
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

September 1991

Investigating Logics for Feasible Computation Investigating Logics for Feasible Computation

Anuj Dawar
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Anuj Dawar, "Investigating Logics for Feasible Computation", . September 1991.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-91-69.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/440
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/440
mailto:repository@pobox.upenn.edu

Investigating Logics for Feasible Computation Investigating Logics for Feasible Computation

Abstract Abstract
The most celebrated open problem in theoretical computer science is, undoubtedly, the problem of
whether P = NP. This is actually one instance of the many unresolved questions in the area of
computational complexity. Many different classes of decision problems have been defined in terms of the
resources needed to recognize them on various models of computation, such as deterministic or non-
deterministic Turing machines, parallel machines and randomized machines. Most of the non-trivial
questions concerning the inter-relationship between these classes remain unresolved. On the other hand,
these classes have proved to be robustly defined, not only in that they are closed under natural
transformations, but many different characterizations have independently defined the same classes. One
such alternative approach is that of descriptive complexity, which seeks to define the complexity, not of
computing a problem, but of describing it in a language such as the Predicate Calculus. It is particularly
interesting that this approach yields a surprisingly close correspondence to computational complexity
classes. This provides a natural characterization of many complexity classes that is not tied to a
particular machine model of computation.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-91-69.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/440

https://repository.upenn.edu/cis_reports/440

Investigating Logics For Feasible Computation

MS-CIS-91-69

Anuj Dawar

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

September 1990

Investigating Logics for Feasible Computation

Anuj Dawarl

Department of Computer and Information Science

Univesity of Pennsylvania

Philadelphia, PA 19104.

September 30, 1991

'This research supported in part by ONR grant N00014-89-J-1725.

Contents

1 Introduction and Background

. 1.1 Definitions and Notation

. 1.2 Finite Model Theory

. 1.2.1 Failure of classical model theory

. 1.2.2 Ehrenfeucht-Fraissk games

. 1.3 Descriptive Complexity

. 1.3.1 Fagin's theorem

. 1.3.2 Inductive logic

2 A logic for P

. 2.1 Unordered Structures

. 2.2 The Canonization Problem

. 2.3 Limitations of the Logic

2.3.1 The k-pebble game .

2.3.2 The parity query .

2.3.3 The problem of counting .
2.4 Counting Quantifiers 9.

3 Infinitary Logic with a Bounded Number of Variables

. 3.1 Infinitary Logic

3.2 Pebble Games .
3.3 Fragments of LW,, .

4 Preliminary Results

4.1 Validities are not R.E.

4.2 Characterizing Structures up to Lpequivalence

4.3 Ordering the Types .

4.3.1 Inductive definition of the ordering .

. 4.3.2 Rigid Structures

4.3.3 Translation to an Ordered Structure .
4.3.4 Complete Binary Trees .

5 Research Directions

5.1 Lk canonization .

5.2 Relationship with G M ' O O ' ~ .
5.3 Adding Counting Quantifiers .

5.4 Other Inductive Operations .

Chapter 1

Introduction and Background

The most celebrated open problem in theoretical computer science is, undoubtedly, the problem

of whether P = NP. This is actually one instance of the many unresolved questions in the area

of computational complexity. Many different classes of decision problems have been defined

in terms of the resources needed to recognize them on various models of computation, such as

deterministic or non-deterministic Turing machines, parallel machines and randomized machines.

Most of the non-trivial questions concerning the inter-relationship between these classes remain

unresolved. On the other hand, these classes have proved to be robustly defined, not only in

that they are closed under natural transformations, but many different characterizations have

independently defined the same classes. One such alternative approach is that of descriptive

complexity, which seeks to define the complexity, not of computing a problem, but of desribing

it in a language such as the Predicate Calculus. It is particularly interesting that this approach

yields a surprisingly close correspondence to computational complexity classes. This provides

a natural characterization of many complexity classes that is not tied to a particular machine

model of computation.

This line of investigation began with Fagin who showed that the properties expressed by

existential second-order sentences are exactly those that are in the class NP[Fag74]. Immerman

[Imm86] and Vardi[Var82] showed that the polynomial-time computable properties of structures

in which there is an built-in order are captured exactly by the extension of first-order logic with a

least-fixed-point operation. Since then, several further logical characterizations of computational

complexity classes have been studied (see, for instance, [Imm89]).

The early work of Chandra and Harel[CH82] and Vardi[Var82] linked this to the development

of query languages for relational databases. A relational database is nothing but a finite relational

structure and query languages for such databases have generally been based on the Predicate

Calculus. This has also spurred interest in the study of the model theory of finite structures.

Descriptive complexity can be seen as the study of the logical properties of finite structures, and

as we shall see, the tools of classical model theory prove inadequate when applied to only finite

structures.

All the results that relate descriptive logics to complexity classes below N P have relied on

the presence of an ordering on the elements of the structures being described. In particular, the

least-fixed-point extension of first-order logic fails to capture the class P over all structures. It is

an open question whether the order-independent P-time properties even form a recursively enu-

merable set. This is a question of great interest, because on the one hand the P-time computable

properties are generally identified as those that can be feasibly computed, and on the other hand

the order-independent properties are those that are generic in that they do not depend on the

order in which the data are presented, but only on their logical properties.

The inductive logics that correspond to complexity classes in the presence of ordering, namely

FO + LFP and FO + PFP can be viewed as fragments of an infinitary logic with a bounded

number of variables - which we denote LW,,. A recently proposed model of generic computation

- loose in [AVSlb] - can also be seen as a fragment of this logic. While L", does not capture

all generic properties, as we shall see, it provides a useful tool for studying the expressive power

of the inductive logics and their inter-relationship. We propose to investigate the expressive

power of this and related logics.

1.1 Definitions and Notation

A signature (also sometimes called a language or a vocabulary) a is a finite sequence of relation

and constant symbols (R1,. . . ,&,e l , . . . , c,). Associated with each relation symbol, R, is an

arity aj. We will only be considering languages without function symbols. Where this makes a

difference to the results, we will mention it explicitly.

A structure over the the signature a, A = (A, R f , . . . , RA,, c f , . . . ,c!) consists of a set A,

the universe of the structure, relations R? Aai interpreting the relation symbols in a and

distinguished elements cf , . . . , cf of A interpreting the constant symbols. Unless otherwise

mentioned, all structures we will be dealing with are assumed to have finite universe.

The collection of first-order formulas over a language a is defined in the usual way as the

smallest collection containing the atomic formulas, ti = t j and R,(tl,. . . , tai) where R, is a rela-

tion symbol in a and each t j is either a constant symbol or a variable from a countable collection

(2 , y, . . .), and closed under the operations of negation (T), conjunction (A), disjunction (v) and

universal and existential quantification (V and 3, respectively).

The notion of a structure A satisfying a sentence (i . e . a formula without free variables),

written A + 4 is defined in the usual way (see, for instance, [End72]). We will sometimes write

+(zl,. . . , z,) to denote a formula 4 with free variables among XI,. . . , z,, and A b +[a1 . . . a,]

to indicate that A satisfies 4 with the assignment of the elements a l l . . . ,a, E A to the variables

21,. . . , z,. A model A satisfies a set of sentences C, written A C if and only if it satisfies

every sentence in C, and we say that C is satisfiable just in case it is satisfied by some model.

The collection of structures that satisfy a given sentence 4 is denoted Mod(4)

Given any two structures A and B over the same signature a, a mapping f : A + B is an

isomorphism if it is one-to-one and onto and for every constant symbol c in a , f (cA) = c" and

for every relation symbol R in a of arity m and every m-tuple, a l l . . . , a,, of elements of A,

A b RA(al, . . . ,a,) if and only if B + RB(f(al), . . . ,(a,)). If there is an ismorphism from A to

f?, we say the two structures are isomorphic, written A B. A and B are said to be elementarily

equivalent, written A B if they satisfy exactly the same sentences of first-order logic. Clearly,

any two structures that are isomorphic are elementarily equivalent. When considering only finite

structures, the converse holds as well. In fact, every finite structure is defined up to isomorphism

by a single sentence of first-order logic:

Proposition 1.1 For every finite structure A, there is a first-order sentence 4 such that for

a n y structuw B, B 4 if and only af A r B.

Let K be a collection of structures that is closed inder isomorphism, that is to say, if A E K

and A E B then B E K. We will call K a query. In order to encode the query K , we will

generally identifyit with its subcollection, Kt, where for each A E Kt , the universe of -1 is a

propoer initial segment of the integers.

1.2 Finite Model Theory

Model Theory is the study of the logical properties of mathematical structures. Classical Model

Theory has concerned itself with both finite and infinite structures. That is to say the mathe-

matical structures considered are not constrained to be one or the other. This is what one would

expect, given that the subject was developed to deal with foundational issues in mathematics

where elucidating the notion of infinity was central. Moreover, the mathematical structures that

most mathematicians deal with are infinite objects. The situation is dramatically different in the

field of computer science. The structures that computers manipulate, whether strings or graphs

or trees or databases, are always finite. Furthermore, all of these data structures can be viewed

as relational structures and hence we can talk about their logical properties.

It turns out however that the model theory of finite structures is very different from the

classical subject. Most of the important tools and techniques of classical model theory do not

carry over to finite model theory. This is a consequence of the fact that fundamental results such

as the Compactness Theorem and the Completeness Theorem do not hold when restricted to

finite structures. Another difficulty arises from the fact that first-order logic, the most widely-

studied logic, proves inadequate in dealing with finite models. On the one hand it is intractable,

that the sentences of first-order logic that are valid on finite structures do not form a recursively

enumerable set. On the other hand, first-order logic is extremely limited in its expressive power.

Many classes of finite structures that are interesting from a computational point of view are not

expressible by sentences of this logic.

1.2.1 Failure of classical model theory

Perhaps the most important result of classical model theory is the Compactness Theorem. Many

other results rely, either directly or indirectly, on this result. The theorem states that if any set

of sentences C has the property that every finite subset A C C is satisfiable, then C is satisfiable.

If we define satisfiable to mean satisfied in a finite structure, then this theorem is clearly false.

To see this, let C = {&li E N) where is the first-order formula stating that there are at least

i elements in the universe. Every finite subset A of C is satisfied in a structure of size rn where

rn = max{i(qbi E A), but any model of C must be infinite.

More remarkable is the failure of Godel's Completeness Theorem. While this theorem as

usually stated asserts the completeness of some logical calculus, in its abstract form it can be

taken as saying that validities of first-order logic, 2.e. those sentences that are satisfied by all

structures, form a recursively enumerable set. This is remarkable considering that the set is

defined by a universal quantification over a proper class. It is all the more surprising therefore

that the set of finite validities, i. e . those sentences true in all finite structures, is not recursively

enumerable. This was shown by Trakhtenbrot[lka50]. We present a proof of a strengthening of

this result in Section 4.1.

Other basic results of model theory that have been shown to fail in the case of finite structures

include Craig's Interpolation Theorem, Beth's Definability Theorem and various preservation

theorems. For a survey of these results, see [Gur84].

