) ≤ r.

Proof. The upper bound comes from Lemma 2.3. To prove the lower bound, wlog
assume that we have a ∈ V1, b ∈ V2 with vectors

a = 11 . . . 111, b = 2 . . . 21 . . . 1

where b begins with q ≤ r − 2 twos. Suppose first that q > 0.

7



As two monochromatic components do not cover V , we can choose vertices
d3, . . . , dr with di ∈ Vi and di(i− 2) = 3. We claim that di(j) = 1 for all 3 ≤ i ≤ r

and r − 1 ≤ j ≤ 2r − 1. Otherwise the index set J = {j | d3(j) = d4(j) = . . . =

dr(j) = 1} has size at most r, so there is a set I such that J ⊆ I ⊆ {r−1, . . . , 2r−1}
and |I| = r. There is a vertex cI with the property cI(j) 6= 1 for all j ∈ I. As either
δ(cI , a) > r or δ(cI , b) > r, cI ∈ V1 ∪ V2. If cI ∈ V1, then cI , b, d3, . . . , dr, otherwise
a, cI , d3, . . . , dr contradicts to Lemma 2.3, so d3(j) = 1 for all r − 1 ≤ j ≤ 2r − 1.
Now for I = {r, . . . , 2r − 1} we also have cI ∈ V1 ∪ V2, and cI(1) = a(1) = 1 (if
cI ∈ V2) or cI(1) = b(1) = 2 (if cI ∈ V1) also follows, so δ(cI , d3) ≥ 1 + |I| = 1 + r

contradicting to Lemma 2.3.
We conclude that q = 0, thus a = b are both the all-1 vectors. Then for all

I ⊂ [2r − 1], |I| = r there exist vertices cI such that cI(j) 6= 1 for all j ∈ I. As
either δ(cI , a) ≤ r or δ(cI , b) ≤ r must hold, cI(j) = 1 for all j ∈ [2r − 1] − I.
Suppose that for I1, I2 ⊂ [2r − 1] the complementary sets I1, I2 are disjoint. Then
the corresponding vertices cI1 and cI2 must be in the same vertex class, otherwise
the Hamming distance of their vectors would be at least 2(r− 1) ≥ r+1. Since the
Kneser graph defined by disjoint (r−1)-element subsets of a (2r−1)-element ground
set is a connected graph, all the cI-s are in the same class, call it the full class; by
symmetry we may assume that it is not V1. Select vertices d2 ∈ V2 and d3 ∈ V3 such
that di(i) = 3. Observe that di has at most r ones because 1 ≤ δ(a, di) ≤ r − 2

cannot happen. If the full class is V2, let I contain the positions where d3 is 1, then
a, cI , d3 violate Statement 2.2. If the full class is Vj for j ≥ 3, let I contain the
positions where d2 is 1, now a, d2, cI violate Statement 2.2. �

Claim 2.9. If a, b are two vertices from different partite classes such that δ(a, b) =

r−1, then some of these classes contain two vertices with Hamming distance 2r−1.

Proof. Assume wlog that there are a ∈ V1, b ∈ V2 such that a = 11 . . . 111, b =

2 . . . 21 . . . 1 where b ends with exactly r ones. There exists a vertex c ∈ V with
c(j) 6= 1 if r ≤ j ≤ 2r − 1. By Statement 2.2, c ∈ V1 ∪ V2. If c ∈ V1, then (as
δ(c, b) ≤ r) its vector starts with r−1 twos, so a, c is a pair required. If c ∈ V2, then
its vector starts with r−1 ones, so b, c is a pair required. �

Claim 2.10. For any two vertices v, w from the same partite class,

δ(v,w) < 2r − 1.

Proof. Assume indirectly that we have two vertices wlog v, w ∈ V1,

v = 11 . . . 11, w = 22 . . . 22.

