763 research outputs found

    An Improved Focused Crawler: Using Web Page Classification and Link Priority Evaluation

    Get PDF
    A focused crawler is topic-specific and aims selectively to collect web pages that are relevant to a given topic from the Internet. However, the performance of the current focused crawling can easily suffer the impact of the environments of web pages and multiple topic web pages. In the crawling process, a highly relevant region may be ignored owing to the low overall relevance of that page, and anchor text or link-context may misguide crawlers. In order to solve these problems, this paper proposes a new focused crawler. First, we build a web page classifier based on improved term weighting approach (ITFIDF), in order to gain highly relevant web pages. In addition, this paper introduces an evaluation approach of the link, link priority evaluation (LPE), which combines web page content block partition algorithm and the strategy of joint feature evaluation (JFE), to better judge the relevance between URLs on the web page and the given topic. The experimental results demonstrate that the classifier using ITFIDF outperforms TFIDF, and our focused crawler is superior to other focused crawlers based on breadth-first, best-first, anchor text only, link-context only, and content block partition in terms of harvest rate and target recall. In conclusion, our methods are significant and effective for focused crawler

    BlogForever D2.6: Data Extraction Methodology

    Get PDF
    This report outlines an inquiry into the area of web data extraction, conducted within the context of blog preservation. The report reviews theoretical advances and practical developments for implementing data extraction. The inquiry is extended through an experiment that demonstrates the effectiveness and feasibility of implementing some of the suggested approaches. More specifically, the report discusses an approach based on unsupervised machine learning that employs the RSS feeds and HTML representations of blogs. It outlines the possibilities of extracting semantics available in blogs and demonstrates the benefits of exploiting available standards such as microformats and microdata. The report proceeds to propose a methodology for extracting and processing blog data to further inform the design and development of the BlogForever platform

    Numerical analysis of traditionally excavated shallow tunnels

    Get PDF
    Lo scavo di gallerie rappresenta sicuramente una tra le sfide più impegnative che un ingegnere civile possa affrontare. Ciò è dovuto principalmente alla natura tridimensionale di questo problema di interazione terreno-struttura ma anche alle numerose incertezze che possono entrare in gioco nella progettazione. Recentemente, le tecniche di calcolo numeriche, che permettono una più ampia comprensione del problema, hanno subito un notevole sviluppo, diventando una risorsa fondamentale per la progettazione di scavi in sotterraneo. Tuttavia, solo ingegneri con una buona preparazione numerica sono in grado di gestire la modellazione di problemi di interazione terreno-struttura così complessi. Inoltre, tali modelli richiedono una attenta calibrazione dei parametri e una costante validazione con dati di monitoraggio. Lo scopo di questa tesi è quello di analizzare alcune delle principali problematiche legate alla progettazione di gallerie superficiali scavate in tradizionale. Il vantaggio principale dello scavo in traditionale rispetto a quello meccanizzato è legato alla maggiore flessibilità nella scelta dei rivestimenti e delle techniche di rinforzo del cavo e del fronte della galleria. Tuttavia, una maggiore flessibilità progettuale è necessariamente legata ad una profonda conoscenza del comportamento deformativo dell’ammasso, nonché ad un utilizzo consapevole delle tecniche modellazione numerica. Il presente lavoro è principalmente incentrato sulle seguenti tematiche riguardanti la progettazione di gallerie superficiali: - la stabilità di fronti di scavo rinforzati e non rinforzati; - l’applicabilità degli Eurocodici ad una progettazione condotta mediante tecniche di modellazione numerica; - la calibrazione dei parametri del modello numerico e la sua validazione attraverso dati di monitoraggio.Among the problems that civil engineers have to face, the design and verification of an underground construction is one of the most challenging. A tunnel engineer has to tackle with a complex three-dimensional soil-structure interaction problem where many factors and uncertainties come into play. This is the reason why professional experience and engineering judgment usually play a crucial role. In recent years, numerical calculation techniques, which can provide an important basis for a better understanding of the problem, have strongly improved. They have become a fundamental resource for underground construction design, but they also entail some drawbacks: - only engineers with a strong numerical background can handle complex soil-structure interaction problems; - numerical calculations, especially if 3D, can be very time-consuming; - material parameters should be carefully evaluated, according to the particular problem and adopted constitutive law; - numerical models need to be validated with field monitoring data. The goal of this thesis is to investigate the main issues regarding the applicability of numerical analyses to the design and verification of traditionally excavated shallow tunnels. Despite, the remarkable technological improvement in mechanised tunnelling, traditional techniques still represent, in some cases, the most suitable and convenient solution. The principal advantage of traditional techniques is the high flexibility in the choice of supports and reinforcement measures. However, design flexibility implies a deep understanding of the ground response to underground openings as well as a conscious use of numerical models. This work provides a contribution to the numerical design of shallow tunnels by focusing on three principal issues: - stability of reinforced and unreinforced excavation faces; - Eurocodes applicability to a numerically-based design; - parameters calibration and numerical validation through comparison with monitoring data

