
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Technical Reports (CIS) Department of Computer & Information Science 

November 1991 

Infinitary Logic and Inductive Definability Over Finite Structures Infinitary Logic and Inductive Definability Over Finite Structures 

Anuj Dawar 
University of Pennsylvania 

Steven Lindell 
University of Pennsylvania 

Scott Weinstein 
University of Pennsylvania 

Follow this and additional works at: https://repository.upenn.edu/cis_reports 

Recommended Citation Recommended Citation 
Anuj Dawar, Steven Lindell, and Scott Weinstein, "Infinitary Logic and Inductive Definability Over Finite 
Structures", . November 1991. 

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-91-97. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/365 
For more information, please contact repository@pobox.upenn.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76387755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F365&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/365
mailto:repository@pobox.upenn.edu


Infinitary Logic and Inductive Definability Over Finite Structures Infinitary Logic and Inductive Definability Over Finite Structures 

Abstract Abstract 
The extensions of first-order logic with a least fixed point operators (FO + LFP) and with a partial fixed 
point operator (FO + PFP) are known to capture the complexity classes P and PSPACE respectively in the 
presence of an ordering relation over finite structures. Recently, Abiteboul and Vianu [AV91b] investigated 
the relation of these two logics in the absence of an ordering, using a mchine model of generic 
computation. In particular, they showed that the two languages have equivalent expressive power if and 
only if P = PSPACE. These languages can also be seen as fragments of an infinitary logic where each 

formula has a bounded number of variables, Lω∞ω (see, for instance, [KV90]). We present a treatment of 
the results in [AV91b] from this point of view. In particular, we show that we can write a formula of FO + 
LFP and P from ordered structures to classes of structures where every element is definable. We also 
settle a conjecture mentioned in [AV91b] by showing that FO + LFP in properly contained in the 

polynomial time computable fragment of Lω∞ω, raising the question of whether the latter fragment is a 
recursively enumerable class. 

Comments Comments 
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-91-97. 

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/365 

https://repository.upenn.edu/cis_reports/365


Infinitary Logic and Inductive Difinability 
Over Finite Structures 

MS-CIS-91-97 
LOGIC & COMPUTATION 44 

Anuj Dawar 
St even Lindell 

Scott Weinstein 

Department of Computer and Information Science 
School of Engineering and Applied Science 

University of Pennsylvania 
Philadelphia, PA 19104-6389 

December 1991 



Infinitary Logic and Inductive Definability over Finite 

Structures 

Anuj Dawarl 

Department of Computer and Information Science 

University of Pennsylvania 

Philadelphia, PA 19 104. 

Steven Linde112 Scott Weinstein' 

Department of Mathematics Department of Philosophy 

Haverford College University of Pennsylvania 

Haverford, PA 19041. Philadelphia, PA 19104. 

November 27, 1991 

'Supported in part by ONR grant N0001489-J-1725. 
2Supported in part by NSF grant CCR-9003356. 



Abstract 

The extensions of first-order logic with a least fixed point operator (FO + LFP) and with 
a partial fixed point operator (FO + PFP) are known to capture the complexity classes 
P and PSPACE respectively in the presence of an ordering relation over finite structures. 
Recently, Abiteboul and Vianu [AVSlb] investigated the relationship of these two logics in 
the absence of an ordering, using a machine model of generic computation. In particular, 
they showed that the two languages have equivalent expressive power if and only if P = 
PSPACE. These languages can also be seen as fragments of an infinitary logic where each 
formula has a bounded number of variables, LW,, (see, for instance, [KVSO]). We present 
a treatment of the results in [AVSlb] from this point of view. In particular, we show that 
we can write a formula of FO + LFP that defines an ordering of the L;, types uniformly 
over all finite structures. One consequence of this is a generalization of the equivalence of 
FO + LFP and P from ordered structures to classes of structures where every element is 
definable. We also settle a conjecture mentioned in [AVSlb] by showing that FO + LFP 
is properly contained in the polynomial time computable fragment of LW,,, raising the 

question of whether the latter fragment is a recursively enumerable class. 



1 Introduction 

In applications of finite model theory in computer science, extensions of first-order logic 

by various induction operations have received particular attention. Many database query 

languages are based on such extensions (see, for instance, [AVSla]) and in the area of 

descriptive complexity, they have been shown to naturally characterize certain complexity 

classes. In particular, the extensions of first-order logic with a least fixed point operator 

(FO + LFP) and with a partial fixed point operator (FO + PFP)  are known to capture 

the complexity classes P and PSPACE respectively in the presence of an ordering relation. 

Recently, Abiteboul and Vianu [AVSlb] investigated the relationship of these two logics in 

the absence of an ordering, using a machine model of generic computation. In particular, 

they showed that the two languages have equivalent expressive power if and only if P = 

PSPACE. 

The languages FO + LFP and FO + PFP can also be seen as fragments of an infinitary 

logic where each formula has a bounded number of variables, LW,,. Kolaitis and Vardi 

[KV90] took this view and proved a generalization of the 0-1 law for FO + LFP. Following 

their lead, we present a treatment of the results in [AVSlb] under this view. In particular, 

we show that we can write a formula of FO + LFP that defines an ordering of the LL, 
types in any structure. This is a refinement of the technique in [AVSlb], where a distinct 

ordering was used for every query. The proofs we present make no reference to a particular 

model of computation and, it is hoped, shed some light on these results. 

We also settle a conjecture mentioned in [AVSlb] by showing that FO + LFP is properly 

contained in the polynomial time computable fragment of LW,,. This raises the question of 

whether the latter fragment is a recursively enumerable class. We give some indication of 

how this question might be addressed in Section 9. 

This paper is organized as follows. In Section 2, we define the logics FO + LFP and FO 

+ PFP. In Sections 3 and 4, we introduce infinitary logic and some related technical tools. 

Sections 5 and 6 establish that types in L&, can be uniformly defined and ordered in FO 

+ LFP and some consequences of this fact. This construction is then used in Sections 7 

and 8 to  investigate the relationship of FO + LFP and FO + PFP, including the proofs of 

the results of [AVSlb]. 



Definitions and Notation 

A signature (also sometimes called a language or a vocabulary) a is a finite sequence of rela- 

tion and constant symbols (R1,. . . , R,, cl,. . . ,c,). Associated with each relation symbol, 

R; is an arity a;. 

A structure over the the signature a, % = (A, R?, . . . , R:,C?, . . . ,c:) consists of a set 

A, the universe of the structure, relations R? c Aai interpreting the relation symbols in 

a and distinguished elements c y ,  . . . , c: of A interpreting the constant symbols. Unless 

otherwise mentioned, all structures we will be dealing with are assumed to have finite 

universe. For convenience, we will assume that the universe A is an initial segment of the 

natural numbers. We will also write I%] for the universe of the structure %. 

A query is a collection of structures, K ,  over some fixed signature a that is closed under 

isomorphism, i.e. if 24 ZL K and 24 r !B then 93 E K. 

We will write FO, FO + LFP, etc. both to  denote logics (i.e. sets of formulas) and 

the classes of queries that are expressible in the respective logics. It  will be clear from the 

context which usage is intended. 

2 Inductive Logic 

In the context of finite models, the expressive power of first-order logic is known to  be 

extremely limited. Various extensions of first-order logic have been studied that correspond 

to  independently defined complexity classes. One way of increasing the expressive power 

of first-order logic is by adding some kind of induction operation. 

Let +(R, XI,.  . . , xk) be a first-order formula over the signature au{R) with free variables 

X I , .  . . ,xk, where k is the arity of R. For any structure % over the signature a, 4 defines a 

mapping, 9 on relations of arity k in the following sense - given a relation R' C 1%Ik, let 

(%, R ~ )  be the expansion of % interpreting R as R". Then, @(R") = {(ax,. . . ak)l(24, R") I= 
$[a17 - .  . ,ak]} 

This map 9 is called monotone if for any relations R and S such that R C S, @(R) & 

@(S). A map that is monotone has a least fixed point, i.e. a smallest relation R such 

that 9 (R)  = R. Moreover, this least fixed point can be obtained by the following iterative 

construction: Let 9 O  = 8 and = @(am). Then for some m (depending on the 



structure a ) ,  @*+I = am = the least fixed point of @. m is called the closure ordinal of 

@ on the structure a .  If n is the size of 24, then there are nk k-tuples in % and since @ is 

monotone, m 5 nk. 