1.2.2 Ehrenfeucht-Fraiss6 games

One set of techniques that do survive the transition to finite model theory in the most natural

way are the games of Ehrenfeucht and FraissC[EhrGl]. We shall have many occasions to use these

techniques (and various extensions of them) in what follows. We give below an exposition of the

basic result. The proof is deferred until we consider an extension in Section 3.2. We begin with

some definitions:

Definition 1.1 The quantifier rank of a formula 4, wn'tten qr (4) is defined inductively as fol-

lows:

1. if 4 is atomic then q r (4) = 0 ,

2. i f 4 = -11 then qr (4) = qr($),

3. if 4 = 111 v 112 or 4 = 111 A 112 then q r (4) = max(qr(111), qr(112)), and

4. if 4 = 3x11 or 4 = Vx+ then qr (4) = qr(+) + 1

Intuitively, the quantifer rank of a formula is the maximum level of nesting of quantifiers within

the formula.

Definition 1.2 A function f is a partial isomorphism from A to B if the domain o f f is a subset

of A that includes the interpretations of all constants in the language of A and i f f is an isomor-

phic map over this domain, i.e. f (cA) = cB for all constants c and for all relation symbols R and

(1 1 , . . . , a , in the domain o f f , A k ~ ~ (a ~ , . . . , a,) i f and only if B ~ ~ (f (a l) , . . . , f (a,)).

Definition 1.3 A sequence Io, . . . ,I,, of sets of partial isomorphisms from A to B has the back

and forth property through n if for 0 5 i < n,

1. Ii is non-empty,

3. for every f E Ii and a E A there is a g E such that f 5 g and a E dorn(g), and

4. for every f E Ij and b E B there is a g E Ii+l such that f G g and b E rng(g) .

The result can now be stated as:

Theorem 1.1 There is a sequence of sets of partial isomorphisms from A to B with the back

and forth property through n , if and only if for any sentence, 4, with qr(4) 5 n, A k 4 if and

only i f B k 4.

One way to look at this result is in terms of the following two-player pebble game. We have

a board consisting of one copy of each of the structures A and B. There is also an infinite supply

of pairs of pebbles { (a i , bi)li E N) . At move i of the game, Player I picks up one of the pair

of pebbles (a i , bi) and places it on an element of the corresponding structure (i.e. she places ai

on an element of A or bi on an element of B). Player TI then responds by placing the unused

pebble in the pair on an element of the other structure. Player I1 loses if the resulting map,

f , from A to B, given by f (aj) = bj, j 5 i , is not a partial isomorphism. Player I1 wins the

n-move game if she has a strategy to avoid losing in the first n moves, regardless of what moves

are made by Player I. It should be clear that such a winning strategy corresponds to a sequence

of sets of partial isomorphisms with the back and forth property through n. As a corollary, if

Player I1 can play the game indefinitely without losing, then the two structures are elementarily

equivalent.

1.3 Descriptive Complexity

In one sense first-order logic is too strong when restricted to finite models, as demonstrated by

the failure of the Completeness theorem. In another sense, however, it is too weak. It fails

to express many properties that are of interest. More precisely, there are classes of structures

that are easily recognizable (i . e . with low computational complexity) that cannot be described

in first-order logic. There has been much recent work done in matching the expressive power

of various logics to known complexity classes, and this has focussed on logics that are stronger

than first-order logic. We formalize these notions below.

We can speak of the conlputational complexity of a collection of structures K in the following

sense: we choose some fixed reasonable encoding of structures of signature u into strings over

some alphabet (for simplicity, we will generally assume that they are binary strings). We then

identify the complexity of recognising K with the complexity of the decision problem for S, the

set of strings that are encodings of structures in K. We will speak of the complexity measure as

being a function of the size of the structure. Since the strings encoding structures are at most

polynornialy larger than the structures (to be precise, their size is bounded by n k , where k is

the maximum of the arities of the relation symbols in a), this does not cause a

Another notion of complexity is that of the complexity of describing a collection of structures

I<. For instance, if there is a sentence of first-order logic 4 such that I< = Mod($), then K is

expressible in first-order logic. Hence, we can look at the class of decision problems on structures

of a given signature u expressible in first-order logic as a complexity class, which we will denote

FO. This raises the question of what the correspondence is between complexity classes defined

in the usual way in terms of resource bounded computing devices and the classes defined by the

expressive power of various logics.

It is fairly easy to show that FO is contained in DSPACE[log(n)]. To see this, let $ be any

'In the special case where a = {), the string can be of size log(n). We will mention this explicitly when we
encounter it .

first-order sentence and let k be an upper bound on the number of free variables in any sub-

formula of $. Let A be any structure of size n. To check whether A + $, we proceed recursively

through the sub-formulas of $. At any given stage, we need to check at most nk assignments to

the free variables of the sub-formula. These can be encoded using k log(n) bits. Furthermore,

as we shall see, there are some fairly elementary properties in DSPACE[log(n)] that are not in

FO, such as pari ty - the collection of structures of even size.

1.3.1 Fagin's theorem

The earliest result relating computational complexity to the expressive power of logic was that

of Fagin[Fag74] who showed that the class NP is equivalent to the properties expressible in

existential second-order logic.

Second-order logic is the extension of first-order logic with second-order quantifiers. That

is, we have countably many additional relational variables Pi with associated arities a, and, for

instance, the formula 3Pi4 is true in a structure a A just in case for every interpretation of Pi as

a relation in A"', 4 holds in A. It is easy to see that any second-order formula can be transformed

(possibly increasing the arity of the quantified relations) into an equivalent one in prenex form,

with all the second-order quantifiers in front. A formula in existential second-order logic is

a second-order formula with no universal second-order quantifiers in prenex form. Existential

second-order sentences are also called sentences, and by extension, a class of structures is

called Ci if it is expressible by a C: sentence.

As an example, we can express the property of a graph being fcolourable with a C: sentence

in the language of graphs a = {E). The sentence is 3P13Pz3P34 where the Pi are unary

relations (colours) and 4 is a first-order sentence in the language {E, PI, P2, P3) asserting that

each element has a unique colour and no two elements that are connected by an edge have the

same colour.

Theorem 1.2 (Fagin) C: = NP

Proof:

To see that any property defined by a Ci sentence 3R1.. .3R,$, where 4 is first-order is in

NP, note that a relation R~ of arity k has cardinality at most nk , where n is the size of the

structure A. Thus, a non-deterministic machine, on input A can guess the interpretations of the

relations R1,. . . , R,,, on A and each of these is an object whose is polynomial in the size of the

input. Given these interpretations, the task of verifying that the first-order formula 4 holds in

the expanded structure can be done in DSPACE[log(n)], as noted above.

In the other direction, let N be a non-deterministic machine that accepts inputs A of size n

over the signature a in time nk. We will asume that the input to the machine is in the form of

a binary string encoding the structure. We can write a first order sentence 4 over the signature

u U {O,T, S) (0 and T being relation symbols of arity 2k and S of arity 3k) to encode the

machine N. 0 is to be taken as a total ordering on tuples of length k from the universe of the

input structure. Using this ordering, these tuples can then be used to represent the integers

0 , . . . , nk - 1. T is used to encode the contents of the tape and S the state of the machine.

T(nl, n2) is true just in case the content of tape cell n2 at time nl is a 1. S(nl , n2, ns) is true

just in case at time nl , the machine is in state n2 with the head reading cell ns. The sentence 4
says that these represent an accepting computation of the machine N. That is to say, it asserts

the following:

1. 0 is a total ordering,

2. T(0, 0), . . . , T(0, nk - 1) represents an encoding of the input structure,

3. given S(x, y, r) and T(z, O), . . . ,T(x, nk - I), there is a move in the transition function of

N yielding S(x + 1, y', 2') and T(x + l , O) , . . . , T(x + 1, n" I), and

4. S(nk, y, z) is an accepting state.

Then, the C: sentence 303T3S4 is true in exactly those structures accepted by N.

As a corollary to this theorem, we have the result that full second-order logic expresses exactly

the queries in the polynomial hierarchy[Sto77], with the levels of the hierarchy corresponding

exactly to the number of second-order quantifier alternations.

1.3.2 Inductive logic

Another way of extending first-order logic is by adding some kind of induction operation. For

instance, consider the class of graphs that are connected. It is possible to show that this is a

class that is not expressible in first-order logic by an application of the Ehrenfeucht-FkaissC game

(see, for instance, [Gur84]). On the other hand, it is clear that connectedness of a graph can

be expressed by the sentence VzVyR(z, y) where R is the reflexive and transitive closure of the

edge relation. While such an R cannot be defined in first-order logic, it seems it can be defined

by an induction, because it is the smallest relation satisfying the equivalence:

R(x, y) = x = y V 3z(E(x, z) A R(z, y)) (1.1)

In general, let 4(R, X I , . . . , xk) be a first-order formula over the signature u U {R} with free

variables X I , . . . , xk where k is the arity of R. For any structure A over the signature a, 4 defines

a mapping, O on relations of arity k in the following sense - given a relation R* C (dlk, let

(A, R ~) be the expansion of A interpreting R as R ~ . Then, @ (R ~) = { (a ~ , . . .ak)I(d, R ~)

~ (R I X I , ,xk)}

This map @ is called monotone if for any relations R and S such that R C S, @(R) C @(S).

A map that is monotone has a least fixed point, i . e . a smallest relation R such that @(R) = R.

Moreover, this least fixed point can be obtained by the following iterative construction: Let

@O = 0 and @"+I = @(arn). Then for some m (depending on the structure A), am+' = am =

the least fixed point of @. m is called the closure ordinal of @ on the structure A. If n is the

size of A, then there are nk k-tuples in A and since @ is monotone, m 5 nk.

A sufficient syntactic condition for the formula 4 to define a monotone map on all structures

is that q5 be positive in R, that is to say that all occurrences of R in 4 be within the scope of

an even number of negations. We can now define the logic FO + LFP over signature a as the

smallest set of formulas satisfying:

if 4 is first-order formula over a, then 4 E FO + LFP(a),

if 4 is formed from formulas in FO + LFP(a) by conjunction, disjunction and first-order

quantification, then 4 E FO + LFP(a), and

if 4 E FO + LFP(a U {R)), 4 is positive in R and 21,. . . , zk are distinct variables, where k

is the arity of R, then lfp(R,xl .. . xk)+(tl. . . Ik) E FO + LFP(o) for any terms t l , . . . , t k .

The way to read the last clause above is that the operator lfp binds the second order variable

R and the first-order variables XI , . . .xk in 4 to form a new predicate. This predicate is to be

interpreted as the k-ary relation that is the least fixed point of the monotone operator defined

by 4. This predicate is then evaluated at the elements t 1, . . . , tk .

As an example, let d(R,x, y) be x = y V 3z(E(x, z) A R(z, y)), the right side of 1.1 above.

Then, lfp(R, x, y)+(x, y) is a formula in two free variables that expresses the transitive closure

of the edge relation on any graph.

Immerman [Imm86] and Vardi [Var82] independently showed that when we include a total

ordering on the domain as part of the logical vocabulary, the language FO + LFP expresses

exactly the class of polynomial time computable queries.

Theorem 1.3 FO + LFP with ordering = P

Proof sketch:

One direction is easy. As we observed above, the number of iterations needed to compute the

least fixed point of a k-ary formula is at most nk in a structure of size n. Since each iteration

involves the evaluation of a first-order formula, this can be done in DSPACE[log(n)]. Thus, the

total time taken is polynomial in n.