For any 2 ≤ i ≤ r, 1 ≤ j ≤ 2r − 1 there exist vertices vji ∈ Vi such that v
j
i (j) = 3

by our assumption. They are all distinct because their vectors must contain exactly
r−1 ones and exactly r−1 twos since their distance from both v, w must be at most
r−1.

8



Statement 2.11. Let v and w be 1-2 vectors of the same length. If the number of

ones in v and w have the same parity, then δ(v,w) is even, otherwise it is odd. �

Statement 2.12. δ(vji , v
j′

i ) ≤ 2r − 2 for any 2 ≤ i ≤ r, 1 ≤ j < j′ ≤ 2r − 1.

Proof. Suppose wlog δ(v12, v
2
2) = 2r − 1 and

v1
2 = 31 . . . 12 . . . 2, v2

2 = 232 . . . 21 . . . 1.

At this point the parity of r comes into play. If r is even, then δ(v33, v
1
2) ≤ r and

δ(v33, v
2
2) ≤ r by Lemma 2.3, thus for each ℓ 6= 3 either v3

3(ℓ) = v1
2(ℓ) or v3

3(ℓ) = v2
2(ℓ)

and δ(v33, v
1
2) = δ(v33, v

2
2) = r. Accordingly v3

3(1) = 2, v3
3(2) = 1 and in the positions

ℓ > 3 v3
3 has r−2 ones but v1

2 has r−3 ones and v2
2 has r−1 ones, leading to a

contradiction by Statement 2.11. If r is odd, then we consider v2r−1
3 instead of v33,

here for each ℓ 6= 2r−1 either v3
3(ℓ) = v1

2(ℓ) or v3
3(ℓ) = v2

2(ℓ), so v3
3(1) = 2, v3

3(2) = 1.
Now we focus to positions ℓ = 3, . . . , 2r − 2 where v1

2,v
2
2,v

2r−1
3 have r−2 ones. By

Statement 2.11 δ(v2r−1
3 , v12) and δ(v2r−1

3 , v22) is even, however, they should be exactly
r which is odd. �

Statement 2.13. Suppose 2 ≤ i < i′ ≤ r. Then

δ(vji , v
j
i′) =

{

r if r is even

r − 1 if r is odd

Also, δ(vji , v
j′

i′ ) = r for any j 6= j′. Moreover

v
j
i (j

′) =

{

v
j′

i′ (j) if r is even

3− v
j′

i′ (j) if r is odd

Proof. The first part is a consequence of Claim 2.8 and Statement 2.11. If
δ(vji , v

j′

i′ ) = r − 1 then by Claim 2.9 we get a vertex a wlog in Vi such that
δ(a, vji ) = 2r − 1, moreover a agrees with v

j′

i′ in all positions where v
j′

i′ and v
j
i

differ. Thus a(j′) = 3, so we may call it vj
′

i for getting a contradiction by Statement
2.12. Having this, the last part is a consequence of Statement 2.11. �

We associate matrices to the selected vertices as follows. For i = 2 . . . r let
Ai(j, j

′) = 0 if j = j′, Ai(j, j
′) = 1 if vj

i (j
′) = 1, and Ai(j, j

′) = −1 if vj
i (j

′) = 2.
These are (2r−1)× (2r−1) matrices, we introduce the following operation for them.

A∗
i := (−1)r · AT

i .

Now Ai′ = A∗
i for any i 6= i′ by the last part of Statement 2.13. For the case r ≥ 4 it

is easy to complete the proof of Claim 2.10. Indeed, as A3 = A4 = A∗
2, we have e.g.,

v1
3 = v1

4 contradicting to Statement 2.13. For the case r = 3 we need some extra
work. As 2r− 1 = 5 now, we have 5× 5 matrices, and every row contains two 1 and
two −1 entries. We define an auxiliary graph G on vertex set [5]. Let ij is an edge
iff A2(i, j) = A2(j, i) = 1. We claim that in this graph all five vertices have degree
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1, leading to a contradiction. If dG(i) = 0, then the ith row of A2 is the negative of
the ith column. As A3 = A∗

2 we have vi
2 = vi

3 contradicting to Statement 2.13. If
dG(i) ≥ 2, then the ith row of A2 equals to the ith column. As A3 = A∗

2 we have
δ(vi

2,v
i
3) = 2r − 2 = 4, contradicting again to Statement 2.13. Thus Claim 2.10 is

proved. �

Combining the claims we conclude with the following corollary.