A sufficient syntactic condition for the formula 4 to  define a monotone map on all 

structures is that 4 be positive in R, that is to  say that all occurrences of R in 4 be within 

the scope of an even number of negations. We can now define the logic FO + LFP over 

signature a as the smallest set of formulas satisfying: 

if 4 is a first-order formula over a, then q5 E FO + LFP(a), 

if 6) is formed from formulas in FO + LFP(o) by conjunction, disjunction, negation 

and first-order quantification, then q5 E FO + LFP(a), and 

. if 4 E FO + LFP(a U {R}), 4 is positive in R and XI,. . . ,xk are distinct variables, 

where k is the arity of R, then lfp(R,xl . . .xk)4(t l . .  . tk )  E FO + LFP(a) for any 

terms t l ,  ..., tk. 

The way to  read the last clause above is that the operator lfp binds the second order 

variable R and the first-order variables XI, .  . . xk in 4 to form a new predicate. This predi- 

cate is to  be interpreted as the k-ary relation that is the least fixed point of the monotone 

operator defined by 4. This predicate is then evaluated at the elements denoted by the 

terms tl ,  . . . , tk. 

The following normal form result was established in [Imm86] for formulas of FO + LFP. 

Theorem 1 In any vocabulary containing constant symbols, every formula in FO + LFP 

is equivalent to a formula lfp(R, ~ ) 4 ( f ) ,  where 4 is first-order. 

For examples of the use of the lfp operator, see Axioms 4-6 in Section 8. 

Alternatively, we can define the language FO + IFP which has an operation ifp (in- 

flationary fixed point) in place of lfp. In ifp(R, xl  . . . xk)q5(tl . . . tk),  4 is not required to  

be positive in R. It denotes the least fixed point of the operator 9' given by @'(R") = 

((al,. . . ak)  1 (al,. . . ak)  E R" or (31,~") I= +[al,. . . ,ak]}. This language is equivalent in 

expressive power to FO + LF'P: 

Theorem 2 ([GS86]) A query is expressible in FO + IFP if and only if it is expressible 

in FO + LFP. 



Immerman [Imm86] and Vardi [Var82] independently showed that when we include a 

total ordering on the domain as part of the logical vocabulary, the language FO + LFP 

expresses exactly the class of polynomial time computable queries. 

Theorem 3 ([Imm86],[Var82]) FO + LFP with ordering = P. 

We saw above how a formula with one free predicate variable defined an operator on 

relations. This, of course, is true even when the formula is not positive in the predicate 

variable and the operator, in turn, may or may not be monotone. Moreover, the iterative 

stages of the operator can still be defined, though they are not guaranteed to converge to 

a fixed point in the case of non-monotone operators. Let 4(R, 3) be a formula that defines 

a (possibly non-monotone) operator @. Define the partial fixed point of 4 to  be am if there 

is an m such that am+* = am, and empty otherwise. Because there are only 2nk sets of 
k 

k-tuples over a structure of size n, if such an m exists m 5 2n . We can then define another 

extension of first-order logic called FO + PFP with a syntax similar to that of FO + LFP 

except that the lfp operation is replaced by pfp, which can operate on arbitrary formulas, 

not just positive ones. pfp(R, 5)4 denotes the partial fixed point of 4. 
It  has been shown in [AVSla] that the language FO + PFP is equivalent to the query 

language while - an extension of first-order logic with an iterative operation. Putting this 

together with a result of Vardi [Var82], we get the following: 

Theorem 4 ([Var82],[AVQla]) FO + PFP with ordering = PSPACE. 

3 Infinitary Logic 

We first define the syntax of full infinitary logic. This language is denoted L,,, the first 

subscript indicating that conjunctions and disjunctions can be taken over arbitrary sets of 

formulas and the second subscript that only finite quantifier blocks are allowed1. In this 

notation, first-order logic would be L,,. The formulas of L,, are defined as for first-order 

logic, except that conjunction and disjunction are no longer binary operations. Rather, for 

any set of infinitary formulas @, V @ and A @ are both formulas of L,,. 

L,, is complete in expressive power in the following sense. Consider any class of 

finite structures C such that C is closed under isomorphism. Since any finite structure IZL 

 he notation for Lmw, LLw and LW,, is borrowed from [Bar77]. 

4 



is completely characterized up to isomorphism by a first-order sentence, C is expressed 

by the L,, sentence V{q5Q 1% E C} .  Clearly, this language is too strong. One restriction of 

this language that has been studied is obtained by allowing only finitely many variables in 

any single formula. 

Definition 1 LL, is the collection of formulas of L,, that have at most k distinct vari- 

ables (free or bound). L",, is the collection of formulas of L,, that have a finite number 

of distinct variables. 

In what follows, we will assume that any formula in LL, is written so as to use only the 

variables XI,  . . . , xk. 

The language LW,, is restricted in its expressive power when compared with L,,, yet 

it is still powerful enough to express properties that are not recursive (see, for instance, 

[KVgO]). To show that the restriction is red, we need to exhibit some property that 

cannot be expressed in the former language. To this end, we now present a version of the 

Ehrenfeucht- Fraissd games. 

We state and prove the following result in its full generality. In particular, the theorem, 

as stated, is true for aEI structures, not just finite ones. We will then consider the special 

cases that are of interest. We begin with some notation. d o m ( f )  denotes the domain of 

the function f ,  rng( f )  its range and If  1 its cardinality. qr(4)  denotes the quantifier rank 

of a formula, defined as: 

Definition 2 The quantifier rank of a formula 4, written qr(4) is defined inductively as 

follows: 

1. i f  4 is atomic then qr(q5) = 0, 

2. if 4 = -I+ then qr(4)  = qr($), 

3. if 4 = V i3 or 4 = / \a then qr(4) = sup{qr($)I+ E a}, and 

4 .  i f  4 = 3x+ or 4 = Vx$ then qr(rj5) = qr($) + 1. 



Definition 3 A function f is a partial isomorphism from 31 to  ?I3 if the domain of f is 

a subset of 31 that includes the interpretations of all constants in  the language of II and if 

f is an isomorphic map over this domain, i.e. f (ca)  = cs for all constants c and for all 

relation symbols R and a l , .  . . ,a, in  the domain of f ,  31 Ra(al ,  . . . ,a,) i f  and only i f  

?I3 I= R Y f  ( a d , .  , f ( am) ) -  

Definition 4 For any two structures 31 = (A, .  . .) and ?I3 = ( B ,  . . .) and any ordinal a ,  a 

collection of sets of partial isomorphisms { I p  I p < a )  is said to have the k back and forth 

property if and only if: 

1. Each Ip is non-empty, 

3. I f f  E I p ( O < p < a )  a n d g E  f t h e n g ~ I p ,  and 

4. For every f E I P + ~  (0 5 P < a )  such that I f l  < k and every a E A (resp. b E B ) ,  

there is a g E Ip with f C g and a E dom(g) (resp. b E rng(g)). 

Theorem 5 For any two structures, 31 = (A , .  . .), 23 = ( B , .  . .) in  a purely re.elationa1 

language, the following statements are equivalent: 

1. For all sentences # E L&, with qr(#) I a ,  

2. There is a collection { Ip  1 P < a) of non-empty sets of partial isomorphisms from 2L 

to ?23 with the k back and forth property. 

Proof: 

k (2 + 1) We show by induction on /3 that for formulas #(yo . .  . ym) E L,,, with qr(#) 5 P,  

if f E Ip and ao, . . . , a ,  E dom( f ) ,  then 2 +[ao . . . a,] iff 23 k 4[ f ( ao ) .  . . f (a,)]. 