In the other direction, we are given a machine M running in time nk. Note that with the

help of the ordering relation we can define an ordering on k-tuples which, as in the proof of

Theorem 1.2 can then be used to count up to nk. Also, as before, we can write a formula 4(C)

in the second order variable C such that if the relation C encodes a computation of M for rn

steps, 4(C) is a relation encoding the computation for rn + 1 steps. Then, the least fixed point

of C encodes the entire computation of M. w

The following normal form result was also established in pmm86] for FO + LFP even in the

absence of an ordering,

Theorem 1.4 In any vocabulary containing constant symbols, every formula in FO + LFP is

equivalent to a formula lfp(R, z)q5(i), where 4 is first-order.

We saw above how a formula with one free predicate variable defined an operator on relations.

This, of course, is true even when the formula is not positive in the predicate variable and the

operator, in turn may or may not be monotone. Moreover, the iterative stages of the operator

can still be defined, though they are not guaranteed to converge to a fixed point in the case

of non-monotone operators. Let 4(R,E) be a formula that defines a (possibly non-monotone)

operator a. Define the partial fixed point of 4 to be am if there is an rn such that Om+' = am,
and empty otherwise. We can then define another extension of first-order logic called FO + PFP

with a syntax similar to that of FO + LFP except that the Ifp operation is replaced by pfp,

which can operate on arbitrary formulas, not just positive ones. pfp(R, %)4 denotes the partial

fixed point of 4.

It has been shown in [AVSla] that the language FO + PFP is equivalent to the query language

while - an extension of first-order logic with an iterative operation. Putting this together with

a result of Vardi [Var82], we get the following:

Theorem 1.5 FO + PFP with ordering = PSPACE

Chapter 2

A logic for P

As we have seen, the logic FO + LFP expresses exactly the P-time properties of structures with

a built-in ordering. However, in the absence of ordering, there are collections of structures that

are recognizable in polynomial time that are not expressible in this logic. This raises the quesion

whether there is a logic that expresses exactly the P-time properties of all structures. This is

the question we examine in this chapter.

In showing that any polynomial time computable property of ordered structures can be ex-

pressed in FO + LFP, we crucially used the ordering relation in order to simulate the computation

of the machine. This was not required as an additional relation in the proof of Theorem 1.2

because we can always non-deterministically choose an ordering in 22:. All known results in de-

scriptive complexity that characterize complexity classes below NP in terms of a logical language

require a total ordering as part of the logical vocabulary. This fact appears to be related to the

fact that the problem of canonical labeling of graphs is known to be in N P (see, for instance,

[KuE87]), but not in any lower complexity class. We turn to these considerations next.

2.1 Unordered Structures

The question that we raised - is there a natural logic that expresses the P-time properties of

all structures - is, of course, not precisely formulated, since we have not defined what a natural

logic is. However, this can be seen as part of the broader question - are the P-time properties

of all structures recursively enumerable? We can certainly enumerate all Turing machines that

run in time polynomial in the size of the input. This can be acheived by including a clock in the

definition of the machine. But, not all these machines compute properties of structures.

For concreteness, consider graphs, i .e . structures over the signature {E). To serve as input

to the Turing machines, graphs can be encoded as binary strings. For a graph of size n, number

the vertices 1 through n and take the n x n adjacency matrix - where bit (i , j) is 1 iff there is

an edge from vertex i to vertex j - and enumerate the matrix in row-major order, giving us an

input size n2. However, the same graph can be encoded in many different ways (up to n!) and

some machines will accept some encodings of a given graph but not others. We say a Turing

machine accepts a graph property if it does not break isomorphism classes of graphs, that is to

say i t either accepts or rejects all encodings of any given graph. We can now restate the question

as follows: is there a recursive indexing of the Turing machines that run in polynomial time and

accept graph properties?

We chose the language of graphs for a reason. Structures over any given signature a can

be encoded as graphs while preserving isomorphism. Moreover this can be done in polynomial

time. In fact, the translation of arbitrary structures into graphs is first-order definable. That is

t o say, for a given signature, a, there are first order formulas 4v and 4~ in the language a that

define a graph G(A) for any structure A. & defines the set of vertices and 4E defines the edge

relation and G(A) Y G(B) if and only if A S B (see, for instance, [Lin87]). Thus, the problem

of the recursive enumerability of the P-time properties of arbitrary structures reduces to that

for graphs.

We can look a t the same problem in another way. The binary string encoding of graphs

described above can be seen as encoding an ordered graph, with the ordering given by the natural

ordering on the integers. In this way, each ordered graph gives a unique binary string and hence

no Turing machine breaks isomorphism classes. Hence, we know that we can enumerate all the

P-time properties of ordered graphs. We also obtain such an enumeration simply by enumerating

all the sentences of FO + LFP over the signature {E, <). The subset of this list in which the

symbol < does not occur, is the set of FO + LFP sentences in the language of graphs, and

we know that this does not exhaust all the P-time properties of graphs. Therefore, there must

be sentences in the enumeration that use the symbol < but are order-invariant, that is their

truth value is not affected by the choice of ordering to interpret this symbol. Thus, another

way of formulating the problem we are considering is - is there a recursive enumeration of the

order-invariant sentences of FO + LFP up to equivalence.

We can actually show that there is no recursive enumeration of all the order-invariant sen-

tences of FO + LFP. This is accomplished by a simple reduction from the set of validities, which

we know from Trakhtenbrot's result are not r.e. (see Section 4.1). Let + be the first-order

sentence in the language {P, <), P as unary relation symbol, that says that < is an ordering and

that the first element under this ordering is not in P and the last one is. Then, for any sentence

4 whose vocabulary is disjoint from that of 4, 4 is valid if and only if 4 V 11, is order-invariant.

This, of course, still leaves open the question of whether we can provide a recursive indexing, up

to equivalence, of the order-invariant sentences.

2.2 The Canonization Problem

One way to overcome the problem outlined above is to find a way of encoding graphs as binary

strings in an isomorphism invariant way. Equivalently, we want to find a uniform way of ordering

the vertices of any graph. Clearly, we cannot define such an ordering in FO + LFP, since that

would imply that we could express all polynomial time properties in FO + LFP. It is still

conceivable, though, that we could do so in polynomial time.

The problem of giving a canonical ordering on the vertices of a grph is known as the graph

canonization problem. It is closely related to the graph isomorphism problem, i . e . given two

graphs determine if they are isomorphic. Neither of these problems is known to have a polynomial

time solution. The best known algorithms run in mildly exponential time. However, both the

problems are in NP and neither has been shown to be NP-complete.

A polynomial-time algorithm for canonical labeling of graphs would establish that the P-time

properties of graphs are indeed r.e. Consider an enumeration, Mo, . . . ,Mi , . . . of all polynomial

time Turing machines, as before, and let M be a machine running in polynomial time that takes

its input graph (in any order) and produces as output the same graph in canonical order. Then,

enumerate the machines M + Mi which run M on the input and then run Mi on the output

produced by M. This enumeration contains only graph properties and it contains all P-time

graph properties because the original listing does.

While we saw in Theorem 1.5 that the logic FO + PFP expresses the PSPACE properties

of ordered structures, it fails, like FO + LFP to express some simple queries on unordered

structures, including parity. However, by an argument like the one above, we know that the

PSPACE properties are recursively enumerable because the canonization problem is in NP and

hence in PSPACE. Having observed this, we obtain the following logic for PSPACE:

Proposition 2.1 T h e P S P A C E properties of unordered structures are expressed exactly by for-

mulas 3R1 . . .3&$, where the R, are second-order variables and $ i s in F O + P F P .

To evaluate a formula as above in a given structure, we can non-deterministically guess the

interpretations of the quantified predicate variables (each interpretation being of size polynomial

in the size of the structure) and then evaluate 4. Since the latter step we know to be in PSPACE,

the entire operation is in NPSPACE and hence in PSPACE. In the other direction, since we can

choose an ordering with an existential second-order quantifier and FO + PFP expresses all of

PSPACE on ordered structures, we are done.

2.3 Limitations of the Logic

We mentioned earlier that the parity query, i.e. the set of structures with a universe of even size

is not expressible in FO + LFP. We shall now prove this fact.

2.3.1 The k-pebble game

The technique we use to show the limitation on the expressive power of FO + LFP is a modi-

fication of the pebble games introduced in Section 1.2.2. As in the earlier version, two players

play on two structure A and B by placing pebbles on elements of the structures, except now the

supply of pebbles is limited to k pairs { (a l , bl), . . . , (ak, bk)). Once all k pairs have been placed

on the board, Player I can move by picking one of the pebbles already on the board and placing

it on any element in the same structure. Player 11 responds by picking the matching pebble in

the other structure and placing it on an element of that structure. As before, Player I wins at

any stage if the map from A into B defined by the pebble pairs is not a partial isomorphism.

Lemma 2.1 If Player 11 has a winning strategy for n moves o f the k pebble game on structures

A and B, then A and t? agree on all first-order sentences of quantifier rank up to n with at most

k distinct variables.

This result is a corollary of Theorem 3.1 in Section 3.2.

It follows from the above that if Player I1 can play the k-pebble game indefinitely without

losing, then the two structures agree on all first-order sentences with at most k distinct variables.

Call this fragment of first-order logic Lk . To use the above game to establish results about FO

+ LFP, we need the following lemma:

Lemma 2.2 If two structures agree on all sentences of Lk, then they agree on all sentences of

FO + LFP with at most k distinct variables.

Proof:

If two structures differ on a sentence 4 lfp(R)+(R), for some first-order +, then they differ on

some am, i.e. some iterate of the operator defined by 4. Each of the am can be written out as

a first-order formula as follows:

a0 E -(x = 2)

am+' +(Qm)obtained from + by replacing every occurrence of R by Qm

Observe that these formulas have no more variables that 4. Then, if the two structures differ

on any formula 9 in FO + LFP, we can replace all occurrences of lfp in 9 to get an Lk formula

distinguidhing them. rn

2.3.2 The parity query

To show that parity is not definable in FO + LFP, we only need to show that for every k , there

are two structures Ak and Bk such that the universe of Ah has even cardinality, the universe of

Bk has odd cardinality and the two structures agree on all sentences of Lk.

Let Ak and Bk be structures over the pure identity language, i .e. the language with no non-

logical vocabulary, with card(dk) = 2k and card(&) = 2k + 1. Then, since any map on at

most k points from Ak into Bk is clearly a partial isomorphism, Player I1 can, indeed,play the

k-pebble game indefinitely on these two structures.

2.3.3 The problem of counting

In general, the kind of argument we exhibited above can be used to show that FO + LFP fails

to express any notion of cardinality. For a long time, these were the only known examples of

properties that are in P-time but are not expressible in FO + LFP. This led to the conjecture

that the addition of some kind of counting construct to the language might capture all of P.

Lindell[Lin91] showed, however, that there are polynomial time computable properties of

complete binary trees that are not expressible in FO + L F P ~ . This is significant because FO +
LFP does express cardinality on complete binary trees in the following sense. There is a formula

d(z,S) of FO + LFP with the first-order variable z and the unary predicate variable S free,

such that for any complete binary tree T , the set {v E T((T, g) r$[v]) is uniquely determined

by the cardinality of S.

