171 research outputs found

    Underwater radio frequency image sensor using progressive image compression and region of interest

    Get PDF
    The increasing demand for underwater robotic intervention systems around the world in several application domains requires more versatile and inexpensive systems. By using a wireless communication system, supervised semi-autonomous robots have freedom of movement; however, the limited and varying bandwidth of underwater radio frequency (RF) channels is a major obstacle for the operator to get camera feedback and supervise the intervention. This paper proposes the use of progressive (embedded) image compression and region of interest (ROI) for the design of an underwater image sensor to be installed in an autonomous underwater vehicle, specially when there are constraints on the available bandwidth, allowing a more agile data exchange between the vehicle and a human operator supervising the underwater intervention. The operator can dynamically decide the size, quality, frame rate, or resolution of the received images so that the available bandwidth is utilized to its fullest potential and with the required minimum latency. The paper focuses first on the description of the system, which uses a camera, an embedded Linux system, and an RF emitter installed in an OpenROV housing cylinder. The RF receiver is connected to a computer on the user side, which controls the camera monitoring parameters, including the compression inputs, such as region of interest (ROI), size of the image, and frame rate. The paper focuses on the compression subsystem and does not attempt to improve the communications physical media for better underwater RF links. Instead, it proposes a unified system that uses well-integrated modules (compression and transmission) to provide the scientific community with a higher-level protocol for image compression and transmission in sub-sea robotic interventions

    On a region-of-interest based approach to robust wireless video transmission

    Get PDF
    This paper presents a scheme aiming at transmitting real-time video to wireless channel with vigorously varying quality, which is in practice the norm rather than the exception. Region of Interest (ROI) is an efficient approach to making the video more adaptive to the wireless channel because ROI is the region that human eyes tend to put more attention to than the Remainder Region (RM). In our proposed scheme, we will adopt this feature. The real-time source video stream is divided into two regions, the ROI and the RM regions. The two regions will be encoded using H.263 standard codec such that the video transmission is adaptive to the current channel state, which is characterized by the effective data rate that varies from tens of kilobits per second to hundreds of kilobits per second. Channel state parameters are fed back to the source coder to adjust the compression ratio as well as the intra/inter options of the encoders. Results including frame loss probability, compression characteristics, Peak Signal the Noise Ratio (PSNR) against channel states are given, indicating that the resulting adaptive video codec can respond judiciously to time-varying channel quality. Our scheme is evaluated together with a ROI-enabled moving picture coding standard JPEG2000. Using the features provided in JPEG2000, we have made the JPEG2000 codec adaptive to the vigorously varying wireless channel and then compared it with the H.263 scheme. Our technique is suitable for a broad area of applications including real-time news reporting and video conferencing.published_or_final_versio

    Quality Evaluation and Nonuniform Compression of Geometrically Distorted Images Using the Quadtree Distortion Map

    Get PDF
    The paper presents an analysis of the effects of lossy compression algorithms applied to images affected by geometrical distortion. It will be shown that the encoding-decoding process results in a nonhomogeneous image degradation in the geometrically corrected image, due to the different amount of information associated to each pixel. A distortion measure named quadtree distortion map (QDM) able to quantify this aspect is proposed. Furthermore, QDM is exploited to achieve adaptive compression of geometrically distorted pictures, in order to ensure a uniform quality on the final image. Tests are performed using JPEG and JPEG2000 coding standards in order to quantitatively and qualitatively assess the performance of the proposed method

    Image fusion in the JPEG 2000 domain

    Get PDF

    An Adaptive Source-Channel Coding with Feedback for Progressive Transmission of Medical Images

    Get PDF
    A novel adaptive source-channel coding with feedback for progressive transmission of medical images is proposed here. In the source coding part, the transmission starts from the region of interest (RoI). The parity length in the channel code varies with respect to both the proximity of the image subblock to the RoI and the channel noise, which is iteratively estimated in the receiver. The overall transmitted data can be controlled by the user (clinician). In the case of medical data transmission, it is vital to keep the distortion level under control as in most of the cases certain clinically important regions have to be transmitted without any visible error. The proposed system significantly reduces the transmission time and error. Moreover, the system is very user friendly since the selection of the RoI, its size, overall code rate, and a number of test features such as noise level can be set by the users in both ends. A MATLAB-based TCP/IP connection has been established to demonstrate the proposed interactive and adaptive progressive transmission system. The proposed system is simulated for both binary symmetric channel (BSC) and Rayleigh channel. The experimental results verify the effectiveness of the design