Basis: 

If qr(#) = 0 then # is a boolean combination of atomic formulas and since f is a 

partial isomorphism, the result follows. 



Induction Step: 

We now proceed by induction on the structure of the formula 4. The cases 4 = T$ 

and 4 = AjEJ $j are trivial. So, we only need to consider the case where 4 = 

3yo$[yo . . . ym]. Note that qr(4) = 6 + 1 where qr($) = 6. 

Suppose Q + 4[al. . . a,] for some a l ,  . . . , am E A and that al ,  . . . ,am E dom( f )  for 

some f E Is+l. Then, there is an a0 E A such that Q $[aoal.. . a,]. By clause 3 

of Definition 4, there is an f' E with dom(fi) = {al,. . . ,a,) and F' f .  Since 

I f'l < k, by clause 4 there is a g E Is extending f' such that a0 E dom(g). But then, 

by the induction hypothesis, B 23 $[g(ao)g(al) . . .g(am)], i.e. B 4[g(al). . . g(a,)] 

and therefore B + 4[f (al).  . . f (a,)], since f and g agree on a l ,  . . . ,a,. 

Similarly, if 23 + 4[bl . . . b,] and bl, . . . , b,  E rng( f) ,  then 3L 4[f-'(bl) .. . f-'(b,)]. 

(1 + 2) Define the Ip as follows: f E Ip if and only i f f  is a partial isomorphism from 

2l to B and for all formulas 4 E LL, with qr(4) 5 ,i3 and all ao.. .a, E dom( f ) ,  

Q b 4[a0 . . am] iff I= 4[f (a01 . . f (am)]. 

By definition, I6 2 ID for 6 < P.  Also, since 2l and B agree on all sentences of 

quantifier rank up to cr, the empty partial isomorphism is in I, and therefore all the 

Ip are non-empty. It is also clear that i f f  E Ip and g 5 f then g E Ip. Thus, we only 

need to show that clause 4 holds. 

For contradiction, suppose that there is an f E Ip+1 with 1 f 1 < k and an a E A 

such that for a l l  g E Ip with g > f ,  a # dom(g). Then, for every b E B, there must 

be a formula +b[yOyl . . . ym] with qr($b) 5 P such that 2l $b[aal.. .am] and 23 + 
l $ b  [ b f  (a1 ) . . f (am)] (where a1 , . - 7  am E dom(f )). Let 4 = 3y A b E ~  $6 [YYI . . . ym]. 

But then, qr(4) = ,O + 1, 3L $[a1 . . . a,] and 23 23 +[f (al) .  . . f (a,)] contradicting 

the assumption that f E Ip+1. 

Note that two structures 3L and 23 agree on all sentences of L,, of quantifier rank 

less than n if they agree on all first-order sentences of quantifier rank less than n. This 

can be shown by a simple induction argument on the structure of the infinitary fotmulas2. 

'This works only in finite relational languages - it is not true when function symbols are present or 
there are infinitely many relation symbols. This is because the use of function symbols involves a "hidden" 
increase in quantifier rank, as can be seen by the process of re-writing formulas with functions into equivalent 
relational formulas. 



Moreover, if the two structures are finite, then any chain of sets of partial isomorphisms 

as above of length w can be extended to any ordinal length. To see this, note that there 

are only finitely many maps from subsets of A into B. Thus, one of the sets in the chain 

must be repeated, and hence, can be repeated indefinitely. Writing Lk for the fragment of 

first-order logic with at most k variables, we have the following corollary: 

Corollary 1 For finite structures 31 and !B, the following are equivalent: 

r For every sentence # E L&,, ?2l + 4 ig!B )= 4 

For every sentence # E Lk,  B 4 i f lB /= 4 

We write % 2 ~ k  B to denote that I# and B satisfy the same sentences of Lk.  

When the sequence of sets of partial isomorphisms is finite, we can view it in terms of 

the following two-player pebble game. We have a board consisting of one copy of each of 

the structures !A and 23. There is also a supply of pairs of pebbles {(all bl ) ,  . . . , ( a k ,  b k ) ) .  

At each move of the game, Player I picks up one of the pebbles (either an unused pebble, or 

one that is already on the board) and places it on an element of the corresponding structure 

(i.e. she places a; on an element of A or b; on an element of B). Player I1 then responds 

by placing the unused pebble in the pair on an element of the other structure. Player I1 

loses if the resulting map, f ,  from ?2l to B ,  given by f ( a j )  = bj, 1 5 j 5 k, is not a partial 

isomorphism. Player I1 wins the n-move game if she has a strategy to avoid losing in the 

first n moves, regardless of what moves are made by Player I. We then have the following 

characterization: 

Corollary 2 If Player II  has a winning strategy for n moves of the k pebble game on 

structures 31 and B, then B and ?B agree on all first-order sentences of quantifier rank up 

to n with at most k distinct variables. 

The languages FO + LFP and FO + PFP (see Section 2) can be viewed as fragments 

of L",,. Consider any formula # lfp(S,x, . . . , x,)$(S), where $ is a first-order formula 

positive in S. We can define the mth iterative stage of 4 by a first-order formula $m defined 

inductively, as follows: 

O EE 7(x = x) 

$m+l 3 $($F) obtained from $ by replacing every occurrence of S by $m 



Then, 4 is equivalent to  the formula VZZo +". Similarly, pfp(S, x, . . . , xn)+(S) is equiv- 

alent to V:=o(+m(xl.. . x,) A Vxl.. .Vx,(+"(xl. . .x,) tt +mtl(xl.. -2,))). Note that 

each of these has a t  most n variables more than + and is, therefore, in LW,,. Hence, we 

have: 

Corollary 3 If two (finite) structures agree on all sentences of Lk, then they agree on all 

sentences of FO + LFP and FO + PFP with a t  most k distinct variables. 

4 Characterizing Structures up to Lk-equivalence 

It is clear that for every finite structure Q, we can write a first-order sentence 4% such 

that any structure that satisfies 4% is isomorphic to Q. A simple application of Theorem 5 

shows that not all such sentences are in Lk for any given k. This raises the question of 

whether there is a sentence q$, of Lk associated with ?M such that any structure satisfying it 

is Lk-equivalent to  Q. In this section, we answer this question in the affirmative. The proof 

is adapted from the proof of Scott's theorem in [Bar73]. For the purpose of this section, we 

will assume that there are no constants in the language being considered. The results can 

be easily generalized to  the case where constants are present. 

Let A be the universe of 24 and let S = ~s~ be the set of sequences of elements of A of 

length less than or equal to k. For s E S and a E A, let s - ( a )  denote the sequence obtained 

by extending s by the single element a. 

We define a formula qha for each s E S and each m E N. The formula has free variables 

X I , .  . . , X I ,  where I is the length of s. We want it to be the case that Q + +?[s] and that 

this formula characterizes s completely up to equivalence on formulas with k variables and 

quantifier rank m. The b>re defined by induction as follows: 

for all s = (al . . . al), 

&(x1 . . . xi) is the conjunction of all atomic and negated atomic formulas @(XI . . . xl) 

such that 24 8[al . . . all 

if length(s) < k then, 



if length(s) = k then, 

where si is the sequence obtained from s by deleting the ith element 

Lemma 1 Let s = ( a l . .  . a l )  E S be a sequence of elements from I[ with 1 5 k .  For any 

finite structure B = ( B , .  . .) and b l , .  . . ,bl  E B, !I3 23 + F [ b l . .  . bl] if and only if there is a 

sequence of sets of partial isomorphisms I. > . . . > I, with the k back and forth property 

a n d f  = { ( a l , b l ) . . . ( a l , b l ) )  € I , .  3 

Proof: 

-+ This follows immediately from the proof of Theorem 5 since the existence of such a 

sequence implies that for any (b of quantifier rank m, B +[bl . . . bl] if I[ + [ a l .  . . a , ] .  

Clearly, qr(+a)  = m and Q #r[s]. 