2.4 Counting Quantifiers

One kind of construct to express counting is the counting quantifier described in [Imm87]. For

each integer i let 3 i be a new quantifier in the language. This quantifier says that there are i

elements - for instance, 3iz4(2) says there are i elements in the set defined by 4(z). Clearly,

for any given i, this could also have been stated by a first-order formula. Therefore, adding

these counting quantifiers to the language FO + LFP does not appear to increase the expressive

power of the language. To see their value, we need to consider an alternative characterization of

inductive logic.

Every formula r$ of FO + LFP can be written out as a uniform infinite sequence of FO

formulas $, such that: there is a constant c such that the length of $, is less than nc; for all

structures of size n or less, 4 and $, agree; and there is a constant k such that $, has no more

than k distinct variables. The condition on uniformity in the above can be formulated purely

'We return to this topic in some detail in Section 4.3.4, where a proof of this fact is also given.

17

syntactically (see [Imm87]). Call the class of queries definable by such sequences IND. In the

presence of ordering, IND = FO + LFP Fmm861.

We now define IND(C) to be the properties definable by uniform sequences, 4, as above, but

where 4, may contain counting quantifiers. Note that this is not the same as adding counting

quantifiers to FO + LFP since we could have increasing quantifiers in 4, as n grows, and a

translation of these quantifiers into first-order formulas would give a sequence with no bound on

the number of variables. In fact, we can express the parity query in IND(C).

It was conjectured that IND(C) = P [Imm87]. If this were true, it would imply that ev-

ery query q E P is closed under C k equivalence for some k, that is, for every structure A E q

and any structure 13 such that A and B agree on all first-order sentences with counting quan-

tifiers and at most k distinct variables, B E q. This conjecture was refuted by Cai, Fiirer and

Immerman in [CFI89]. They exhibited a set of graphs S recognizable in polynomial time on

which the isomorphism problem is in P, and a sequence of pairs (G,, H,) of graphs from S

such that G, and H,, are C,, equivalent but not isomorphic. This means that the isomorphism

query on S defined as the query q over the language {El, E2) of two binary relations such that

q = {(V, E l , Ez)l the graphs (V, El) and (V, E2) are in S and are isomorphic) is in P but is not

closed under Ck equivalence for any k.

Chapter 3

Infinitary Logic with a Bounded

Number of Variables

We noted in the previous chapter that formulas of the logic FO + LFP can be seen as uniform

infinite sequences of first-order formulas with a bounded number of variables. This suggests

another way of extending first-order logic that includes the extension by a least-fixed-point

operator, and that is by including infinitary syntax. In this chapter, we look at the restriction

of infinitary logic obtained by allowing only finitely many variables in any given sentence. This

serves as a natural extension of inductive logics and provides a tool for studying their expressive

power.

3.1 Infinitary Logic

We first define the syntax of full infinitary logic. This language is denoted L,,, the first subscript

indicating that conjunctions and disjunctions can be taken over arbitrary sets of formulas and the

second subscript that only finite quantifier blocks are allowed1. In this notation, first-order logic

would be L,, . The formulas of L,, are defined as for first-order logic, except that conjunction

and disjunction are no longer binary operations. Rather, for any set of infinitary formulas a,
V O and A O are both formulas of L,, .

L,, is complete in expressive power in the following sense. Consider any class of finite

structures C such that C is closed under isomorphism. Since any finite structure A is completely

characterized up to isomorphism by a first-order sentence, 4.4, C is expressed by the L,, sentence

V(4-4 A E C). Clearly, this language is too strong. One restriction of this language that has

lThe notation for L,,, LL, and LW,, is borrowed from par771 where the latter two were first introduced.

been studied is obtained by allowing only finitely many variables in any single formula.

Definition 3.1 LL, is the collection of formulas of L,, that have at most k distinct variables

(free o r bound). LW,, is the collection of formulas of L,, that have a finite number of distinct

variables.

The language LW,, is restricted in its expressive power when compared with L,,, yet it is

still powerful enough to express properties that are not recursive. Consider, for instance, the

following recursive definition of the first order formulas Pn in the language, {<, U) of binary

strings2:

Over a binary string b1 . . . b,, Pn(bi) is true if and only if the string bl . . . bi is the binary

representation of n. Hence, 3x(Vy(y 5 z) P,(x)) is true only in the binary string representing

n. Note that only three distinct variables are used in any of the formulas. Thus, for any set of

integers S , the formula VnES Pn(z) is in LL,. Since S could be non-recursive, LW,, can express

non-recursive properties. On the other hand, as we shall see shortly, parity is not expressible in

this language.

3.2 Pebble Games

We showed above that unrestricted infinitary logic, L,,, is complete in its expressive power over

finite structures. We also showed that the restricted version of infinitary logic LW,, can express

non-recursive properties. To show that the restriction is real, we need to exhibit some property

that cannot be expressed in the latter language. To this end, we now present a version of the

Ehrenfeucht-F'raissQ games.

We state and prove the following result in its full generality. In particular, the theorem, as

stated, is true for all structures, not just finite ones. We will then consider the special cases that

are of interest. For instance, Theorem 1.1 is a special case.

21t is assumed that the symbol 5 represents a total ordering on the domain. This could be stated in a
first-order formula with 3 variables and added as a clause to the formulas P,

20

As before, qr(4) denotes the ordinal that is the quantifier rank of the formula 4. Note that

for infinitary formulas, the quantifier rank may be a transfinite ordinal. For this, we need to

modify the definition of quantifier rank (Definition 1 .I). Specifically, the clause for conjunction

and disjunction (clause 3) should read: if 4 = VcP or q5 = AcP then qr(q5) = sup{qr($)]$ E a).
dom(f) denotes the domain of the function f , rng(f) its range and I f) its cardinality. We also

assume that any formula in LL, is written so as to use only the variables 20, . . . , xk-1

Theorem 3.1 For any two structures, A = (A , . . .), B = (B , . . .) in a purely relational language,

the following statements are equivalent:

1. For all sentences 4 E Lk, with qr(4) 5 a ,

2. There is a collection {Ip I 0 5 a} of non-empty sets of partial asomorphisms from A to B

such that:

(a) I0 > Il > . . . > ID > . . . > I,,
(b) Iff E I p (0 5 5 a) and g f then g E I p , and

(c) For every f E I p + l (0 5 P < a) such that I f 1 < k and every a E A (resp. b E B),

there is a g E Ip with f E g and a E dom(g) (resp. b E rng(g)).

Proof:

(2 + 1) We show by induction on that for formulas $(yo. . . y,) E LL,, with qr(4) 5 p, if
f E Ip and ao,. . . , am E dom(f), then A + 4[a0.. .am] iff B 4[f(ao). . . f(am)].

Basis:

If qr(4) = 0 then 4 is a boolean combination of atomic formulas and since f is a partial

isomorphism, the result follows.

Induction Step:

We now proceed by induction on the structure of the formula 4. The cases 4 = 111, and

4 = AjEJ qj are trivial. So, we only need to consider the case where 4 = 3yo$[Yo.. . ym].

Note that qr(4) = 5 + 1 where qr($) = 5.

Suppose A 4[a l . . . a,] for some a l , . . . ,am E A and that a l l . . . ,am E dom(f) for some

f E Ia+l. Then, there is an a* E A such that A i= $[aoal . . .am]. By (b) above, there is an

f ' E with dom(f') = {al, . . . ,a,}. Since (f ' I < k, by (c) there is a g E la extending f'

such that a0 E dom(g). But then, by the induction hypothesis, B + $~(ao)g(a l) . . . g(am)],

i .e. B q5[g(al). . .g(am)] and therefore B b 4[f(al). . . f(am)], since f and g agree on

a l , . .. ,am.

Similarly, if B b q5[b1.. . b,] and bl,. . . , bm E rng(f), then A b 4[f-'(61). . . f-'(b,)].

(1 3 2) Define the Ip as follows: f E Ip if and only iff is a partial isomorphism from A to B

and for all formulas 4 E L:, with qr(q5) 5 p and all a1 . . . am E dom(f), A + $[ao . . .am]

iff B t= +[f(ao). . . f(am)]-

By definition, I6 > Ip for S 5 P. Also, since A and B agree on all sentences of quantifier

rank up to a, the empty partial isomorphism is in I, and therefore all the Ip are non-

empty. It is also clear that if f E Ip and g f then g E I p . Thus, we only need to show

property (c).

For contradiction, suppose that there is an f E with 1 f 1 < k and an a E A

such that for all g E Ip with g > f , a $ dom(g). Then, for every b E B, there

must be a formula +b[yoyl . . . ym] with qr($a) 5 P such that A b $b[aal . . .am] and

k l + b [b f (01). . . f (am)] (where a i , . . . , am E dom(f)). Let 4 = 3y AbEB $b[yyi . . . ym].

But then, qr(q5) = l? + 1, A b $[al . . . am] and B b 74[f (al) . . . f (a,)] contradicting the

assumption that f E IO+i.

Note that if in the above theorem, we take cr to be a finite ordinal n and we remove the

restriction on the size of the function f in clause (c), we get a statement equivalent to Theorem

1.1. To establish this, we need to see that two structures agree on all sentences of L,, of

quantifier rank less than n if they agree on all first-order sentences of quantifier rank less than n.

This can be shown by a simple induction argument on the structure of the infinitary formulas3.

If the two structures A and B are finite, then any chain of sets of partial isomorphisms as

above of length w can be extended to any ordinal length. To see this, note that there are only

finitely many maps from subsets of A into B. Thus, one of the sets in the chain must be repeated,

and hence, can be repeated indefinitely. This gives us the following corollary:

Corollary 3.1 For finite structures A and B, the following are equivalent:

For every sentence 4 E LL,,, A 4 i f f B b 4

For every sentence q5 E L k , A b 4 ifl B 4

We write A ~k B to denote that A and B satisfy the same sentences of Lr . When the sequence

of sets of partial isomorphisms is finite, we can view it as a formalization of the k-pebble game

introduced in Section 2.3.1. The above Corollary then provides a proof of Lemma 2.1.

3This works only in purely relational languages - it is not true when function symbols are present. This is
because the use of function symbols involves a "hidden" increase in quantifier rank, as can be seen by the process
of re-writing formulas with functions into equivalent relational formulas

3.3 Fragments of Lku

The extensions of first-order logic with the least-fixed-point operation (FO + LFP) and with

the partial-fixed-point operation (FO + PFP) (see Section 1.3.2) can be viewed as fragments of

LW,, .
Consider any formula qi G lfp(S, x, . . . , z,)$(S), where $ is a first-order formula positive in S

and let k be the number of distinct variables occurring in $. As we saw in the proof of Lemma 2.2,

the mth iterative stage of qi can be represented by a first-order formula $m which has no more

than k distinct variables. Then, qi is equivalent to the formula VZzo qbm which is in L",,. Sim-

ilarly, pfp(S, x, . . . , xn)$(S) is equivalent to V~=o($m(x l . . . x,) A Vx1 .. . V X , ($ ~ (X ~ . . .xn) *

$rn+l(xl . . . x,,))).