Corollary 2.14. For any two vertices v, w from different classes, δ(v, w) = r, and

for any two vertices u, v from the same class, δ(u, v) ≤ 2r − 2.

Now we are ready for finishing the proof of Theorem 2.7. Select two vertices
v ∈ V1, w ∈ V2, wlog v = 11 . . . 11, w = 22 . . . 2211 . . . 1 where w starts with
exactly r twos. Accordingly, for a vector of length 2r− 1 we call its first part
the first r coordinates, and its last part the last r−1 coordinates. There exists
a y ∈ V3 with y(1) = 3, and let I = {i | y(i) = 1} and α = |I ∩ [r]| (i.e., the
number of ones in its first part). Since δ(y, v) = r, we have |I| = r − 1, and since
δ(y, v) = δ(y, w), y has exactly α twos in its first part, so α ≤ r−1

2
. There exists a

J ⊂ [2r−1], J ⊃ I, |J | = r, |J∩[r]| ≤ r−1
2

, and by the assumption (r monochromatic
components do not cover V ) there exist a vertex vJ with the property vJ(j) 6= 1 for
all j ∈ J .

If vJ /∈ V1 ∪ V2 then each of it coordinates is 1 outside J , as δ(vJ , v) = r. By the
definition of J , it means that vJ has β ≥ r+1

2
ones in the first part and β non-ones

in the second part, so δ(vJ , w) ≥ β + β ≥ r + 1, a contradiction.
Therefore vJ ∈ V1 ∪ V2, then δ(y, vJ) = r implies that y and vJ are equal

outside I, with possibly one exception. However, y(j) 6= 1 for any j ∈ [2r − 1]− J ,
consequently vJ can have at most one coordinate that is 1. Thus vJ ∈ V1, and
δ(vJ , v) ≥ 2r − 2, consequently by Corollary 2.14 it equals to 2r − 2 and vJ has
exactly one coordinate that is 1.

Let I ′ = {i | vJ(i) = w(i) = y(i)}, by Lemma 2.4 we have |I ′| ≥ r−2. However,
I ′ ⊂ {j ≤ r | y(j) = 2}, and this latter set has cardinality α ≤ r−1

2
, so r − 2 ≤ r−1

2
,

i.e., r ≤ 3, which leads to a contradiction, except for the case r = 3, α = 1.
Now vJ(i) = 1 for an i ≤ 3, let J ′ = {i, 4, 5} and define vJ ′ as vJ ′(j) 6= 1 if

j ∈ J ′. Now vJ ′ ∈ V1 ∪ V2 because otherwise δ(vJ ′ , v) = δ(vJ ′, w) = 3 would lead to
a contradiction. If vJ ′ ∈ V2, then vJ ′(j) = 1 for j 6∈ J ′, now we choose z ∈ V3 with
z(i) = 1. As δ(z, v) = 3, z has exactly one other 1 but if its position is in {1, 2, 3},
then δ(z, w) ≥ 4, and if in {4, 5}, then δ(z, vJ ′) ≥ 4.