+ The proof is by induction on m. 

Basis Let I. = {gig C f ) .  f is a partial isomorphism, because ?23 + +:[ f  (s)]. Even 

if s = () and f is the empty map, I. is non-empty. 

Induction Step There are two cases to be considered: 

Case: 6 < k 

Let Im+1 = {gig C f ) .  

By induction hypothesis and (I), there is a sequence I : .  . . I;F, with the b back 

and forth property and f E I;. 

Furthermore, by ( 2 )  and the induction hypothesis, for every a E A, there is a 

b E B and a sequence I:'(') . . .I$') with the k back and forth property such 

that { ( a l ,  b l )  . . . ( a r ,  br) ,  ( a ,  b ) }  E I;"). 

3We have stated this lemma and Theorem 6 only for the case of finite structures, since that is the case 
that is of interest here. However, similar results can be derived for the case where the structures may be 
infinite. In the latter case, the conjunction in (2) and the disjunction in (3) could be infinitary. Thus, the 
formulas constructed are no longer first-order, but they are in L&,. 



(for 0 < j 5 m). Note that, in general, the k back Let Ij = I: U UaEA 
and forth property is preserved under this kind of element-wise union. Thus, 

we need to verify that Im+1 C I, and that every element of is extensible 

in Im to  arbitrary elements of A and B. The former follows from the fact that 

Im+1 C I& and the latter follows from (2) and (3) respectively. 

Case: I = k 

By the argument for the case above, there are sequences I;. . . correspond- 

ing to  each of the partial isomorphisms, f;, obtained by dropping the pair (ai, b;) 

from f .  

Let I j  = {f} U Ui=,..., I; for 0 5 j _< m + 1. Each of the I, is still closed under 

restrictions, because if g C f ,  then either g = f or g f i  for some i. Since 

(f ( = k, extensibility of f is not required, and we are done. 

For a given sequence s of length I, let X r  = {sf E SIB )= $r[s']). Each X r  is a set of 

I-tuples of A and X r  > X r f  l. Since A is finite, there must be an m, such that XFs = XF 

for all m > m,. Let m* = max(m,ls E S). Now, define the sentence q5 as follows: 

4 E q 5 ~ *  A A Vxl . . .vx~($F* + +:*+I) 

sES 

Note that $ E Lk and that % 4. We now show that this sentence characterizes the 

structure ?2l up to Lk equivalence. 

Theorem 6 For every finite structure 2i and any k, there is a sentence, q5 E Lk such that 

for any structure %, B q5 if and only if 3( -k B. 

Proof: 

Let q5 be as defined above. We only need to  show that if 23 2) 4, then !2l =r, 23. Let F be the 

set of maps {(al, bl), . . . , ( a r ,  br)} such that 23 /= 4~:+:,) [bl . . . br]. The set F is non-empty 

since !B C $:*+ l. By Lemma 1, for each f E F, there is a sequence I; . . . I:*+, with the 

f k back and forth property. Let I; = UfEF Ij and let Im = for all m > m* + 1. We 

claim the infinite sequence I. > . . . > I,. . . has the k back and forth property. We will 

establish the extensibility of every element of The rest then follows. 

Consider any f E with I f  1 < k and any a E A. By definition, f E Since 

we know that the sequence through has the k back and forth property, there is a 



g E Im* such that f g and a E dom(g). But then, by the other direction of Lemma 1, 

23 + #$m(,))[(rn9(g))] and therefore, by the implication in 4, g E and we are done. 

There are some points about the above construction that are noteworthy. First of all, 

we could have, alternatively, defined m* as the smallest m such that XF = x?+' for all 

s. To see this, just observe that this is the only property of m* used in the above proof. 

Given that k is the maximum length of any sequence in S, and that there are nk k-tuples 

in a structure of size n ,  we can derive the bound m* 5 nk. This gives us the following: 

Corollary 4 If 2l is a structure of size n and 93 a structure such that Q and ?23 agree on 

all sentences of Lk of quantifier rank up to nk + k + 1, then 2l =-I, %. 

The following corollary is also immediate: 

Corollary 5 If K is a query closed under Lk equivalence (that is, if Q )L II and 2l 2 ~ k  23 

then 23 E K ) ,  then K is definable in  Lk, .  

Proof: 

If we write 4% for the sentence of Lk that characterizes a structure 2l up to Lk equivalence, 

then K is defined by the sentence V{4nlQ E l i } .  

Finally, it is not only structures that are characterized up to Lk equivalence in the above 

proof, but also sequences of elements. 

Definition 5 For any sequence s = (al . . .al)  of elements in  a structure 2f, with 2 < k ,  

define the Lk-type of s ,  denoted Typek(s), to be the set of formulas, 4 E Lk with free 

variables among X I , .  . . ,x,, such that C)( + 4 [ a l . .  .ai]. 

Then, we get the following: 

Corollary 6 For every structure a, for every 1 5 k and sequence a l , .  . . , a1 of elements 

from Q, there is a formula, 4 E Typek((al,. . . ,a l ) )  such that for any structure %, and 

elements bl . . . bl E B, if  93 +[bl . . . bl], then Typek((al,. . . , a l ) )  = Typek((bl,. . . , b l ) )  

5 Inductively Ordering the Types 

Having seen how, for a particular Lk type, we can write a formula that characterizes it, we 

now turn to  writing a formula that will define a total ordering of these types. We will show 



that this can be done uniformly in FO + LFP, i.e. a single formula will define the ordering 

on all structures. From this result we will derive Abiteboul and Vianu's result [AVSlb] that 

PSPACE = P if and only if FO + LFP = FO + PFP. The technique used for defining the 

ordering is inspired by a color-refinement algorithm in [IL90]. 

Looking again at the definitions of the 4: in the last section, we can see that these 

formulas were defined by a simultaneous induction on first-order formulas - simultaneous 

in all the sequences s. This, along with the observation that the basis of this induction 

is finite, in the sense that there are, up to equivalence, only finitely many quantifier free 

formulas in a finite relational language, suggests that we could accomplish the entire process 

with a single formula of FO + LFP. We formalize this intuition below. 

We first construct a formula of FO + LFP which defines, on any structure %, an 

equivalence relation on k-tuples of elements such that two tuples are equivalent if and 

only if they have the same Lk-type. In the following, for ease of reading, we will use the 

notation X I .  . . x . . . xk to indicate a sequence of variables in which x has been substituted 

for xi, when the particular i is clear from the context. 

Definition 6 For any structure ?2i and elements a1 . . . al E /%I, the basic Lk-type of al . . . al 

is the set of quantifier free formulas, 4, of Lk in 1 free variables such that % $[al.. .al]. 

Note that for a given finite signature, a, there are only finitely many distinct basic types. 

Furthermore, each basic type is characterized, up to equivalence, by a single quantifier free 

formula of Lk. 

Let a l ( z l  . . . xk), . . . , a,(xl.  . . xk) be a fixed enumeration of quantifier free formulas of 

Lk in k variables characterizing all the basic types in some signature a . Then, define $0 

as follows: 

~ ~ ( ~ l . - - x k Y l . . . ~ k ) E  V (%(3)Aaj ( j ) )  
lli#j<q 

where cri(j) is obtained from ai(3) by replacing every x j  by yj. I t  should be clear that for 

any tuples 7i,6 E I%lk, % 40[~6] if and only if the basic types of Si and b are different. 

Now, define 4 and .II, as follows: 



As we shall see below, the least fixed point of 4 expresses the inequivalence of Lk-types. 

Claim 1 For any structure % on signature a, % 21 $[al.. .aka; . . .ail if and only if 2 and 

a' have the same Lk-type. 