    NUCLEAR FUEL ASSEMBLY TRANSFER PROJECT

    Get PDF
    The spent nuclear fuel assembly transfer process is complicated and has several important constraints. Continuity of Knowledge (COK) must be maintained throughout the process while also keeping the fuel underwater and away from workers to assure safety and security. The conveyance is mechanical in nature and must provide for worker access for repair/maintenance. Reliability, safety, and safeguards requirements must be met for the entire expected life span of the nuclear facility. This paper describes a new engineering design for enhanced safety and reliability for transfer of spent fuel assemblies from the reactor building to the fuel storage building. The new design is compliant with U.S. Nuclear Regulatory Commission (NRC) and the International Atomic Energy Agency guidelines, requirements, and regulations. This project was sponsored by Los Alamos National Laboratory at the University of Rhode Island and performed by faculty and students in the mechanical and nuclear engineering program. A physical scaled prototype of the system has been manufactured is currently going through functional non-nuclear testing for mechanical performance. The fuel transfer system begins with the fuel assembly being lowered into a Fuel Assembly Transport Vessel (FATV). The FATV is equipped with side mounted wheels designed for horizontal movement through the transport tunnel via a rail system. An industrial roller chain conveyor with vertical attachments runs between the rails and makes contact with the FATV. The new design includes gears, axles, and a safely-positioned dry and above water surface motor that drives the chain laterally in either direction. Thus the FATV containing the spent fuel assembly is safely and securely moved in the connecting water tunnel. Engineering analyses were performed on the various facets of the design to validate the merit of the system’s purpose and the adherence to reliability, safeguards, and safety factors set for a system undergoing 50+ years of service life in a radioactive environment. Each individual fuel transfer system will be modified in accordance to the needs of each corresponding nuclear reactor plant. Our design addresses constraints pertaining to that of the transference of spent nuclear fuel assemblies while meeting of the design criteria, safety, and safeguards standards set by the IAEA and the NRC. A scaled physical model of the design has been built to demonstrate the mechanical systems functionality

    Hexcrete Tower for Harvesting Wind Energy at Taller Hub Heights ‒ Budget Period 2

    Get PDF
    Interest in designing taller towers for wind energy production in the United States (U.S.) has been steadily growing. In May 2015, it was revealed that taller towers will make wind energy production a reality in all 50 states, including some states that have nearly zero renewables in their energy portfolio. Facilitating wind energy production feasibility in all 50 states will no doubt contribute to increasing the electricity produced by wind from 4.5% in 2013 to a targeted scenario of 35% by 2050 in the Wind Vision report. This project focuses on the Hexcrete tower concept developed for tall towers using High Strength Concrete (HSC) and/or Ultra-High Performance Concrete (UHPC). Among other benefits, the Hexcrete concept overcomes transportation and logistical challenges, thus facilitating construction of towers with hub heights of 100-m (328-ft) and higher. The goal of this project is to facilitate widespread deployment of Hexcrete towers for harvesting wind energy at 120 to 140-m (394 to 459-ft) hub heights and reduce the Levelized Cost of Energy (LCOE) of wind energy production in the U.S. The technical scope of the project includes detailed design and optimization of at least three wind turbine towers using the Hexcrete concept together with experimental validation and LCOE analyses and development of a commercialization plan

    Web Tracking: Mechanisms, Implications, and Defenses

    Get PDF
    This articles surveys the existing literature on the methods currently used by web services to track the user online as well as their purposes, implications, and possible user's defenses. A significant majority of reviewed articles and web resources are from years 2012-2014. Privacy seems to be the Achilles' heel of today's web. Web services make continuous efforts to obtain as much information as they can about the things we search, the sites we visit, the people with who we contact, and the products we buy. Tracking is usually performed for commercial purposes. We present 5 main groups of methods used for user tracking, which are based on sessions, client storage, client cache, fingerprinting, or yet other approaches. A special focus is placed on mechanisms that use web caches, operational caches, and fingerprinting, as they are usually very rich in terms of using various creative methodologies. We also show how the users can be identified on the web and associated with their real names, e-mail addresses, phone numbers, or even street addresses. We show why tracking is being used and its possible implications for the users (price discrimination, assessing financial credibility, determining insurance coverage, government surveillance, and identity theft). For each of the tracking methods, we present possible defenses. Apart from describing the methods and tools used for keeping the personal data away from being tracked, we also present several tools that were used for research purposes - their main goal is to discover how and by which entity the users are being tracked on their desktop computers or smartphones, provide this information to the users, and visualize it in an accessible and easy to follow way. Finally, we present the currently proposed future approaches to track the user and show that they can potentially pose significant threats to the users' privacy.Comment: 29 pages, 212 reference

    Design characteristics of a pipe crawling robot

    Get PDF
    This thesis deals with the design characteristics of a pipe crawling vehicle which utilises a unique, innovative and patented drive system. The principle of the drive system is simple. That is, if a brush is inserted into a pipe and its bristles are swept back at an angle, then, it is easier to push the brush forwards through the pipe than it is to pull it backwards. Thus, if two brushes are interconnected by a reciprocating cylinder, then, by cycling the cylinder, it is possible for the vehicle to "crawl" through the pipe. The drive mechanism has two main advantages. The first is the ability of the bristles to deflect over or around obstacles, thus, the vehicles can be used in severely damaged pipes. Secondly, the drive mechanism is able to generate extremely high "grip" forces, thus, the vehicle has a high payload to weight ratio. This "simple" traction mechanism has subsequently been proven to be extremely capable in significantly hostile environments, for example, nuclear plants and sewers. The development of the vehicle has resulted in brushes being considered as "engineering" components. This thesis considers the forces present when a brush moves forward through a pipe, further, it also considers the forces present if the brush is required to grip the walls of the pipe. A "simple" cantilever model has been developed which predicts the force required to push a brush forwards through the pipe. A second model has been developed which predicts the forward to reverse or "slip" to "grip" ratio of a brush, for given functional conditions. This model is deemed satisfactory up to the onset of bristle buckling. The experimental program determined three factors, they were, the force required to load a brush into a pipe, the force required to push a brush forward through a pipe and the reverse force a brush could support prior to failure. It can be concluded that this vehicle, through its tractive capability arid environmental compliance, is able to traverse irregularly shaped pipes. Ultimately, this allows tooling to be transported and used at previously unobtainable positions within such pipes

    Research on concentration force of goods in ports across the Taiwan strait

    Get PDF
    • …
    corecore