L & , is also an extension of G M ~ ~ ~ ~ ~ (loosely coupled generic machine), a model of generic

computation introduced by Abiteboul and Vianu [AVSlb]. Since every query computable by a
G M l ~ ~ ~ e is recursive, the containment is proper. On the other hand, both FO + LFP and FO +
PFP are contained in G M ~ ~ O S ~ . This fact is used in [AVSlb] to study the relationship of these

two languages. Abiteboul and Vianu establish that FO + LFP = FO + PFP if and only if P =

PSPACE. Since the two languages correspond exactly to P and PSPACE on ordered structures,

if they coincide on all structures, the complexity classes collapse. The entailment in the other

direction had, until recently been an open question. We present a proof of it in Section 4.3.3.

An even more remarkable result proved in [AVSlb] is as follows. Define FO + PFPIP to

be the sub-class of FO + PFP in which each iterative definition closes in a number of steps

polynomial in the size of the structure. This class is actually contained within P and within

LW,, and contains FO + LFP. It was conjectured that in fact FO + LFP = FO + PFPlP =

LW,, fl P . Abiteboul and Vianu showed that the first equality in this is also equivalent to the

problem P = PSPACE. We present a proof of this in Section 4.3.4, where we also prove that FO

+ LFP is properly contained in L", n P.

Chapter 4

Preliminary Results

In this chapter we look a t the logics with a bounded number of variables and establish some

preliminary results in order to study their expressive power. First we show that restricting first-

order logic to a fixed number of variables does not restore the completeness theorem. Next,

we determine every finite structure is characterized up to equivalence in this logic by a single

sentence. This also gives us a way to define a type in this logic by a single formula. We show how

these types can be inductively ordered and use this ordering to establish results about inductive

logics.

4.1 Validities are not R.E.

We begin by showing that the sentence of Lk, for a fixed k that is sufficiently large, valid over

finite structures are not recursively enumerable. This is a strengthening of Trakhtenbrot's result

obtained by a modification of the proof of that result as presented in [EFT84].

Let M be a two-counter machine, i.e. M is a machine with finite control, a read-only input

tape and two storage tapes that serve as counters. The tape alphabet consists of a single symbol

1, so that all integers (including the input) are represented in unary. The only operations that

are permitted on the storage tapes are writing a 1 a t the end, and erasing a 1 from the end. Such

machines are well known to be Turing equivalent, 2.e. for any recursively enumerable set, there

is a two-counter machine that accepts it. Indeed, an effective enumeration MI , M 2 , . . . of the

two-counter machines can be established in such a way that the enumeration {Cili E N} is an

acceptable numbering of the recursively enumerable sets, where Ci E N is the set accepted by

Mi. It follows from this that K = {i E N li E Ci) is recursively enumerable and that I(= N - K

is not recursively enumerable.

In order to establish that the set of finitely valid formulas of Lk is not recursively enumerable,

we will show that K is m-reducible to it. First we show that for every two counter machine Mi

we can construct a formula +i(x) in Lll such that, for any n E N, n E Ci if and only if qhi(7T)

has a finite model. It follows that K is m-reducible to the finitely valid sentences of Lll , since

n E K iff l+,(E) is finitely valid.

A configuration of M can be given by qnln2n3n4, where q is a state of M and the ni are

integers. It indicates that there are n l symbols on the input tape to the left of the read head,

nz symbols on the input tape to the right of the read head and ns and n4 symbols on the two

counters, respectively.

Let L be the language with a 6-ary relation R, a binary relation < and a binary realtion

S. Intuitively, a structure for L would be an initial segment of the natural numbers encoding

a computation by a two-counter machine with < being the usual ordering and S being the

successor relation. R encodes the configurations of the machine, so that R(k, i , nl , n2,n3, n4) is

true if and only if the machine is in configuration qinlnznsn4 after k computation steps.

Let $0 be a sentence that states that < is a linear order, and that S(x, y) if and only if y is

the succesor of x in the ordering, unless x is a maximal element, in which case S(x, x). We also

define the formulas ui(x) inductively as follows:

UO(X) is Vy(x < y V z = y),

u;+l is 3zS(x, z) A ai(z) if i is even, and

ui+l is 3yS(x, y) A ai(y) if i is odd.

Note that the number of variables in any ui is at most three. In the following, we use the notation

+(E) t o denote the formula 3xun (x) A +(x).

Let the states of M be q l , . . . , q, , with q, being the unique accepting state.

For each state qi , other than the accepting state, there are two transitions defined, depending

on whether the input symbol under the read head is a 1 or a blank (B). On each of the transitions,

either of the counters may have a symbol appended to it, erased from it or it may be left alone.

All of this can be encoded in a sentence qbi. For instance, if from a given state qi, the transition

on input 1 is to state qj, moving the head to the left, adding a 1 to the first counter and erasing

one from the second, while on input B , the head remains where it was, the machine goes into

state qk and both counters are unchanged, then the corresponding $i is:

VVWXYZ (R(w,T, X, V , Y, t) A 1 ~ 0 (~)) +

3v1w'x'y't1(S(w, w') A w # w' A S(v, v') A S(y, d) A S(xl, x) A S (t l , t)

A R(w', T, XI, VI , d , ZI))

A (~(w,:, 2, v, Y, z) A uo(v)) +

(EIW~S(W,W') A # W I A R (w ~ , X , X , ~ , ~ , Z))
-

$, is the sentence VvwxytR(w,S, x, v, y, t) + R(w, s + 1, x, v, y, z)

Finally, we define the sentence q5i(x) as Aoy ss $j A R (o , ~ , x, 0, 0, 0). It is clear that a model

of dj(E) encodes the computation of Mi on input n, and in particular, +,(E) has a finite model

if and only if Mj halts on input n and our construction is complete. We only need to note that

as written above, each of the $j has at most 10 variables. The 7's can be expanded with the

introduction of one additional variable. Hence, each of the is in L11.

4.2 Characterizing Structures up to Lk-equivalence

As we have seen earlier (Section 1.1), for every finite structure A, we can write a first-order

sentence 4~ such that any structure that satisfies is isomorphic to A. However, obviously,

not all such sentences are in Lk for any given k. This raises the question of whether there is a

sentence 4% of Lk associated with A such that any structure satisfying it is Lk-equivalent to A.

In this section, we answer this question in the affirmative. The proof is adapted from the proof

of Scott's theorem in [Bar73]. For the purpose of this section, we will assume that there are no

constants in the language being considered. The results can be easily generalised to the case

where constants are present.

Let A be the universe of A and let S = A I ~ be the set of sequences of element of A of

length less than or equal to k. For s E S and a E A, let s . (a) denote the sequence obtained by

extending s by the single element a.

We define a formula 4r for each s E S and each m E N. The formula has free variables

21,. . . , xl, where 1 is the length of s. These formula are defined by induction as follows:

for all s = (al . . .ar),

4f (z l . . . x/) is the conjunction of all atomic and negated atomic formulas O(xl . . . xl) such

that A + O[al . . .ar]

if length(s) < k then,

if length(s) = k then,

where si is the sequence obtained from s by deleting the ith element

Lemma 4.1 Let s = (a l . . . al) E S be a sequence of elements from A with 1 5 k . For any

finite struc2ure B = (B , . . .) and b l , . . . , br E B, B &"[bl.. . br] if and only if there is a

sequence of sets of partial isomorphisms lo > . . . > I, with the k back and forth property and

f = { (~ i , b i) . - . (a l , b ~)) I m

Proof:

e This follows immediately from the proof of Theorem 3.1 since the existence of such a sequence

implies that for any 4 of quantifier rank rn, B + +[bl . . . br] if A + 4[al . . .all. Clearly,

qr(qhp) = m and A 4p[s].

+- The proof is by induction on rn.

Basis Let l o = {gJg C f) . Even if s = () and f is the empty map, lo is non-empty.

Induction Step There are two cases to be considered:

Case: 1 < k

Let Im+1= {gig Gf}.

By induction hypothesis and 4.1, there is a sequence I: . . . I& with the k back and

forth property and f E IA.

Furthermore, by 4.2 and the induction hypothesis, for every a E A, there is a

b E B and a sequence I:'(") . ..I&(") with the k back and forth property such that

{ (a ~ , bi) . . . (ar, br), (a,b)} E I&("'.

Let Ij = I: UU,,, I:.(') (for 0 < j 5 m). Note that, in general, the k back and forth

property is preserved under this kind of element-wise union. Thus, we need to verify

that C I, - this follows from the fact that Im+1 C I& - and that every element

of is extensible in I, to arbitrary elements of A and B. This follows from 4.2

and 4.3 respectively.

Case: 1 = k

By the argument for the case above, there are sequences I; . . . I,!,,+~ corresponding to

each of the partial isomorphisms, fi, obtained by dropping the pair (ai, bi) from f .

Let Ij = { f) U Ui=l,.,k I; for 0 < j < m + 1. Each of the Ij is still closed under

restrictions, because if g E f , then either g = f or g C f j for some i. Since If 1 = k,

extensibility o f f is not required, and we are done.

For a given sequence s of length I, let X r = {sf E S(A Qr[s']). Each X r is a set of

I-tuples of A and Xr > XF+'. Since A is finite, there must be an m, such that X,". = X," for

all m > rn,. Let m* = max(m, 1s E S). Now, define the sentence 4 as follows:

Note that 4 E Lk and that A b 4 We now show that this sentence characterizes the structure

A up to Lk equivalence.

Theorem 4.1 For every finite structure A and any k, there is a sentence, 4 of Lk such that

A ,!= 4 and for any structure B, B 4 i f and only if A z k B.

Proof:

Let 4 be as defined above. We only need to show that if B b 4, then A r k B. Let F be the

set of maps {(al, b l) , . . . , (a r , b l)] such that B + $::+',,) [b l . . .bl]. The set F is non-empty since

B 4{*+'. By Lemma 4.1, for each f E F, there is a sequence I{ . . . IL,+, with the k back and

forth property. Let Ii = Uf ,-F I{ and let I, = Im*+' for all rn > m* + 1. We claim the infinite

sequence lo 2 . . . > I , . . . has the k back and forth property. We will establish the extensibility

of every element of The rest then follows.

Consider any f E with If 1 < k and any a E A. By definition, f E Since we know

that the sequence through has the k back and forth property, there is a g E I,+ such that

f g and o E dorn(g). But then, by the other direction of Lemma 4.1 B b 4;:m(,,,[(rns(g))]
and therefore, by the implication in 4, g E and we are done.

There are some points about the above construction that are noteworthy. First of all, we

could have, alternatively, defined rn* as the smallest m such that X a = X r + ' for all s . To see

this, just observe that this is the only property of rn* used in the above proof. Given that k is

the maximum length of any sequence in s , and that there are nk k-tuples in a structure of size

n, we can derive the bound m* 5 n k . This gives us the following:

Corollary 4.1 If A is a structure of size n and B a structure such that d and B agree on all

sentences of Lk of quantifier rank up to nk + k + 1, then A ~k B.

The following corollary is also immediate:

Corollary 4.2 If K is a query closed under Lk equivalence (that is, ifd E K and A z k B then

B E K) , then K is definable in L&,.

Proof:

If we write 4A for the sentence of Lk that chracterizes a structure d up to Lk equivalence, then

K is defined by the sentence V{~AIA E K) .