Proof: 

To establish this claim, we need to show that lfp(R,i,y)c$[iia'] expresses the inequivalence 

of the two k-tuples. Picture the k-pebble game being played on two isomorphic copies of 

a, and at some stage the pebbles are placed on (al,ai) ,  . . . (alc, ai) .  By Lemma 1, if the 

two tuples have the same Lk-type, then Player I1 can play indefinitely from this point on 

without losing. We claim that if @[&'I (the rth iterative stage of $), then Player I can win 

in r moves or less. Clearly, if r = 0, by the definition of &,, Si and if differ on a quantifier 

free formula and hence the map from one to the other is not a partial isomorphism. If 

r = m $1, then the definition of 4 tells us that we can, in one move, get to a configuration 

that is in 4". 
We will henceforth use the symbol NI, in infix notation to denote the relation defined 

by $. We will now give an inductive definition of an ordering relation on the equivalence 

classes defined by this relation. In other words, we will define a 2k-ary relation that is a 

pre-order on k-tuples such that two tuples are not ordered by this pre-order just in case they 

have the same Lk-type. This relation is defined by an induction that can be seen to parallel 

the induction defining the equivalence relation ~ k .  Initially, the basic types are ordered, 

and at each inductive stage we refine this to an ordering of the equivalence classes under 

the equivalence relation obtained through that stage. At any given stage, the symmetric 

closure of the ordering relation is the same as the inequivalence relation at that stage.4 

Define the following formulas for each 1 5 i < k: 

'This is not completely true in the construction we give, but we will assume it for expositional purposes. 
The formula constructed could be made to accord with this assumption by replacing the relation -t., in the 
definition of the formulas 6,, with its inductive stages. 



pi is true of a pair of tuples if we cannot distinguish their Lk-type on the basis of their ith 

elements. bi holds of a pair of tuples if i is the first position that distinguishes the Lk-types 

of the two tuples. 

Let 

OO(xl . . . ~ k y 1 . .  .yk) z V ( ~ ~ ( t )  A oj(j j ) ) .  
l<i<j<n 

That is, Oo defines a total ordering on the basic Lk-types. To refine this ordering by 

induction, let R be a 2k-ary relation symbol. Define for each i (1 5 i 5 k) the following 

pair of formulas: 

of (x, ~ j j )  Vy(R(xl . . . x . . . xkyl. . . y . . . yk) V R(yl . . . y . . . ykxl.. . x . . . xk)); 

iEy) Vx(R(xl . . . x . . . xkyl . . . y . . . yk) V R(yl . . . y . . . ykxl . . . x . . . xk)). 

Define the set of tuples move;((al.. . ak))  = {(al . . . a  .. . ak)la E A } ,  i.e. the tuples 

obtained by replacing the ith element. If two tuples a and b are inequivalent a t  stage r + 1 

in the induction of 4, then, for some i, there is a tuple in move;(a) which is inequivalent 

to  every tuple in move;(b) (or vice versa) at  stage T .  The formula a: (parametrized by the 

tuples a and 8) picks out the elements a such that a1 . . . a . .  . ak is such a tuple (similarly 

for a;). 

Consider the set, S, of all tuples in movei(a) that are not equivalent to  any tuple in 

move;(b) along with those in movei($) that are not equivalent to  any tuple in move;(Si). 

There must be a tuple in S that is not greater (under the ordering defined so far) than any 

other tuple in this set. Assume, without loss of generality, that this tuple is in movei(2i). I t  

must be strictly smaller (again, under the ordering so far) than all tuples in S n move;(b) or 

it would be equivalent to some tuple in move;(&). The following formula would then order 

the tuples a and b, with Si being smaller, unless they had already been ordered otherwise. 

We cannot define the least fixed point of the above formula, since it is not positive 

in R. However, the inflationary fixed point gives us the required ordering. We know, by 

Theorem 2, that there is a formula of FO + LFP equivalent to II ,  below: 



Claim 2 

1. O n  any structure, 31, $ defines a pre-order on k-tuples. W e  will write 5 < k  j j  for 

$(ZY). 

2. Si and 6' have the same Lk-type if and only if neither ii < k  ii' nor ii' < k  ii. 

Using the formulas just defined, it is possible to define the Lk equivalence and the 

corresponding pre-order relation on tuples shorter than k.  

6 Rigid Structures 

Consider the pre-order <; on single elements, i.e. tuples of length 1. Clearly, if there is at  

most one element of any Lk-type in a structure, then <: defines a total ordering on the 

universe of the structure. Since this ordering is definable in FO + LFP, and since FO + 
LFP expresses all of P in the presence of ordering, this implies that FO + LFP expresses 

all of P on these structures. We formalize this below: 

Definition 7 A structure 31 is called rigid i f  the only automorphism on 31 is  the identity. 

Definition 8 Call a structure % k-rigid i f  no two elements of % have the same Lk-type. 

Clearly, every k-rigid structure is rigid. Conversely, 

Theorem 7 Every rigid structure 2l is k-rigid for some k .  

Proof: 

For contradiction, assume that % is a rigid structure that is not k-rigid for any k. Then 

for each k there are distinct elements a!, a$ in Q which have the same Lk-type. Since % is 

finite, this implies that there are distinct a l ,  a2 such that for infinitely many k, a1 and a2 

have the same Lk-type. But, two elements that share their Lk-type share their Ll-type for 

all 1 < k .  Hence, a1 and a2 have the same first-order type. Now, expand the vocabulary 

by a constant symbol c, and consider the expanded structures (Q, al)  and (Q, a z ) .  These 

structures are elementarily equivalent, since a1 and a2 have the same first-order type over 

Q. But any two finite structures that are elementarily equivalent are isomorphic. Hence 



there is an automorphism of 31 mapping a1 to a2 which contradicts the hypothesis that !2l 

is rigid. 

The argument we gave above on the expressiveness of FO + LFP can now be formally 

stated as: 

Theorem 8 Let K be a query computable in polynomial time such that there is a k such 

that every structure i n  K is k-rigid. Then K is expressible by a sentence of FO + LFP. 

Observe that any structure with a linear ordering, <, is 2-rigid. There is a formula 

a;(%) E L2 which defines the ith element in the ordering uniquely. For instance, 

a ~ ( x )  = 3y(y  < x A 3x(x < y A V y ( 1 y  < x ) ) ) .  

Hence Theorem 7 generalizes Theorem 3. 

7 Reduction to an Ordered Structure 

In general, on a structure, a, that is not rigid, < k  defines a pre-order, or alternatively a 

total ordering on the Lk equivalence classes. We can look at this as the basis for a reduction 

of the structure % onto a totally ordered structure in which each of the equivalence classes 

is collapsed to  a point. This translation is interesting from the following point of view - 

consider any formula 4 = l f p ( R , ~ ) $  (or p f p ( R , ~ ) $ )  with only k variables. Then, not 

only is the relation defined by 4 on closed under Lk equivalence, but so is every iterative 

stage of 4. This raises the possibility that we can describe 4 as an induction on the Lk 

equivalence classes of tuples. 

More formally, for any structure % = ( A ,  Rz, . . . , R,), let 

be the structure defined as follows: 

r The universe of Ek(IZ1) is A ~ /  N k ,  i.e. the equivalence classes of tuples from A of length 

k under the equivalence relation ~ k .  We will write [a] to denote the equivalence class 

that includes the tuple 7i. 

r < k  is the total ordering on the universe of Ek(%) defined in Section 5. 



=' is a unary relation such that =' ([a]) holds if and only if = (al,a2 . . . ak)  and 

a1 = a2. This relation is well-defined, since a tuple in which the first two elements 

are distinct cannot be equivalent to one in which they are identical, since they differ 

on a basic type. 

For each relation R; in 31, of arity m, we have a unary relation R: in Ek(Q) such 

that [(al . . . ak)] E R: holds if and only if (al . . . a,) E R,.' Again, these relations are 

clearly well-defined. 

Xi - the substitution relation - is a binary relation such that X;([a], [a])  holds if 

the tuples a and [a'] differ at most on their ith element. To see that this relation is 

well-defined, observe that if two tuples, Sil and ii2, have the same Lk-type then Player 

I1 can indefinitely play the k-pebble game on two copies of the structure 31 with the 

pebbles initially on these tuples. But then, if we can get to a; in one move from Sil 

there must be a a', equivalent to 6: one move away from Si2. 