So vJ ′ ∈ V1, consequently, by δ(vJ , w) = δ(vJ ′ , w) = 3, both vJ and vJ ′ have 2
twos in the first part, let ℓ ∈ [3] the position of a common 2 and we now choose
t ∈ V3 with t(ℓ) = 3. Since δ(t, v) = δ(t, w) = 3, t has one 1 and one 2 in the first
part, and one 2 in the second part, contradicting to δ(vJ , t) = δ(vJ ′ , t) = 3. �

Corollary 2.15. If r ≥ 3, then cov(r, k) = 1 for every 1 ≤ k ≤ r,

cov(r, k) = k − r + 1 for every r ≤ k ≤ 2r − 1,

and for any k ≥ 2r we have k − r + 1 ≤ cov(r, k) ≤ k − r + 2.
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3 Generalized complete uniform hypergraphs

Definition 3.1. A hypergraph is called (r, ℓ)-partite if the ground set V is parti-
tioned into nonempty classes V1 ∪ . . . ∪ Vr, and no edge intersects any Vi in more
than ℓ vertices. A hypergraph is complete r-uniform (r, ℓ)-partite if its edge set
consists of all r-tuples intersecting each class in at most ℓ vertices. An edge of an
(r, ℓ)-partite hypergraph is called friendly if it intersects at most one class in exactly
ℓ vertices; otherwise we call it unfriendly. An r-uniform (r, ℓ)-partite hypergraph is
called semicomplete if its edge set consists of all r-tuples intersecting at most one
class in exactly ℓ vertices (that is, it consists of the friendly edges of the complete r-
uniform (r, ℓ)-partite hypergraph). An r-uniform (r, ℓ)-partite hypergraph is called
rich if it contains all edges of the semicomplete hypergraph.

Among r-uniform hypergraphs the complete (r, 1)-partite hypergraphs are the
complete r-partite ones and complete (r, r)-partite hypergraphs are the complete
ones. The complete (r, r−1)-partite hypergraphs are also interesting, containing all
r-tuples of V except those that are contained in some Vi. The purpose of this section
is to build a bridge between the two known extreme cases (ℓ = r was solved in [8],
ℓ = 1 was handled in the previous section).

For 1 ≤ ℓ ≤ r, let cov(r, ℓ, k) denote the minimum number of monochromatic
components needed to cover the vertex set of any complete r-uniform (r, ℓ)-partite
hypergraph in any spanning k-coloring.

Conjecture 3.

cov(r, ℓ, k) = 1 +
⌊k − r + ℓ− 1

ℓ

⌋

for every r ≥ 3, k ≥ 1 + r − ℓ, 1 ≤ ℓ ≤ r.

We start with giving the lower bound.

Construction 2. This construction is a straightforward generalization of Construc-
tion 1. We have r, k, ℓ fixed with k ≥ r+1 ≥ 4 and 1 ≤ ℓ ≤ r, and let q = ⌊k−r+ℓ−1

ℓ
⌋

and k′ = q ·ℓ+r−ℓ+1 ≤ k. First we fix the sizes and labels of the classes. |V1| =
(

k′

q

)

and elements V1 are labeled with the q-element subsets of [k′]. For 2 ≤ j ≤ r set Vj

is a disjoint union of Vj = A1
j ∪ · · · ∪Ak′

j where |Ai
j | =

(

k′−1
q−1

)

, all elements of Ai
j are

labeled with set {i} and have an arbitrary fixed linear order. Now take an arbitrary
rich r-uniform (r, ℓ)-partite hypergraph Hrich on V = V1 ∪ . . . ∪ Vr, we are going to
define a spanning k′-coloring of its edges.

First we define special edges of color i for any i ∈ [k′]. Consider the set Wi of
(

k′−1
q−1

)

vertices of V1 associated to q-sets of [k′] containing i.

Special edges of color i are the
(

k′−1
q−1

)

edges whose vertex from Wi is the ℓ-th in
lexicographic order, and for all 2 ≤ j ≤ r whose vertex from Vj is the ℓ-th in the
fixed linear order of Ai

j for ℓ = 1, . . . ,
(

k′−1
q−1

)

. Thus special edges of color i form a
matching for all i.

11



Non-special edges with vertices v1, . . . , vr get their color as the smallest c ∈ [k′]

such that c is not in the union of sets associated to v1, . . . , vr.
Note that every non-special r-tuple v1, . . . , vr gets a color because the conditions

forbid at most ℓ · q + (r − ℓ) < k′ colors. Observe also that a special edge of color
i is always disjoint from any other edge of color i. Consequently a special edge of
color i forms a monochromatic component of color i having r vertices, we call them
small monochromatic components.

