2,373 research outputs found

    The Use of Separated Reflection Components in Estimating Geometrical Parameters of Curved Surface Elements

    Get PDF
    Iterative least-squares estimation, requires accurate reflectance models to retrieve geometrical parameters of curved surface elements from an image projection. We investigate the use of separating the diffuse (body) reflection from the specular (surface) reflection being responsible for image highlights. Experiments show that the (smooth) diffuse component yields the best convergence properties, while the (sharp) specular component can contribute to the improvement of the noise insensitivit

    Recovery of surface orientation from diffuse polarization

    Get PDF
    When unpolarized light is reflected from a smooth dielectric surface, it becomes partially polarized. This is due to the orientation of dipoles induced in the reflecting medium and applies to both specular and diffuse reflection. This paper is concerned with exploiting polarization by surface reflection, using images of smooth dielectric objects, to recover surface normals and, hence, height. This paper presents the underlying physics of polarization by reflection, starting with the Fresnel equations. These equations are used to interpret images taken with a linear polarizer and digital camera, revealing the shape of the objects. Experimental results are presented that illustrate that the technique is accurate near object limbs, as the theory predicts, with less precise, but still useful, results elsewhere. A detailed analysis of the accuracy of the technique for a variety of materials is presented. A method for estimating refractive indices using a laser and linear polarizer is also given

    Acquisition of Surface Light Fields from Videos

    Get PDF
    La tesi presenta un nuovo approccio per la stima di Surface Light Field di oggetti reali, a partire da sequenze video acquisite in condizioni di illuminazione fisse e non controllate. Il metodo proposto si basa sulla separazione delle due componenti principali dell'apparenza superficiale dell'oggetto: la componente diffusiva, modellata come colore RGB, e la componente speculare, approssimata mediante un modello parametrico funzione della posizione dell'osservatore. L'apparenza superficiale ricostruita permette una visualizzazione fotorealistica e in real-time dell'oggetto al variare della posizione dell'osservatore, consentendo una navigazione 3D interattiva

    Effectiveness of specularity removal from hyperspectral images on the quality of spectral signatures of food products

    Get PDF
    Specularity or highlight problem exists widely in hyperspectral images, provokes reflectance deviation from its true value, and can hide major defects in food objects or detecting spurious false defects causing failure of inspection and detection processes. In this study, a new non-iterative method based on the dichromatic reflection model and principle component analysis (PCA) was proposed to detect and remove specular highlight components from hyperspectral images acquired by various imaging modes and under different configurations for numerous agro-food products. To demonstrate the effectiveness of this approach, the details of the proposed method were described and the experimental results on various spectral images were presented. The results revealed that the method worked well on all hyperspectral and multispectral images examined in this study, effectively reduced the specularity and significantly improves the quality of the extracted spectral data. Besides the spectral images from available databases, the robustness of this approach was further validated with real captured hyperspectral images of different food materials. By using qualitative and quantitative evaluation based on running time and peak signal to noise ratio (PSNR), the experimental results showed that the proposed method outperforms other specularity removal methods over the datasets of hyperspectral and multispectral images.info:eu-repo/semantics/acceptedVersio

    A single-lobe photometric stereo approach for heterogeneous material

    Get PDF
    Shape from shading with multiple light sources is an active research area, and a diverse range of approaches have been proposed in recent decades. However, devising a robust reconstruction technique still remains a challenging goal, as the image acquisition process is highly nonlinear. Recent Photometric Stereo variants rely on simplifying assumptions in order to make the problem solvable: light propagation is still commonly assumed to be uniform, and the Bidirectional Reflectance Distribution Function is assumed to be diffuse, with limited interest for specular materials. In this work, we introduce a well-posed formulation based on partial differential equations (PDEs) for a unified reflectance function that can model both diffuse and specular reflections. We base our derivation on ratio of images, which makes the model independent from photometric invariants and yields a well-posed differential problem based on a system of quasi-linear PDEs with discontinuous coefficients. In addition, we directly solve a differential problem for the unknown depth, thus avoiding the intermediate step of approximating the normal field. A variational approach is presented ensuring robustness to noise and outliers (such as black shadows), and this is confirmed with a wide range of experiments on both synthetic and real data, where we compare favorably to the state of the art.Roberto Mecca is a Marie Curie fellow of the “Istituto Nazionale di Alta Matematica” (Italy) for a project shared with University of Cambridge, Department of Engineering and the Department of Mathematics, University of Bologna

    Unifying diffuse and specular reflections for the photometric stereo problem

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/WACV.2016.7477643After thirty years of researching, the photometric stereo technique for 3D shape recovery still does not provide reliable results if it is not constrained into very well-controlled scenarios. In fact, dealing with realistic materials and lightings yields a non-linear bidirectional reflectance distribution function which is primarily difficult to parametrize and then arduous to solve. With the aim to let the photometric stereo approach face more realistic assumptions, in this work we firstly introduce a unified irradiance equation describing both diffuse and specular reflection components in a general lighting setting. After that, we define a new equation we call unifying due to its basic features modeling the photometric stereo problem for heterogeneous materials. It is provided by making the ratio of irradiance equations holding both diffuse and specular reflections as well as non-linear light propagation features simultaneously. Performing a wide range of experiments, we show that this new approach overcomes state-of-the-art since it leads to a system of unifying equations which can be solved in a very robust manner using an efficient variational approach.Experimental setups were provided by Toulouse Tech Transfer, and this collaboration was funded by CNRS GdR 2286 (MIA)

    Specularity Removal from Imaging Spectroscopy Data via Entropy Minimisation

    Get PDF
    In this paper, we present a method to remove specularities from imaging spectroscopy data. We do this by making use of the dichromatic model so as to cast the problem in a linear regression setting. We do this so as to employ the average radiance for each pixel as a means to map the spectra onto a two-dimensional space. This permits the use of an entropy minimisation approach so as to recover the slope of a line described by a linear regressor. We show how this slope can be used to recover the specular coefficient in the dichromatic model and provide experiments on real-world imaging spectroscopy data. We also provide comparison with an alternative and effect a quantitative analysis that shows our method is robust to changes the degree of specularity of the image or the location of the light source in the scene
    • …
    corecore