P, is a binary relation for every sequence s = (il . . . ik) of integers from {I,. . . , k). 

For any tuple (al . . . ak) ,  ([(al . . . ak)], [(ail . . . a;,)]) E P,. This relation is well-defined 

since, if 4 is a formula in Typek((al . . . ak)), then the formula 4, obtained by replacing 

every free occurrence of every x j  by xij is in Typek((a;, . . .a;,)). Hence, if (al . . . ak )  

and (a:. . . a i )  have the same Lk-type, then so do (ag . . . ai,) and . . . a:,). 

We will also write Ek(u) to denote the signature of Ek(31), when u is the signature of 31. 

Lemma 2 For every first-order formula with m free variables in the language Ek(a) ,  

there is an  FO + LFP formula 4' with km free variables in the language a such that for 

any structure 31, 31 +'[al . . . a,] if and only if Ek(31) i= 4[[al] . . . [~i,]]. 

Proof: 

All the relations on Ek(%), including equality, are definable in FO + LFP on O. Moreover, 

these definitions are uniform, i.e. for each R E Ek(a)  there is a single FO + LFP formula 

defining it for all 31. So, we obtain 4' by substituting this definition for each occurrence of 

'As defined, this works only if the arity, m, of R; is at most k. If this is not the case and m > k ,  we first 
replace R, by a collection of relations of arity k by taking all the ways that we can form an m-tuple from 
at most 6 elements. This does not affect the results, since we are only considering formulas with at most k 
variables. 



the relation symbol in 4. This includes substituting the definition of ~k for each occurrence 

of the identity symbol. For each variable in 4, we substitute k new variables and for each 

quantifier, a block of k quantifiers. 

Let $(R) be a first-order formula in the language Ek(a)  U {R} where R is a relation 

symbol of arity m and let (Ek(3L), R )  be a structure for this language. Let a' = (3 ,  s Q )  be 

a structure interpreting the language a U S  with S" = {(al . . . akm)lR([al] . . . [Em])). By the 

proof of Lemma 2, there is an FO + LFP formula, 4', in u U S such that 3L' $'[al . . .arn] 
if and only if (Ek(%), R )  4[[al] . . . [Zi,]]. This gives us the following result: 

Lemma 3 For every FO + LFP (respectively FO + PFP) formula 4 in the language Ek(a) ,  

there is an FO + LFP (respectively FO + PFP) formula 4' in the language a such that for 

any structure 2, 2.4 i= #'[ti1 . . . ti,] if and only if Ek(3L) +[[El] . . . [Em]]. 

Note that every relation that is defined by a formula obtained in this way by translating 

back from a formula in one free variable in the language Ek(a)  is closed under the Lk 

equivalence relation. 

We now establish a translation of formulas in the other direction. Let 4 be a formula 

of Lk in the language a. We will define, by induction on the structure of 4, a first-order 

formula q5* in the language Ek(u). In the translation we define, every sub-formula of q5 with 

free variables among X I . .  . xk is translated into a sub-formula of q5* with exactly one free 

variable with the property that Ek(B)  q5*[[i-i]] if and only if ?2l +  ti]. That is to say, we 

will treat 4 as defining a k-ary relation over I# even if 4 has fewer than k free variables. 

The relation {(al . . . ak)13 +[al . . . ak]) is closed under Lk equivalence, since 4 E Lk. 

The translation is defined as follows: 

If 4 G x; = xj, then 4*(x) E 3yP , (y ,x )~  ='(y) 

where s is a sequence chosen so that s = (i, j . .  .). 

If 4 - Rj(xi,, . . . , xi,), then +*(x) - 3yPs(y, x) A RS(y) 

where s is a sequence chosen so that s = ( i l , .  . . , i,, . . .). 

If 4 E +(it), then 4*(x) G l$*(x) 

. 1f 4(3) 3~i$(i t )  then, $*(x) = 3y(Xi(x, Y) A 'dJ*(y)) 



It  should be clear from the construction of #* that ?2l )L #[Ti] just in case Ek(IZI) + 
#*[[a]]. Moreover, this is true even if # is in an expanded language a U {R) as long as the 

interpretation of R on !2l is closed under Lk equivalence and Ek(%) is expanded to interpret 

R' in the obvious way. This gives us the following result: 

Lemma 4 For every FO + LFP (4espectively FO + PFP) formula # in  the language a 

such that # has at most L distinct variables, there is an FO + LFP (respectively FO + PFP) 

formula #* in  the language Ek(a)  such that for any structure IZI, IZI #[Ti] i f  and only i f  

E k P )  'F +*[[all. 

Proof: 

Since 4 has at  most k distinct variables, every iteration of every induction operator in # 

defines a relation closed under Lk equivalence. 

We are now in a position to  prove the following result from [AVSlb]: 

Theorem 9 FO + LFP = FO + PFP if and only if P = PSPACE. 

Proof: 

+ This follows immediately from the fact that FO + LFP = P and FO + P F P  = PSPACE 

on ordered structures. (Theorems 3 and 4 respectively). 

e Suppose P = PSPACE. Let 4 be a sentence in FO + PFP over signature a and let the 

number of distinct variables in + be b. Take #* to be the corresponding sentence of FO 

+ PFP  in the language Ek(a)  obtained as in Lemma 4. Since #* is in FO + PFP, it 

is computable in PSPACE and hence in P, by hypothesis. Since the structures Ek(!21) 

have a total ordering on their elements, there is a sentence of FO + LFP, $I equivalent 

to 4*. Then, by Lemma 3 there is a +' in FO + LFP over a that is equivalent to #. 

If 4 has fewer than k free variables, we might need to take a projection of $I1. 

8 Complete Binary Trees 

It  is easy to  see that the size of the structures Ek(Q) is bounded by a polynomial over all 

structures IZI (see the proof of Theorem 13 in Section 9). Over some classes of structures, 

it can be considerably smaller. For instance, if we consider all structures over the language 



of identity, there is a bound on the size of the structures Ek(2i) which depends only on k. 

Another class of structures for which the size of Ek(%) is much smaller than that of 2i is 

the class of complete binary trees. This yields some interesting results concerning logical 

expressibility. 

Complete binary trees are graphs, i.e. structures (V,E) with one binary relation E 

satisfying the following axioms: 

1. Vx(Vy(1Exy) V 3y3z(y # z A Exy A Exz  A Vw(Exw + w = y V w = 2))) 

This says that every vertex has exactly 0 or 2 children. 

2. Vx(Vy(1Eyx) V 3y(Eyx A Vz(Ezx -t z = y))) 

This says that every vertex has exactly 0 or 1 parent. 

3. 3x(Vy(7Eyx) A Vz(Vy(1Eyx) -t x = z)) 

This says that there is exactly one vertex (the root) that has no parent. 

4. VxVylfp(R, x, y)(x = y V 3z(Rxz A Ezy) V 3z(Ryz A Ezx))(x, y) 

This says that the graph is connected, i .e.  every pair of vertices is in the reflexive, 

transitive and symmetric closure of the edge relation. 

5. vxl( l fp(R,  x, y)(Exy V 3z(Rxz A Ezy))(x, x)) 

This says that there are no cycles. 

6. VxVy((Vz(1Exz) A Vz(1Eyz)) + 6(x, y)) 

where, 

6 lfp(R, x, y)((Vz(lEzx) A Vz(1Ezy)) V 3w3z(Rwz A Ewx A Ezy))(x,y)) 

This says that all leaves are at the same distance from the root (6 defines an equiva- 

lence relation that relates vertices at the same depth). 

If we let CBT = {G = (V, E)IG is a binary tree), then by the above definition CBT E 

FO + LFP. Moreover, since we used only four distinct variables, CBT E LL,. 