We claim that the coloring is spanning. Suppose first that v ∈ V1 representing
the set Q1 ⊂ [k′]. For any i ∈ Q1, v is in a special edge of color i. On the other
hand, for any i 6∈ Q1 we can select vertices v2, . . . , vℓ ∈ V1 with associated q-sets
Q2, . . . , Qℓ ⊆ [k′]−{i}, such that for every j 6= j′ sets Qj and Qj′ are disjoint. Then
we may select vℓ+1, . . . , vr from V2, . . . , Vr−ℓ+1, such that the associated one-element
subsets are distinct, and are subsets of [k′] − {i} − ∪Qj . Now the union of the
associated sets of our selected r-tuple is [k′]− {i}, thus it was colored by i.

On the other hand, let vr ∈ Ai
j for some 2 ≤ j ≤ r, 1 ≤ i ≤ k′. Clearly vr is

in a special edge of color i. For any 1 ≤ c ≤ k′ if c 6= i, then we can take vertices
v1, . . . , vℓ ∈ V1 with associated q-sets Q1, . . . , Qℓ ⊆ [k′] − {i} − {c}, such that for
every j 6= j′ sets Qj and Qj′ are disjoint. Then we may select vℓ+1, . . . , vr−1 from
V2 ∪ . . . ∪ Vr − Vj, such that the associated one-element subsets are distinct, and
are subsets of [k′] − {i} − {c} − ∪Qj . Now the union of the associated sets of our
selected r-tuple is [k′]− {c}, thus it was colored by c.

Theorem 3.2. cov(r, ℓ, k) ≥ 1+⌊k−r+ℓ−1
ℓ

⌋ for every r ≥ 3, k ≥ 1+r−ℓ, 1 ≤ ℓ ≤ r.

Proof. The statement is obvious if k ≤ r. Consider Construction 2. Note that
the union of at most q = ⌊k−r+ℓ−1

ℓ
⌋ large monochromatic components do not cover

V1. Let their colors are c1, . . . , cs with s ≤ q, and take any q-set that contains
{c1, . . . , cs}; the vertex in V1 associated to this set is not covered.

The uncovered vertices of V1 must be covered by small monochromatic compo-
nents, and every such component can contain just one vertex of V1. Therefore we
need

(

k′−s

q−s

)

> q−s small monochromatic components to cover them, thus altogether
we need more than s+ (q− s) = q monochromatic components to cover all vertices.
�

Remark 3.3. The basic idea of the above construction is from [8] where the con-
structed coloring for complete r-uniform hypergraphs is not spanning (this was not
an issue of that paper). Here, when ℓ = r, we gave another construction for complete
r-uniform hypergraphs where the coloring is spanning.

Theorem 3.4. cov(r, ℓ, k) ≤ 1+⌊k−r+ℓ−1
ℓ

⌋ for every r ≥ 3, k ≥ 1+r−ℓ, 2 ≤ ℓ ≤ r.

Proof. The proof goes similarly as in the proof of Theorem 1.2. Fix the nonempty
classes V1, . . . , Vr and take any rich r-uniform (r, ℓ)-partite hypergraph Hrich with
a spanning k-coloring of its edges. We are going to show by induction on k that
c(Hrich) ≤ 1 + ⌊k−r+ℓ−1

ℓ
⌋. The cases k ≤ r are obvious.
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Let e = {u1, . . . , ur} be an essential edge of Hrich colored by 1, if no such edge
exists, then recolor edges having color 1 and use induction. Until there exists an
essential friendly edge colored by 1, we choose that edge for e. If all essential edges
colored by 1 are unfriendly, then simply delete them from Hrich getting a (k−1)-
colored rich hypergraph, where the coloring is still spanning, so we are done by
induction.