Finally, it is not only structures that are characterised up to Lk equivalence in the above

proof. For any sequence s = (a1 . . .al) of elements in a structure A, define the Lk-type of s to be

the set of formulas, 4, in 1 free variables, such that d 4[al . . . a,]. Then, we get the following:

Corollary 4.3 For every structure A and sequence ~ 1 , . . . ,al(l 5 k) of elements from A, there

is a fonnula, 4, in Lk with 1 free variables such that if B 4[bl . . . bl] in any structure B, then

a1 . . .a, and b1 . . . br have the same Lk-type.

4.3 Ordering the Types

Having seen how, for a particular Lk type, we can write a formula that characterizes it, we now

turn to writing a formula that will define a total ordering of these types. We will show that

this can be done uniformly in FO + LFP, i .e. a single formula will define the ordering on all

structures. From this result we will derive Abiteboul and Vianu's result [AVSlb] that PSPACE

= P if and only if FO + LFP = FO + PFP.

4.3.1 Inductive definition of the ordering

Looking again at the definitions of the 4y in the last section, we can see that these formulas were

defined by a simulatneous induction on first-order formulas - simultaneous in all the sequences s.

This, along with the observation that the basis of this induction is finite, in the sense that there

are, up to equivalence, only finitely many quantifier free formulas in a finite relational language,

suggests that we could accomplish the entire process with a single formula of FO + LFP. We

formalize this intuition below.

We first construct a formula of FO + LFP which defines, on any structure A, an equivalence

relation on k-tuples of elements such that two tuples are equivalent if and only if they have the

same Lk-type. In the following, for ease of reading, we will use the notation XI . . . x . . . xk to

indicate a sequence of variables in which x has been substituted for xi, when the particular i is

clear from the context.

Let al(xl . . . xk), . . . , ag(xl . . . xk) be an enumeration, up to equivalence, of all quantifier free

formulas of Lk with k free variables on the finite signature a. Then, define c$o as follows:

4 o (~ l . . . X k Y i . . . ~ k) V (ai(i.) h aj(y))
l<i#jSq

where ai($ is obtained from ai(5) by replacing every x j by yj.

Now, define 4 and 1C, as follows:

Claim 4.1 For any structure A on signature o, A +[al . . .aka{ . . .a;] if and only if6 and a/

have the same Lk-type.

Proof:

To establish this claim, we need to show that lfp(R, %,jj)q5[itit] expresses the ineqvivalence of

the two k-tuples. Picture the k-pebble game being played on two isomorphic copies of A, and at

some stage the pebbles are placed on (al, a:) , . . . (ak, a;). By Lemma 4.1, if the two tuples have

the same Lk-type, then Player I1 can play indefinitely from this point on without losing. We

claim that if aT[ac;'], then Player I can win in r moves or less. Clearly, if r = 0, by the definition

of cPo, a and 2 differ on a quantifier free formula and hence the map from one to the other is not

a partial isomorphism. If r = m + 1, then the definition of q5 tells us that we can, in one move,

get to a configuration that is in a m .

We will henceforth use the symbol -k in infix notation to denote the relation defined by

$. We will know give an inductive definition of an ordering relation on the equivalence classes

defined by this relation. In other words, we will define a 2k-ary relation that is a pre-order on

k-tuples such that two tuples are not ordered by this pre-order just in case they have the same

Lk-type.

Define the following formulas for each 1 5 i 5 k:

6i = A p j ~ l p i
j<i

Also, let

&(XI - . . X k Y l 0 . . yt) 2 V (ai(f) A aj(f/))
l < i < j < q

We now define

To interpret the above formula, define movei((a1 . . . ak)) = ((a1 . . . a . . . ak) la E A) , i .e . the

set of tuples obtainable from a by replacing ai. Then, what q5 says is that tuples a and are

ordered (iT < a') if, for the smallest i such that rnovei(ii) is different from rnovei(i'), the smallest

element in their set difference is in movei(6).

950 defines a pre-order on tuples, distinguishing them based on their quantifier free Lk-type.

The inductive stages then refine this pre-order according to the rule given above. This gives us

the following:

Claim 4.2

1. On any structure, A, $ defines a pm-order on k-tuples. W e will write z < k y for $ J (z ~) .

2. If ii and a' have the same Lk-type, then neither ii < k a' nor ii < k a'.

Using the formulas just defined, it is fairly easy to define the Lk equivalence and the corre-

sponding preorder relation on tuples shorter than k .

4.3.2 Rigid Structures

Consider the pre-order <: on single elements, i .e . tuples of length 1. Clearly, if there is at most

one element of any Lk-type in a structure, then <: defines a total ordering on the universe of

the structure. Since this ordering is definable in FO + LFP, and since FO + LFP expresses all of

P in the presence of ordering, this implies that FO + LFP expresses all of P on these structures.

We formalize this below:

Definition 4.1 A structure A is called rigid if the only automorphism on A is the identity.

Definition 4.2 Call a structure A k-rigid if no two elements of A have the same Lk-type.

Clearly, every k-rigid structure is rigid. Conversely,

Proposition 4.1 Every rigid structure A is k-rigid for some k .

Proof:

For contradiction, assume that A is a rigid structure that is not k-rigid for any k . Then there

are distinct elements a l , a2 in A such that they have the same Lk-type for all k. This is because

two elements that share an Lk-type share their LI-type for all 1 < k. But then, a1 and a2 have

the same first-order type. Now, expand the vocabulary by a constant symbol c, and consider

the expanded structures (A,al) and (A,az). These structures are elementarily equivalent. To

see this, note that any first-order sentence 4 not involving the constant c is true in one of the

structures just in case it is true in A. On the other hand, if 4 involves c and is true in (A, al), then

4(z), obtained by replacing all occurrences of c by the new variable z is in the first-order type

of a1 in A and hence true at a2 as well. Because any two finite structures that are elementarily

equivalent are isomorphic, A is not rigid and we have a contradiction. rn

The argument we gave above on the expressiveness of FO + LFP can now be formally stated

as :

Proposition 4.2 Let K be a query computable in polynomial time such that there is a k such

that every struclum in I< is k-rigid. Then K is expressible by a sentence of FO + LFP.

Observe that any structure with a linear ordering, <, is 2-rigid. There is a formula a i (x) E L2

which defines the ith element in the ordering uniquely. For instance,

We can interpret the above proposition as telling us the crucial property of the ordering that

allows us to express all of P in FO + LFP.

4.3.3 Translation to an Ordered Structure

In general, on a structure, A, that is not rigid, < k defines a pre-order, or alternatively a total

ordering on the Lk equivalence classes. We can look at this as the basis for a translation of the

structure A onto a totally ordered structure in which each of the equivalence classes is collapsed

to a point. This translation is interesting from the following point of view - consider any formula

4 5 Ifp(R, %)$ (or pfp(R, z)$) with only k variables. Then, not only is the relation defined by 4

on A closed under Lk equivalence, but so is every iterative stage of 4. This raises the possibility

that we can describe 4 as an induction on the Lk equivalence classes of tuples.

More formally, for any structure A = (A, R1,. . . , &), let

be the structure defined as follows:

The universe of E k (A) is - k , kt. e . the equivalence classes of tuples from A of length

5 k under the equivalence relation ~ k . We will write [a] to denote the equivalence class

that includes a .

The relations Ul . . . Uk are unary relations such that Ui([ii]) holds if and only if is of length

i. Note that these relations are well-defined because tuples of different lengths cannot be

equivalent.

a < k is a total ordering on the universe of E k (d) defined from the relations <; on tuples

of length i as follows: [a] < k [a'] if and only if length@) < length(al) or if length(5) =

length(iil) = i and [ii] <: [a1].

= I is a unary relation such that = I ([a]) holds if and only if a = (a, a) for some a E A.

a For each relation R, in A we have a relation Ri in E k (A) such that R:([ii]) holds if and

only if A R, [a] .'
'As defined, this works only if the arity, m, of R, is at most k. If this is not the case and m > k , we first

replace R, by a collection of relations of arity k by taking all the ways that we can form an m-tuple &om at most
k elements. This does not affect the results, since we are only considering formulas with at most k variables

Xi - the extension relation for tuples of length i- is a binary relation such that Xi([a], [ct)]

holds if and only if length(Z) = i and there is an a E A such that Zi' = (2, a). This relation

is well-defined, because two tuples that differ on the types to which they can be extended

cannot be of the same type.

P: is a binary relation for every i 5 i 5 k and every permutation, a , on i elements.

pi([%], [a')] holds if and only if a(%) = ii'. This relation is well-defined since, if 4 is

a formula in the Lk-type of ii, then so is any formula obtained by permuting the free

variables of 4. Hence, if 7il and ii2 have the same Lk-type, then so do ?r(al) and ?r(Siz)

We will also write Ek (a) to denote the signature of Ek(A), when a is the signature of A.

Lemma 4.2 The translation Ek is computable on all structures A in time polynomial in the

size of the structure A.

Proof:

The number of tuples in Ask is O(nk) where n = (Al. The equivalence relation -k is defined

by an FO + LFP formula and hence computable in polynomial time as is the ordering <k. We

can get, therefore, in polynomial time, a representation of the universe of Ek(A). A11 the other

relations are easily defined on A (in FO). W

Let 'R be a unary relation on structures over Ek(u). We say that 'R respects length if

whenever 'R([ii]) and 'R[al] then length(a) = length(%').

Lemma 4.3 For every first-order formula 9 with at most one free variable in the language

Ek(a), if the relation defined by 4 always respects length, then there is an FO + LFP formula

q5' in the language u such that for any slructure A, A $'[Si] if and only if Ek(A) $[[Sill.

Proof sketch:

We have already seen above that all the relations on Ek(A), including equality, are definable in

FO + LFP on A. Moreover, these definitions are uniform, i.e. for each R E Ek(a) there is a

single FO + LFP formula defining it for all A. So, we obtain 4' by substituting these definitions

in 4. W

Let be +(R) a first-order formula in the language Ek(o) U {R) where R is a unary relation

symbol. Suppose q5 has the property that the relation it defines on a structure (Ek(A),R)

respects length if 72 does. Let R"I = {~lR([ii])) and let A' be the structure (A, R ~) interpreting

the language a U Rt. Clearly, Ek(At) = (Ek(A),R). Therefore, by Lemma 4.3, there is an FO

+ LFP formula in a U R' such that A' 4'[ii] if and only if (Ek(A),R) 4 [[6]] . This gives us

the following result:

Lemma 4.4 For every FO + LFP (respectively FO + PFP) formula 4 in the language Ek(u)

that respects length, there is an PO + LFP (respectively FO + PFP) formula 4' in the language

u such that for any structure A, A @[GI if and only if Ek(A) 4[[a]].

Proof:

We will only prove the case of FO + LFP, the other case being analogous.

Let (b lfp(R, s)$(s) be a formula in the language Ek(u). We know by the above argument

that there is a formula $'(R1) of FO + LFP in u U R' such that A' $'[GI if and only if

(Ek(A), 77,) T,!J[[a]], provided that 77, respects length. Since at every iteration of 4, the relation

defined respects length, let 4' - lfp(Ri, f)$'(f). W

Note that every relation that is defined by a formula obtained in this way by translating back

from the language Ek(u) is closed under the Lk equivalence relation.