Define the formulas a,  recursively as follows: 



Then, for T E CBT, T ad[v]  just in case v is a vertex of depth d in T .  So, if Td is a 

complete binary tree, it has depth d if and only if Td k 3 x ( a d )  A - ~ X ( O ! ~ + ~ ) .  Note that 

each a, contains only two diktinct variables. Since any two complete binary trees of the 

same depth are isomorphic, we can conclude the following: 

Lemma 5 If TI and T2 are two complete binary trees such that TI ~2 T2, then TI % T2. 

Combining this with the axiomatization above, we get the following result: 

Lemma 6 If q is any query i n  the language of graphs consisting only of complete binary 

trees, then q is definable i n  LL,. 

Define the class, 7, of labeled binary trees as the class of structures over the vocabulary 

{E, U }  which satisfy, in addition to the above six axioms, the following one: 

7. VxVy(6(x ,  y )  + ( ( U x  A U y )  V ( T U X  A l u g ) ) )  

That is, all vertices at  the same depth are either labeled or unlabeled. 

Observe that the propositions shown above for complete binary trees apply equally well to 

labeled binary trees. 

We also define the class, B, of binary strings as structures over the same vocabulary 

{E, U )  that make true Axioms 2 through 5 above, as well as: 

1'. V x ( V y ( 1 E x y )  V 3 y ( E x y  A V z ( E x z  -, z = y ) ) )  

That is every vertex has exactly 0 or 1 children. 

There is a natural correspondence between labeled binary trees and binary strings. 

In some sense, they encode the same information, with the ith bit of the binary string 

corresponding to the ith level of the tree. While we give formal definitions below, it will be 

instructive to keep this intuitive picture in mind and we will make appeal to it to simplify 

the presentation. 

Definition 9 If B E 8 and T E 7, then B D T i f  and only if, for all d :  

a B k 3 x a d  i f  and only if T 3 x a d ,  and 

a B + V x ( a d  + U x )  i f  and only i f  T + V x ( a d  -+ U x ) .  



Note that if B D T and the size of B is n, then the size of T is 2n - 1 

Definition 10 For any queries q~ C B and q~ c 7, define: 

h ( q ~ )  = {TI B P T for some B E qB) 

h - l ( q ~ )  = {BIB D T for some T E qT} 

It  should be clear that h-l(h(qB)) = QB. 

Lindell[Lin91] used this correspondence between binary strings and labeled binary trees 

to  show that FO + LFP does not express all the polynomid-time queries on binary trees. 

Lemma 7 If qg E D T I M ~ ~ ' ( ~ ) ]  then h(qB) E P. 

Proof: 

Given an input T, we can verify that it is a labeled binary tree in polynomial time, since 

7 E FO + LFP. We can also extract from it a B such that B D T in DSPACE[log(n)]. We 

then pass B as the input to  the acceptor for q~ which runs in time 2°(d), where d is the 

size of B, but this is only polynomial in the size of T which is 2d - 1. 

Lemma 8 If q~ E FO + LFP, then h-l(qT) E FO + LFP. 

The proof of this lemma is based on a syntactic translation similar to the one given in 

Section 7. The key element of Lindell's construction is that k-tuples of vertices from the 

tree can be encoded as fixed length tuples in the corresponding binary string. This is 

because a complete set of invariants (up to automorphism) for a tuple on a complete binary 

tree is the sequence of depths of the least common ancestors of pairs of elements in the 

tuple. We refer to [Ling11 for details of the translation. 

Given that there are queries on strings in DTIME[~'(~)] that are not in P [HS65], we 

conclude the following: 

Theorem 10 ([Lingl]) There is a q~ c I such that q~ E P ,  but q~ @ FO + LFP. 

Since we observed above that for every q such that q c I, q E Lk,, we conclude that: 

Corollary 7 FO + LFP C LW,, n P 



Define the class FO + PFPlP of queries expressed by a formula of FO + PFP with the 

property that every occurrence of the pfp operation closes in polynomially many steps in 

any structure. Any query in FO + PFPlP is clearly computable in polynomial time. Also, 

since the operator lfp can be seen as an instance of pfp that always closes in polynomially 

many steps, we get 

It had been conjectured that these three classes are, in fact, equal. We have shown 

above that the first and the third can be separated. Abiteboul and Vianu[AVSlb] have 

recently shown that the first and the second are equal if and only if P = PSPACE. They 

prove this result using a padding technique similar to the one above. We encoded binary 

strings of size n as trees of size 2n. For the purpose of the next result, we will need to encode 

them into trees of size 2nk.  To this end, we introduce, for every k the class of structures '7i, 

over the signature {E, U, L}. The trees in have depth nk with the first n levels labeled 

by the unary relation L. Formally, Tk is the class of structures which in addition to the 

Axioms 1 through 7, satisfy: 

8. VxVy(b(x, y) + ((Lx A Ly) V (1Lx A d y ) ) )  

That is, all vertices at  the same depth are either in L or not. 

If a vertex is in L, then so is its parent. 

10. The depth of the tree is nk, where n is the number of levels labeled by L. This can 

be stated in FO + LFP by defining a k-ary induction on the levels in L that is an 

ordering of length nk on k-tuples. 

The binary string encoded by a tree in of depth nk can be extracted by looking at the 

topmost n levels (the levels labeled by L) and looking at the string defined by the relation 

U on these levels. We can formalize this as before with a map hk from queries on binary 

strings to  queries on Tk. 

Definition 11 If B B E and T E z, then B D T if and only if, for all d: 

a B b 3x(rd if and only if T + 3x(Lx A ad),  and 



B V x ( a d  -+ U x )  if and only i f  T t= Vx(Lx -+ (ad + U x ) ) .  

D e f i n i t i o n  12  For any queries q~ B and q~ C '&, define: 

hk (qB)  = {TIB r> T for some B E qB} 

= {BIB r> T for some T E qT) 

We can define a syntactic translation of formulas that corresponds to the map h k :  

D e f i n i t i o n  13 Given a formula # i n  the language of binary strings, let #' be defined in- 

ductively a s  follows: 

r if # is x = y then 4' is  S(x, y) where S is as defined in Axiom 6. 

r if 4 is  111, or $1 A 11,2 then 4' is l$' or $: A 11,; respectively. 

r i f  4 is  3x11, then #' is 3 x ( L x  A 11,'). 

Suppose for some formula 4 and some B E B, B I= #[bl . . . b,] and for some sequence of 

integers dl . . . d,, B a d i  [b;], i.e. the depths of the points bi are given by the d;. Also, let 

T E be such that B b T .  Then, if tl . . . t ,  are any points in T such that T adi [ti], then 

T + 4'[bl . . . b,]. This can be verified by an easy induction on the structure of the formula. 

One consequence of this is the following result. 

L e m m a  9 If q B is  Q query i n  FO + LFP (respectively FO + PFP), then h k ( q )  is  in  

FO + LFP (respectively FO + PFP). 

P r o o f :  

Let be the sentence that expresses q and let x be the conjunction of Axioms 1 through 

10. Then, 4' A x expresses hk(q) .  

Another consequence is that if BbT then the closure ordinal of any occurrence of p f p  (or 

l f p )  in 4 over B is the same as the closure ordinal of the corresponding occurrence in 4' over 

T. There may be additional inductions in 4' which were introduced when we substituted 

the formula S for the identity, but all these are defined in l f p .  Thus all inductions in #' 

close in a number of steps polynomial in the size of T. Moreover, x is defined in FO + LFP, 

so all inductions that occur there are also polynomial. We can now prove the following. 



Theorem 11 ([AVglb]) FO + PFPl P = FO + LFP if and only if PSPACE = P. 

Proof: 

One direction follows immediately from Theorem 9. In the other direction, suppose FO 

+ PFPlP = FO + LFP. Let S be a language in PSPACE and hence in D T I M E [ ~ ~ ~ ]  for 

some k. Let q~ C B be the collection of structures corresponding to strings in S. Since 

an ordering is easily (in FO + LFP) definable on structures in B, q~ E FO + PFP. Hence 

hk(qB) E FO + PFP, by Lemma 9 and as we argued above, all inductions in the sentence 

expressing hk(qB) are polynomial in the size of T. Thus, hk(qB) E FO + PFPIP. By 

hypothesis, then, hk(qB) E FO + LFP and by an application of Lemma 8, q~ E P. rn 

This result is remarkable in that it reduces the separation of P and PSPACE to the 

separation of two classes that are properly contained in P. 