So e is a friendly essential edge, wlog ℓ ≥ |e∩V1| ≥ |e∩Vj| for all j. As e is friendly,
we also have |e∩Vj | < ℓ for j > 1. Take Ru1

, . . . , Rur
, where Ruj

= e−{uj}, for any
i 6= j we have Col(Rui

)∩Col(Ruj
) = {1}, so there is a j with |Col(Ruj

)| ≤ 1+⌊k−1
r
⌋.

First consider the case |Ruj
∩V1| < ℓ (note that this is always true for ℓ = r). We

also emphasize here that for this case we do not need the coloring to be spanning.
For any vertex v ∈ V the set Ruj

∪ {v} is a friendly edge of Hrich, consequently the
monochromatic components of colors in Col(Ruj

) containing Ruj
cover the whole

V . We need to prove ⌊k−1
r
⌋ ≤ ⌊k−r+ℓ−1

ℓ
⌋. For k − 1 < r both are zero, otherwise

(r − ℓ)(k − 1) ≥ (r − ℓ)r, so k−1
r

≤ k−r+ℓ−1
ℓ

.
So we are left with the case |Ruj

∩V1| = ℓ. There are two possibilities. Either one
of Col(Rui

) = {1} for an i > 1, in this case the monochromatic component containing
ui and colored by 1 covers V because it covers V − V1, as for all v ∈ V − V1 the set
e − {ui} ∪ {v} is an edge of Hrich, and (using that the coloring is spanning), every
w ∈ V1 is incident to an edge colored by 1 and this edge meets V − V1.

Otherwise |Col(Rui
)| ≥ 2 for all i > 1, so by the pigeonhole principle there is a

2 ≤ i ≤ ℓ with |Col(Rui
)| ≤ 1 + ⌊k−1−(r−ℓ)

ℓ
⌋, and the monochromatic components of

colors in Col(Rui
) containing e − {ui} cover the whole V because e− {ui} ∪ {v} is

an edge of Hrich for every v ∈ V − e. �

Summarizing the results of this section and Corollary 2.15, we proved Conjecture
3 for almost all cases. We also proved that Conjecture 3 is equivalent to Conjecture
1.

Theorem 3.5 (Main theorem).

cov(r, ℓ, k) = 1 +
⌊k − r + ℓ− 1

ℓ

⌋

for every r ≥ 3, k ≥ 1 + r − ℓ, 1 ≤ ℓ ≤ r, except when ℓ = 1 and k ≥ 2r, where

only 1 + ⌊k−r+ℓ−1
ℓ

⌋ ≤ cov(r, ℓ, k) ≤ 2 + ⌊k−r+ℓ−1
ℓ

⌋ was proved.

4 Open problems

Besides the missing case (k ≥ 2r) of Conjecture 1 and the above mentioned con-
jecture of Gyárfás and Lehel (stating that COV(2, k) = 2k − 2), we list some more
open problems.

In [2] it is shown that 2k − 2 ≤ COV(2, k) ≤ 2k − 1. Much less is known about
cov(2, k). The best known upper bound is still 2k−1 but no reasonable lower bound
is known. The second author conjectures that 2k − 4

√
k ≤ cov(2, k).
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For r ≥ 3 we did not study COV(r, ℓ, k) (that is similar to cov(r, ℓ, k) but the
coloring need not to be a spanning one), it was only determined for ℓ = 1 (see
Theorem 1.1) and for ℓ = r (either in [8] or in the proof of Theorem 3.4).

We can naturally generalize further.

Definition 4.1. For 1 ≤ ℓ ≤ r ≤ Rℓ, let cov(r, R, ℓ, k) denote the minimum number
of monochromatic components needed to cover the vertex set of any complete r-
uniform (R, ℓ)-partite hypergraph in any spanning k-coloring.

Determining cov(r, R, ℓ, k) for all possible ranges seems to be very challenging.
At the moment we do not have a conjecture about the value of cov(2, 3, 1, k).
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