    Hybrid Region-based Image Compression Scheme for Mamograms and Ultrasound Images

    Get PDF
    The need for transmission and archive of mammograms and ultrasound Images has dramatically increased in tele-healthcare applications. Such images require large amount of' storage space which affect transmission speed. Therefore an effective compression scheme is essential. Compression of these images. in general. laces a great challenge to compromise between the higher compression ratio and the relevant diagnostic information. Out of the many studied compression schemes. lossless . IPl. (i- LS and lossy SPII IT are found to he the most efficient ones. JPEG-LS and SI'll IT are chosen based on a comprehensive experimental study carried on a large number of mammograms and ultrasound images of different sizes and texture. The lossless schemes are evaluated based on the compression ratio and compression speed. The distortion in the image quality which is introduced by lossy methods evaluated based on objective criteria using Mean Square Error (MSE) and Peak signal to Noise Ratio (PSNR). It is found that lossless compression can achieve a modest compression ratio 2: 1 - 4: 1. bossy compression schemes can achieve higher compression ratios than lossless ones but at the price of the image quality which may impede diagnostic conclusions. In this work, a new compression approach called Ilvbrid Region-based Image Compression Scheme (IIYRICS) has been proposed for the mammograms and ultrasound images to achieve higher compression ratios without compromising the diagnostic quality. In I LYRICS, a modification for JPI; G-LS is introduced to encode the arbitrary shaped disease affected regions. Then Shape adaptive SPIT IT is applied on the remaining non region of interest. The results clearly show that this hybrid strategy can yield high compression ratios with perfect reconstruction of diagnostic relevant regions, achieving high speed transmission and less storage requirement. For the sample images considered in our experiment, the compression ratio increases approximately ten times. However, this increase depends upon the size of the region of interest chosen. It is also föund that the pre-processing (contrast stretching) of region of interest improves compression ratios on mammograms but not on ultrasound images

    Wavelet-Based Embedded Rate Scalable Still Image Coders: A review

    Get PDF
    Embedded scalable image coding algorithms based on the wavelet transform have received considerable attention lately in academia and in industry in terms of both coding algorithms and standards activity. In addition to providing a very good coding performance, the embedded coder has the property that the bit stream can be truncated at any point and still decodes a reasonably good image. In this paper we present some state-of-the-art wavelet-based embedded rate scalable still image coders. In addition, the JPEG2000 still image compression standard is presented.

    Utilização da Norma JPEG2000 para codificar proteger e comercializar Produtos de Observação Terrestre

    Get PDF
    Applications like, change detection, global monitoring, disaster detection and management have emerging requirements that need the availability of large amounts of data. This data is currently being capture by a multiplicity of instruments and EO (Earth Observation) sensors originating large volumes of data that needs to be stored, processed and accessed in order to be useful – as an example, ENVISAT accumulates, in a yearly basis, several hundred terabytes of data. This need to recover, store, process and access brings some interesting challenges, like storage space, processing power, bandwidth and security, just to mention a few. These challenges are still very important on today’s technological world. If we take a look for example at the number of subscribers of ISP (Internet Service Providers) broadband services on the developed world today, one can notice that broadband services are still far from being common and dominant. On the underdeveloped countries the picture is even dimmer, not only from a bandwidth point of view but also in all other aspects regarding information and communication technologies (ICTs). All this challenges need to be taken into account if a service is to reach the broadest audience possible. Obviously protection and securing of services and contents is an extra asset that helps on the preservation of possible business values, especially if we consider such a costly business as the space industry. This thesis presents and describes a system which allows, not only the encoding and decoding of several EO products into a JPEG2000 format, but also supports some of the security requirements identified previously that allows ESA (European Space Agency) and related EO services to define and apply efficient EO data access security policies and even to exploit new ways to commerce EO products over the Internet.Aplicações como, detecção de mudanças no terreno, monitorização planetária, detecção e gestão de desastres, têm necessidades prementes que necessitam de vastas quantidades de dados. Estes dados estão presentemente a ser capturados por uma multiplicidade de instrumentos e sensores de observação terrestre, que originam uma enormidade de dados que necessitam de ser armazenados processados e acedidos de forma a se tornarem úteis – por exemplo, a ENVISAT acumula anualmente varias centenas de terabytes de dados. Esta necessidade de recuperar, armazenar, processar e aceder introduz alguns desafios interessantes como o espaço de armazenamento, poder de processamento, largura de banda e segurança dos dados só para mencionar alguns. Estes desafios são muito importantes no mundo tecnológico de hoje. Se olharmos, por exemplo, ao número actual de subscritores de ISP (Internet Service Providers) de banda larga nos países desenvolvidos podemos ficar surpreendidos com o facto do número de subscritores desses serviços ainda não ser uma maioria da população ou dos agregados familiares. Nos países subdesenvolvidos o quadro é ainda mais negro não só do ponto de vista da largura de banda mas também de todos os outros aspectos relacionados com Tecnologias da Informação e Comunicação (TICs). Todos estes aspectos devem ser levados em consideração se se pretende que um serviço se torne o mais abrangente possível em termos de audiências. Obviamente a protecção e segurança dos conteúdos é um factor extra que ajuda a preservar possíveis valores de negócio, especialmente considerando industrias tão onerosas como a Industria Espacial. Esta tese apresenta e descreve um sistema que permite, não só a codificação e descodificação de diversos produtos de observação terrestre para formato JPEG2000 mas também o suporte de alguns requisitos de segurança identificados previamente que permitem, á Agência Espacial Europeia e a outros serviços relacionados com observação terrestre, a aplicação de politicas eficientes de acesso seguro a produtos de observação terrestre, permitindo até o aparecimento de novas forma de comercialização de produtos de observação terrestre através da Internet
    corecore