9 Lk Canonical Structures 

In this section, we examine the question of whether the properties in the class L&,n P are 

recursively indexable. Can we enumerate a set of Turing machines, for instance, each of 

which accepts a property in this class and such that every property in the class is accepted 

by some machine in the set. We know that the class FO + LFP is recursively indexable, 

since there is an effective way to construct, from a sentence of FO + LFP, a machine that 

accepts all models of the sentence. On the other hand, it is not known if the class P, of 

polynomial time computable queries, is recursively indexable. 

Suppose we have a Turing machine Ck, for every k E N, which computes a function 

Fk of the input with the property that Fk(31) = k  31 and if 31 =I, 93 then Fk(31) = Fk(B). 

We say that Ck computes an Lk canonical structure or an Lk-canon of its input. Suppose 

further that each of the Ck computes in polynomial time. If this is indeed the case, then 

the class L:,n P is recursively indexable. To see this, consider an enumeration of all 

polynomial time Turing machines MI , .  . . Mi,. . .. We can then enumerate all machines of 

the form Ck + Mi which accepts input 31 if and only if Mi accepts Fk(Q). This is an 

indexing of the class LW,,n P. 

The situation is similar in the case of the class P. If we could canonically label a structure 

in polynomial time, then the class P would be recursively indexable. However, in this case, 



even the problem of testing equivalence (i.e. the isomorphism problem) is not known to 

be in P. We can, however, test the equivalence of two structures under the relation ~k in 

polynomial time. We can do this by computing the map Ek on the two structures and 

comparing the result. We show below that Ek(Q) and Ek(23) are isomorphic just in case 

Q =r ,  23. Because Ek(Q) and Ek(23) are ordered structures, if they are isomorphic, they 

are represented by identical bit-strings. 

We now give the proof that the map Ek does indeed compute an Lk-invariant structure 

and that this computation can be done in polynomial time. 

Theorem 12 For any two structures IZL and 23, Q =I, 23 if and only if Ek(IZL) Ek(23) 

Proof: 

+ If Q -k 23 then every Lk-type that is realized in Q is realized in 23 and vice versa. 

To see this, let a be a k-tuple from Q. Recall from Corollary 6 that there is a 

formula ~ ( X I . .  .xk)  in Lk with k free variables that expresses this type. But then, 

'21 3x1 . . . xk4  and therefore 23 + 3x1.. . xk4. This tells us that the structures 

Ek(Q) and Ek(23) have the same size. 

Let f be the order-preserving map from Ek(IZL) to Ek(%). If f([a]) = [b], then Si and 
- 
b have the same Lk-type. This is because the definition of the ordering relation < k  is 

uniform, that is to say that the same types in different structures are ordered in the 

same way. As a result, the relations =' and Ri are clearly preserved by f .  Consider 

the case X;([a], [a']). Let 4(x l . .  . xk) be the Lk formula expressing the Lk-type of a'. 

Then, 3xi4 is in the Lk-type of Si and hence of any element of f([a]). I t  follows that 

x;(f  ([a]), f ([a'])). Similarly, f preserves the relation Ps for s = (il . . . ik)  because 

if 4 is a formula in Typek((al . . . ak)) ,  then the formula 4, obtained by substituting 

every free occurrence of every x j  with xij, with the appropriate renaming of bound 

variables, is in Typek((ai, . . . a;,)). Thus, f is an isomorphism. 

(: Let f be an isomorphism from Ek(Q) to Ek(23). We show that Player I1 has a strategy 

for playing the k-pebble game on Q and 23 indefinitely. Suppose that at some stage 

of the game, the pebbles are on the elements and 6. (We assume that all b pairs of 

pebbles are on the board. If not, then just consider any extension of these tuples.) 

Further suppose, without loss of generality, that Player I moves on IZL resulting in the 



configuration a'. Player I1 finds a tuple 6' E f ([7i1]) such that b' is one move away from 

b and then plays that move. We need to  show that such a b' can always be found. 

Note that we can assume, as an inductive hypothesis that f([ii]) = [$I. Suppose that 

Player I moves the pebble from a; to a new element, then Xi([a], [a']) holds. Because f 

is an isomorphism, Xi( f ([ii]), f ([ii'])) holds and we can get from b to some 6' E f ([a']) 

by moving the pebble on bi 

Theorem 13 The map Ek is computable on all structures 8 in time polynomial in the size 

of the structure %. 

Proof: 

The number of tuples in is nk where n = \ A ( .  The equivalence relation ~k is defined 

by an FO + LFP formula and hence computable in polynomial time as is the ordering <k. 

We can get, therefore, in polynomial time, a representation of the universe of Ek(?24). All 

the other relations are easily defined on 3( (in FO). rn 

The most direct approach to constructing an Lk-canon, given a polynomial time algo- 

rithm for the translation Ek, would be to try and invert Ek, i.e. given an input structure 

IC, to find an !2l such that IC = Ek(8) .  However, this cannot be done in time polynomial 

in the size of IC. To see this, suppose for contradiction that we have a polynomial time 

computable E;' which acts as a translation from the range of Ek into its domain. Since 

the range of Ek consists of totally ordered structures, E ~ I  is definable in FO + LFP. Com- 

posing this with the FO + LFP definition of Ek, we get an FO + LFP translation that 

yields an Lk canon, and therefore that L&, n P C FO + LFP, which we know to be false. 

It  is still conceivable that the computation of ~ i ' ,  while not polynomial in the size of the 

input Ek(21) is polynomial in the size of 8 ,  since the former could be much smaller. In fact, 

it is exactly the case where Ek(8)  is much smaller than !2l that demonstrated that FO + 
LFP# L",, n P. 

References 

[AVSla] S. Abiteboul and V. Vianu. Datalog extensions for database queries and updates. 
Journal of Computer and System Sciences, 43:62-124, 1991. 

[AVglb] S. Abiteboul and V. Vianu. Generic computation and its complexity. In Proceed- 
ings of the 23rd ACM Symposium on the Theory of Computing, 1991. 



[Bar731 J. Barwise. Back and forth through infinitary logic. In M. D. Morley, editor, 
Studies in Model Theory, Mathematical Association of America, 1973. 

[Bar771 J. Barwise. On Moschovakis closure ordinals. Journal of Symbolic Logic, 42:292- 
296, 1977. 

[GS86] Y. Gurevich and S. Shelah. Fixed-point extensions of first-order logic. Annals of 
Pure and Applied Logic, 32:265-180, 1986. 

[HS65] J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms. 
Transactions of the AMS, 117:285-306, 1965. 

[IL90] N. Immerman and E. S. Lander. Describing graphs: a first-order approach t o  graph 
canonization. In A. Selman, editor, Complexity Theory Retrospective, Springer- 
Verlag, 1990. 

[Imm86] N. Immerman. Relational queries computable in polynomial time. Information 
and Control, 68236-104, 1986. 

[KV90] Ph. G. Kolaitis and M. Y. Vardi. 0-1 laws for infinitary logics. In Proceedings of 
the 5th IEEE Symposium on Logic in Computer Science, pages 156-167, 1990. 

[Ling11 S. Lindell. An analysis of fixed-point queries on binary trees. Theoretical Computer 

Science, 85(1):75-95, 1991. 

[Var82] M. Y. Vardi. The complexity of relational query languages. In Proceedings of the 
14th ACM Symposium on the Theory of Computing, pages 137-146, 1982. 


	Infinitary Logic and Inductive Definability Over Finite Structures
	Recommended Citation

	Infinitary Logic and Inductive Definability Over Finite Structures
	Abstract
	Comments

	tmp.1186156455.pdf.sj6Vm