We now establish a translation of formulas in the other direction. Let 4 be a formula of Lk

in the language a. We will define, by induction on the structure of (b a first-order formula @

in the language Ek(u). First, we define some notation. In what follows, we will write 5 for a

sequence of variables, and In(%) for its length. In the translation we define, every sub-formula of

4 with free variables f is translated into a sub-formula of (b* with exactly one free variable. For

clarity, we will write x* for this variable. We have, in the language Ek(u), the relation symbols

Xi which "extend" tuples of length i by one element. From these, we can define relations

which extend a tuple of length i by j elements. For instance, for j = 2:

The translation is defined as follows:

If 4 XI = 22, then d* E zk(x*)

If 4 G Rj(f) and all the variables in f are distinct, then (b* G Ri(x*).

If the variables are not all distinct, let i = In(%). For every pair p = (pl ,p2) of positions

in Z that are occupied by the same variable, let ?rp be a permutation on i elements that

maps (pl,p2) + (1,2) and let fJp ~ s ~ ~ s z x $ (s ~ , s 2) A Pip(x*, $ 2) ~ =k(s~). Then,

If 4 +(f) and ln(5) = i, then

Suppose 4(%) - T,!Jl(f 1) A q2(g2). Here, 5 is a sequence comprising all the variables in

f l and f a . Let f l be a sequence extending 51 and a1 a permutation mapping rl to %.

Similarly, let 7r2 map an extension 22 of Zz to x. Finally, let In(%) = i, ln(xl) = il and

1n(f2) = i2. Then,

q5*(x*) 3x~3x:3z~3z$(xf1 (2:, z?) A X ~ ~ (X $, z$) A P:, (z:, x*) A pj1 (z;, x*)

A+:(x:) A $;(x;))

If d(Z) 3z+(g) where y = x . z and ln(Z) = i then:
+

It should be clear from the construction of q5* that A q5[li] just in case Ek(A) q5*[[a]J.

Moreover, this is true even if 4 is in an expanded language a U {R) as long as the interpretation

of R on A is closed under Lk equivalence. This gives us the following result:

Lemma 4.5 For every FO + LFP (respectively FO + PFP) formula 4 in the language a , there

is an FO + LFP (respectively FO + PFP) formula 4* in the language Ek(a) such that for any

structure A, A if and only if Ek(A) 4*[[ii]].

We are now in a position to prove the following result from [AVSlb]:

Theorem 4.2 FO + LFP = FO + PFP if and only if P = PSPACE.

Proof:

+ This follows immediately from the fact that FO + LFP = P and FO + P F P = PSPACE on

ordered structures. (Theorems 1.3 and 1.5 respectively).

-& Suppose P = PSPACE. Let q5 be a sentence in FO + PFP over signature a and let the

number of distinct variables in 4 be k. Take 4" the corresponding sentence of FO + PFP

in the language Ek(u). Since 4* is in FO + PFP, it is computable in PSPACE and hence

in P. Since Ek(u) is a language with a total ordering, there is a sentence of FO + LFP, II,

equivalent to $*. Moreover, because q5* is the translation of a relation defined over a, it

respects length and therefore so does +. Then, by Lemma 4.4 there is a $' in FO + LFP

over a that is equivalent to 4

4.3.4 Complete Binary Trees

As was stated in the proof of Lemma 4.2, the size of the structures Ek(A) is bounded by a

polynomial over all structures A. Over some classes of structures, it can be considerably smaller.

For instance, if we consider all structures over the language of identity, we find that all tuples of

the same length are L k equivalent for any given k. It follows that there is a bound dependent

only on k on the size of the structures Ek(A). Another class of structures for which the size of

Ek(A) is much smaller than that of A is the class of complete binary trees. This yields some

interesting results concerning logical expressibility.

Complete binary trees are graphs, i .e. structures (V, E) with one binary relation E satisfying

the following axioms:

1. Vx(Vy(-Exy) V 3y3z(y # z A Exy A Exz A Vw(Exw + w = y V w = z)))

This says that every vertex has exactly 0 or 2 children.

This says that every vertex has exactly 0 or 1 parent.

3. 3x(Vy(lEyx) A Vz(Vy(1Eyx) --, x = z))

This says that there is exactly one vertex (the root) that has no parent.

This says that the graph is connected, i .e . every pair of vertices is in the reflexive, transitive

and symmetric closure of the edge relation.

5. Vxi(lfp(R, x, y)(Exy V 3z(Rxz A Ezy))(x, x))

This says that there are no cycles.

6. VxVy((Vz(-Exz) A Vz(-Eyz)) + 6(x, y))

where,

6 lfp(R, X, y)((Vz(-Ezx) A Vz(1E.z~)) V 3w3z(Rwz A Ewx A E ~ Y)) (x , Y))

This says that all leaves are a t the same distance from the root (4 defines an equivalence

relation that relates vertices at the same depth).

If we let CBT = {G = (V, E)IG is a binary tree), then by the above definition CBT E

FO + LFP. Moreover, since we used only four distinct variables, CBT E L;,.

Define the formulas a, recursively as follows:

ao(x) - Vy-Eyx

an+l(x) 3 y E y x A 3 x (x = y ~ a ~ (x))

Then, for T E CBT, T ad[v] just in case v is a vertex of depth d in T. So, if Td is a

complete binary tree, it has depth d if and only if Td 3x(ad) A - d ~ ((u ~ + ~) . Note that each an

contains only two distinct variables. Since any two con~plete binary trees of the same depth are

isomorphic, we can conclude the following:

Proposition 4.3 If TI and T2 are two complete binary trees such that TI -2 T 2 , then TI T 2 .

Combining this with the axiomatization above, we get the following result:

Proposition 4.4 If q is any query in the language of graphs consisting only of complete binary

trees, then q is definable in 152,.

Define the class, 7, of labeled binary trees as the class of structure over the vocabulary

{ E , U) which satisfy, in addition to the above six axioms, the following one:

7. V x V y (6 (x , y) --t ((U x A U y) V (l u x A 7 U y)))

That is, all vertices at the same level are either labeled or unlabeled.

Observe that the propositions shown above for complete binary trees apply equally well to labeled

binary trees.

We also define the class, B, of binary strings as structures over the same vocabulary { E , U)

that make true Axioms 2 through 5 above, as well as:

1'. V x (V y (7 E x y) V 3 y (E x y A V z (E x z --t z = Y)))

That is every vertex has exactly 0 or 1 children.

There is a natural correspondence between labeled binary trees and binary strings. In some

sense, they encode the same information, with the ith bit of the binary string corrsponding to

the ith level of the tree. While we give formal definitions below, it will be instructive to keep

this intuitive picture in mind and we will make appeal to it to simplify the presentation.

Definition 4.3 If B E B and T E 7 , then B D T if and only if, for all d:

B b 3z(ud if and only if T 3x(ud, and

B b Vx((ud -+ U Z) if and only if T b Vx((ud 4 U x) .

Note that if B D T and the size of B is n, then the size of T is 2" - 1

Definition 4.4 For any queries q ~ B and q ~ 7 , define:

~ (Q B) = {TIB D T for any B E q ~)

h - ' (q ~) = { B I B D T for any T E q T)

It should be clear that ~ - ' (/ I (~ B)) = q ~ .

Lindell[Lin91] used this correspondence between binary strings and labeled binary trees to

show that FO + LFP does not express all the polynomial-time queries on binary trees.

Lemma 4.6 I f q ~ E D T I M @ ~ O (~)] then h (q B) E P

Proof:

Given an input T, we can verify that it is a labeled binary tree in polynomial time, since I E

FO + LFP. We can also extract from it a B such that B D T in DSPACEpog(n)]. We then pass

B as the input to the acceptor for q~ which runs in time 2°(d), where d is the size of B, but this

is only polynomial in the size of T.

Lemma 4.7 I f q ~ E FO + LFP, then h-l(qT) E FO + LFP.

The proof of this lemma is based on a syntactic translation similar to the one given in Sec-

tion 4.3.3. The key element of Lindell's construction is that k-tuples of vertices from the tree

can be encoded as fixed length tuples in the corresponding binary string. This is because a

complete set of invariants (up to automorphism) for a tuple on a complete binary tree is the

sequence of depths of the least common ancestors of pairs of elements in the tuple. We refer to

[Ling11 for details of the translation.

Given that there are queries on strings in DTIME[~~(")] that are not in P [HS65], we conclude

the following:

Theorem 4.3 ([Lingl]) There is a q~ 7 such that q~ E P, but q~ 4 FO + LFP.

Since we observed above that for every q such that q C 7, q E Lk,, we conclude that:

Corollary 4.4 FO + LFP C LW,, n P.

Define the class FO + PFPlP of queries expressed by a formula of FO + PFP with the

property that every occurrence of the pfp operation closes in polynomially many steps in any

structure. Any query in FO + PFPlP is clearly computable in polynomial time. Also, since the

operator lfp can be seen as an instance of pfp that always closes in polynomialy many steps, we

get

FO + LFP C FO + PFPlP E LW,, n P

It had been conjectured that these three classes are, in fact, equal. We have shown above

that the first and the third can be seperated. Abiteboul and Vianu[AVSlb] have recently shown

that the first and the second are equal if and only if P = PSPACE. This result is proved using a

padding technique similar to the one above. We encoded binary strings of size n as trees of size

2". For the purpose of the next result, we will need to encode them into trees of size 2nk. To

this end, we introduce, for every k the class of structures & over the signature {E, U , L) which

in addition to the Axioms 1 through 7, satisfy:

That is, all vertices at the same level are either in L or not.

If a vertex is in L, then so is its parent.

10. The depth of the tree is nk, where n is the number of levels labeled by L. This can be

stated in FO + LFP by defining a k-ary induction on the levels in L that is an ordering of

length nk on k-tuples.

The binary string encoded by a tree in Tk of depth nk can be extracted by looking a t the

topmost n levels (the levels labeled by L) and looking at the string defined by the relation U on

these levels. We can formalize this as before with a map hk from queries on binary strings to

queries on Tk.

Lemma 4.8 If q~ B is a query in FO + LFP (nespectiuely FO + PFP), then hk(qB) is in

FO + LFP (respectively FO + PFP).

The translation is obtained simply by replacing the equality relation by the formula 6 defined in

Axiom 6 and by relatibvizing all quantifiers to L.

Theorem 4.4 ([AVSlb]) FO + PFPl P = FO + LFP if and only if PSPACE = P.

Proof:

One direction follows immediately from Theorem 4.2. In the other direction, suppose FO +
PFPlP = FO + LFP. Let S be a language in PSPACE and hence in DTIME[~"'] for some k.

Let q~ B be the collection of structures corresponding to strings in S. Since an ordering is

easily (in FO + LFP) definable on structures in B, q~ E FO + PFP. Hence hk(qB) E FO + PFP.

Moreover, the translation in Lemma 4.8 does not increase the inductive depth of any occurrences

of pfp in the formula defining q ~ , which are therefore polynomial in the size of the trees in

Tk. Any new inductions introduced by the translation are expressible by lfp and hence also

polynomial. Thus, hk(qB) E FO + PFPIP. By hypothesis, then, hk(qB) E FO + LFP and by

Lemma 4.7, q~ E P.

This result is remarkable in that it reduces the separation of P and PSPACE to the seperation

two classes that are properly contained in P.

Chapter 5

Research Directions

In this chapter, we outline some proposals for continuing research in the area. While some of

these are precisely formulated, in particular the first one below, the later ones are somewhat

more tentative.

