1,152 research outputs found

    Structure of computations in parallel complexity classes

    Get PDF
    Issued as Annual report, and Final project report, Project no. G-36-67

    Reflective Relational Machines

    Get PDF
    AbstractWe propose a model of database programming withreflection(dynamic generation of queries within the host programming language), called thereflective relational machine, and characterize the power of this machine in terms of known complexity classes. In particular, the polynomial time restriction of the reflective relational machine is shown to express PSPACE, and to correspond precisely to uniform circuits of polynomial depth and exponential size. This provides an alternative, logic based formulation of the uniform circuit model, which may be more convenient for problems naturally formulated in logic terms, and establishes that reflection allows for more “intense” parallelism, which is not attainable otherwise (unless P=PSPACE). We also explore the power of the reflective relational machine subject to restrictions on the number of variables used, emphasizing the case of sublinear bounds

    On the speed of constraint propagation and the time complexity of arc consistency testing

    Full text link
    Establishing arc consistency on two relational structures is one of the most popular heuristics for the constraint satisfaction problem. We aim at determining the time complexity of arc consistency testing. The input structures GG and HH can be supposed to be connected colored graphs, as the general problem reduces to this particular case. We first observe the upper bound O(e(G)v(H)+v(G)e(H))O(e(G)v(H)+v(G)e(H)), which implies the bound O(e(G)e(H))O(e(G)e(H)) in terms of the number of edges and the bound O((v(G)+v(H))3)O((v(G)+v(H))^3) in terms of the number of vertices. We then show that both bounds are tight up to a constant factor as long as an arc consistency algorithm is based on constraint propagation (like any algorithm currently known). Our argument for the lower bounds is based on examples of slow constraint propagation. We measure the speed of constraint propagation observed on a pair G,HG,H by the size of a proof, in a natural combinatorial proof system, that Spoiler wins the existential 2-pebble game on G,HG,H. The proof size is bounded from below by the game length D(G,H)D(G,H), and a crucial ingredient of our analysis is the existence of G,HG,H with D(G,H)=Ω(v(G)v(H))D(G,H)=\Omega(v(G)v(H)). We find one such example among old benchmark instances for the arc consistency problem and also suggest a new, different construction.Comment: 19 pages, 5 figure

    Applications of Finite Model Theory: Optimisation Problems, Hybrid Modal Logics and Games.

    Get PDF
    There exists an interesting relationships between two seemingly distinct fields: logic from the field of Model Theory, which deals with the truth of statements about discrete structures; and Computational Complexity, which deals with the classification of problems by how much of a particular computer resource is required in order to compute a solution. This relationship is known as Descriptive Complexity and it is the primary application of the tools from Model Theory when they are restricted to the finite; this restriction is commonly called Finite Model Theory. In this thesis, we investigate the extension of the results of Descriptive Complexity from classes of decision problems to classes of optimisation problems. When dealing with decision problems the natural mapping from true and false in logic to yes and no instances of a problem is used but when dealing with optimisation problems, other features of a logic need to be used. We investigate what these features are and provide results in the form of logical frameworks that can be used for describing optimisation problems in particular classes, building on the existing research into this area. Another application of Finite Model Theory that this thesis investigates is the relative expressiveness of various fragments of an extension of modal logic called hybrid modal logic. This is achieved through taking the Ehrenfeucht-Fraïssé game from Model Theory and modifying it so that it can be applied to hybrid modal logic. Then, by developing winning strategies for the players in the game, results are obtained that show strict hierarchies of expressiveness for fragments of hybrid modal logic that are generated by varying the quantifier depth and the number of proposition and nominal symbols available

    Infinitary Logic and Inductive Definability Over Finite Structures

    Get PDF
    The extensions of first-order logic with a least fixed point operators (FO + LFP) and with a partial fixed point operator (FO + PFP) are known to capture the complexity classes P and PSPACE respectively in the presence of an ordering relation over finite structures. Recently, Abiteboul and Vianu [AV91b] investigated the relation of these two logics in the absence of an ordering, using a mchine model of generic computation. In particular, they showed that the two languages have equivalent expressive power if and only if P = PSPACE. These languages can also be seen as fragments of an infinitary logic where each formula has a bounded number of variables, Lω∞ω (see, for instance, [KV90]). We present a treatment of the results in [AV91b] from this point of view. In particular, we show that we can write a formula of FO + LFP and P from ordered structures to classes of structures where every element is definable. We also settle a conjecture mentioned in [AV91b] by showing that FO + LFP in properly contained in the polynomial time computable fragment of Lω∞ω, raising the question of whether the latter fragment is a recursively enumerable class

    Investigating Logics for Feasible Computation

    Get PDF
    The most celebrated open problem in theoretical computer science is, undoubtedly, the problem of whether P = NP. This is actually one instance of the many unresolved questions in the area of computational complexity. Many different classes of decision problems have been defined in terms of the resources needed to recognize them on various models of computation, such as deterministic or non-deterministic Turing machines, parallel machines and randomized machines. Most of the non-trivial questions concerning the inter-relationship between these classes remain unresolved. On the other hand, these classes have proved to be robustly defined, not only in that they are closed under natural transformations, but many different characterizations have independently defined the same classes. One such alternative approach is that of descriptive complexity, which seeks to define the complexity, not of computing a problem, but of describing it in a language such as the Predicate Calculus. It is particularly interesting that this approach yields a surprisingly close correspondence to computational complexity classes. This provides a natural characterization of many complexity classes that is not tied to a particular machine model of computation
    corecore