5.1 Lk canonization

Define the problem of Lk-canonitation as the problem of computing a function F on structures

A with the property that F(A) z k A and if A z k B then F(A) = F(B). We will also call F(A)

an Lk-canon of A.

We noted earlier that the polynomial time properties of unordered graphs are recursively

enumerable if the problem of canonical labeling of a graph has a polynomial time solution. We

can use a similar argument to show that if we have, for every k, a polynomial time algorithm,

Mk that produces an Lk-canon, and moreover the set of such Mk is recursively enumerable,

then the class of queries in LW,, n P is recursively indexable. This assumes that the Lk-canon

produced is at most polynomial in the size of the input.

As of the time of this writing, the problem of an effective listing of polynomial time algorithms

for Lk-canonization is still unresolved. However, the situation is different from the case of graph

canonization. In the latter case, neither the isomorphism problem nor the canonical labeling

problem are known to be in P though they are both known to be in NP. On the other hand, we

know that we can test Lk equivalence in polynomial time.

In [BG84], Blass and Gurevich defined four classes of problems associated with any equiva-

lence relation E over some domain V:

Equivalence Test ing Given two elements x, y E D, determine whether zEy.

Invariant Compute a function F from 2) to some set D' such that F(x) = F(y) just in case

xEy.

Normal Form Compute an invariant function F from V to D such that F(x)Ex.

First Member Given z find the smallest y (under some pre-determined ordering on 2)) such

that xEy.

It is clear that a polynomial time solution to any problem on this list yields a solution to all

problems above it. Blass and Gurevich showed that the other direction does not necessarily hold.

In fact, given a polynomial time equivalence test, the best that can be guaranteed about the

first-member problem is that it is in A;, the second level of the polynomial hierarchy. Moreover,

there are equivalence relations with a polynomial-time test for which the First Member problem

is complete for A:.

We can now characterize the problem of Lk canonization in the above terms as follows. The

translation of a structure A to Ek(A) is the computation of an invariant structure, in the sense

that Ek(A) and Ek(B) isomorphic if A ~k B (we prove this result below). Since the translation

produces ordered structures, two isomorphic structues are represented by identical binary strings.

Thus, this gives us a polynomial time invariant function. To prove that LW,, n P is recursively

indexable, it would suffice to show that there is a polynomial time computable Normal Form

function, since this would also guarantee that the Lk-canon was no more than polynomial in the

size of the input.

We now give the proof that the translation Ek does indeed compute an invariant structure.

Theorem 5.1 For any two struciures A and B, A -1: B if and only if Ek(A) S Ek(B)

Proof:

+ If A ~k B then every Lk-type that is realized in A is realized in B and vice versa. To see this,

let ii be an I-tuple from A. Recall from Corollary 4.3 that there is a formula 4(x1 . . . x,) in

Lk with I free variables that expresses this type. But then, A 3x1 . . .xl4 and therefore

B + 3x1 . . . x1$. This tells us that the structures Ek (A) and E k (a) have the same size.

Let f be the order-preserving map from Ek(A) to Ek(B). I f f ([GI) = [b] , then ti and b have

the same Lk-type. This is because the definition of the ordering relation < k is uniform. As

a result, the relations Ui and Rj are clearly preserved by f . Consider the case Xi([a], [a'].

Let 4 (x l . . .xi+l) be the Lk formula expressing the Lk-type of 5'. Then, 3xi+lr$ is in

the Lk-type of Si and hence of any element of f ([GI). It follows that Xi(f ([a]), f([iil]).

Similarly, f preserves the P: because the Lk-types are closed under permutations of the

free variables. Thus, f is an isomorphism.

+ Let f be an isomorphism from Ek(A) to Ek(B). We show that Player I1 has a strategy for

playing the k-pebble game on A and f? indefinitely. Suppose that at some stage of the game,

the pebbles are on the elements ii and b. Further suppose, without loss of generality, that

Player I moves on A resulting in the configuration ii'. Player I1 finds a tuple b' E f ([a'])

such that b' is one move away from b and then plays that move. We need to show that

such a i;' can always be found. Note that we can assume, as an inductive hypothesis that

f ([ii]) = [6]. There are two cases:

Case 1: ln(ii) = i < k and Player I moves by placing an additional pebble on the board.

Then, Xi([ti], [a'] and therefore X~(P], f ([a']) and there is a 6' E f ([ii']) that is an

extension of b

Case 2: ln(ii) = i + 1 5 k and Player I moves by moving the pebble from a1 to a new

element. Then, there are iil and a2 and a permutation T on i elements such that

the following holds: P ~ ([C ~] , [a2]) A Xi([iil], [ii]) A Xi([ii2], [a']). Once again, because f

is an isomorphism, Pi(f ([ail), f ([Cz])) A x i (f ([ail), f ([a])) A Xi(f ([gn]), f ([a'])) holds

and we can get from b to f ([a']) by moving br

The most direct approach to constructuing an Lk-canon, given a polynomial time algorithm

for the translation Ek, would be to try and invert Ek, i .e . given an input structure K, to find

an A such that K = Ek(A). However, this cannot be done in time polynomial in the size of K.

To see this, suppose for contradiction that we have a polynomial time computable E;' which

acts as a translation from the range of Ek into its domain. Since the range of Ek consists of

totally ordered structures, EF' is definable in FO + LFP. Composing this with the FO + LFP

definition of Ek, we get an FO + LFP translation that yields an Lk canon. and therefore that

LW,,, n P FO + LFP, which we know to be false. It is still conceivable that the computation

of EL', while not polynomial in the size of the input Ek(A) is polynomial in the size of A, since

the former could be much smaller. In fact, it is exactly the case where Ek(A) is much smaller

than A that demonstrated that FO + LFP# LW,,, n P.

5.2 Relationship with G M ' ~ ~ ~ ~

Another line of investigation related to the one above is to establish the relationship between
G ~ ? O O S ~ , the model of generic computation defined in [AVSlb] and LW,,. As we have already

seen, the former corresponds to a fragment of the latter. We also know that all properties
in G M l ~ ~ 3 e are recursive. Does it define exactly the recursive fragment of LW,,? A related

question is whether the restrictions of GM'""" to various complexity classes correspond to similar

restrictions on LW,,. This might provide an alternative way of answering the question on the

recursive enumerability of LW,,, n P.

5.3 Adding Counting Quantifiers

We can define the language C E , , as LW,,, augmented by the counting quantifiers described in

Section 2.4. This immediately raises a number of questions regarding the extension of our results

on LC, , to this language. Namely:

1. A polynomial time algorithm for testing Ck equivalence is given in [IL90]. This yields an

inductive ordering on the Ck-types in a manner analogous to the ordering on Lk types

presented in Section 4.3.1. Does this yield similar results seperating inductive C k logic

from C:,, n P?

2. Can one obtain from this a C k canonization algorithm? In some sense, this problem seems

easier than the one for Ls because structures that are Ck equivalent must have the same

size, so we do not have a change in size between a structure and its canon.

3. The result in [CFI89] implies that C g , , n P is properly contained in P. On the other hand,

we know that LW,,, n P is properly contained in C",, n P, since the latter can express

parity. So, what is the expressive power of CW,,, n P?

5.4 Other Inductive Operations

The language LW,,, is interesting as a generalization of the inductive languages FO + LFP and

FO + PFP, which in the presence of ordering capture natural complexity classes. Can we define

other inductive operations within LW,,, that correspond to complexity classes such as NP on

ordering? In other words, can we define some kind of a non-deterministic inductive operation?

Bibliography

[AVSla] S. Abiteboul and V. Vianu. Datalog extensions for database queries and updates.
Journal of Computer and System Sciences, 43:62-124, 1991.

[AVglb] S. Abiteboul and V. Vianu. Generic computation and its complexity. In Proceedings
of the 23rd ACM Symposium on the Theory of Computing, 1991.

[Bar731 J . Barwise. Back and forth through infinitary logic. In M. D. Morley, editor, Studies
in Model Theory, Mathematical Association of America, 1973.

[Bar771 J . Barwise. On Moschovakis closure ordinals. Journal of Symbolic Logic, 42:292-296,
1977.

[BG84] A. Blass and Y. Gurevich. Equivalence relations, invariants, and normal forms. SIAM
Journal on Computing, 13(4):682-689, 1984.

[CFI89] J-y. Cai, M. Fiirer, and N. Immerman. An optimal lower bound on the number of
variables for graph identification. In Proceedings of the 30th IEEE Symposium on
Foundations of Computer Science, pages 612-617, 1989.

[CH82] A. Chandra and D. Harel. Structure and complexity of relational queries. Journal of
Computer and System Sciences, 25:99-128, 1982.

[EFT841 H-D. Ebbinghaus, J . Flum, and W. Thomas. Mathematical Logic. Springer-Verlag,
1984.

[EhrGl] A. Ehrenfeucht. An application of games to the completeness problem for formalized
theories. Fund. Math., 49:129-141, 1961.

[End721 H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

[Fag741 R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In
R. M. Karp, editor, Complexity of Computation, SIAM-AMS Proceedings, Vol 7,
pages 43-73, 1974.

[Gur84] Y. Gurevich. Toward logic tailored for computer science. In M. Richter et. al., editor,
Computation and Proof Theory, pages 175-216, Springer Lecture Notes in Mathemat-
ics, 1984.

[HS65] J . Hartmanis and R. E. Stearns. On the computational complexity of algorithms.
Transactions of the AMS, 117:285-306, 1965.

[IL90] N. Immerman and E. S. Lander. Describing graphs: a first-order approach to graph
canonization. In A. Selman, editor, Complexity Theory Retrospective, Springer-Verlag,
1990.

[Imm86] N. Immerman. Relational queries computable in polynomial time. Information and
Control, 68:86104, 1986.

[Imm87] N. Immerman. Expressibility as a complexity measure: results and directions. In
Proceedings of the 2nd Conference on Structure in Complexity Theory, pages 194-202,
1987.

[Imm89] N. Imrnerman. Descriptive and computational complexity. In J . Hartmanis, editor,
Computational Complexity Theory, Proc. of AMS Symposia in Appl. Math., pages 75-
91, 1989.

[KuE87] L. KuEera. Canonical labeling of regular graphs in linear average time. In Proceedings
of the 28th IEEE Symposium on Foundations of Computer Science, pages 271-279,
1987.

[Lid71 S. Lindell. The Logical Complexity of Queries on Unordered Graphs. PhD thesis,
University of California, Los Angeles, 1987.

[Ling11 S. Lindell. An analysis of fixed-point queries on binary trees. Theoretical Computer
Science, 1991. To appear.

[St0771 L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3:l-22,
1977.

[Tra50] B. A. Trakhtenbrot. Impossibility of an algorithm for the decision problem in finite
classes. Dokdaly Akademii Nauk SSSR, 70:569-572, 1950.

[Var82] M. Y. Vardi. The complexity of relational query languages. In Proceedings ofthe 14th
ACM Syrnposium on the Theory of Computing, pages 137-146, 1982.

	Investigating Logics for Feasible Computation
	Recommended Citation

	Investigating Logics for Feasible Computation
	Abstract
	Comments

	tmp.1187117404.pdf.lMC7J

