5,130 research outputs found

    Two-phase flow dynamics in a micro hydrophilic channel: A theoretical and experimental study

    Get PDF
    In this paper, two-phase flow dynamics in a micro hydrophilic channel are experimentally and theoretically investigated. Flow patterns of annulus, wavy, and slug are observed in the range of operating condition. A set of empirical models based on the Lockhart-Martinelli parameter and a two-fluid model using several correlations of the relative permeability are adopted; and their predictions are compared with experimental data. It shows that for low liquid flow rates most model predictions show acceptable agreement with experimental data, while in the regime of high liquid flow rate only a few of them exhibit a good match. Correlation optimization is conducted for individual flow pattern. Through theoretical analysis of flows in a circular and 2-D channel, respectively, we obtain correlations close to the experimental observation. Real-time pressure measurement shows that different flow patterns yield different pressure evolutions. © 2013 Elsevier Ltd. All rights reserved

    Development of Economic Water Usage Sensor and Cyber-Physical Systems Co-Simulation Platform for Home Energy Saving

    Get PDF
    In this thesis, two Cyber-Physical Systems (CPS) approaches were considered to reduce residential building energy consumption. First, a flow sensor was developed for residential gas and electric storage water heaters. The sensor utilizes unique temperature changes of tank inlet and outlet pipes upon water draw to provide occupant hot water usage. Post processing of measured pipe temperature data was able to detect water draw events. Conservation of energy was applied to heater pipes to determine relative internal water flow rate based on transient temperature measurements. Correlations between calculated flow and actual flow were significant at a 95% confidence level. Using this methodology, a CPS water heater controller can activate existing residential storage water heaters according to occupant hot water demand. The second CPS approach integrated an open-source building simulation tool, EnergyPlus, into a CPS simulation platform developed by the National Institute of Standards and Technology (NIST). The NIST platform utilizes the High Level Architecture (HLA) co-simulation protocol for logical timing control and data communication. By modifying existing EnergyPlus co-simulation capabilities, NIST’s open-source platform was able to execute an uninterrupted simulation between a residential house in EnergyPlus and an externally connected thermostat controller. The developed EnergyPlus wrapper for HLA co-simulation can allow active replacement of traditional real-time data collection for building CPS development. As such, occupant sensors and simple home CPS product can allow greater residential participation in energy saving practices, saving up to 33% on home energy consumption nationally

    Experimental analysis of mass transfer of Taylor bubble flow in small channels

    Get PDF
    Multiphase flows in chemical reactors with micro- and millimeter-size channel structures such as monolith froth reactors, compact heat exchangers and fuel cells have received great attention in the last years. They are considered as a promising alternative to conventional reactors, such as fixed bed reactors and bubble columns which are mainly used for gas absorption, catalytic hydrogenation and biochemical conversions. Slug or Taylor bubble flow is a desired operating state for this type of contactors due to the frequent change of efficient gas-liquid contacting in the film around the bubbles and the enhanced mixing in the liquid slugs behind the bubbles. Consequently, capillary Taylor flow is currently a target of intensive investigations. However, a full understanding of design parameters and optimum operating conditions are still lacking. For milli- and microreactors mass transfer between gas and liquid phases depends upon various parameters such as bubble shape, relative velocity between the two phases, degree of liquid contamination and many more. To further advance the fundamental understanding of micro- and milli-channel reactors with Taylor flow, main design parameters and operating conditions were investigated, which include (a) the effect of bubble size, channel diameter and cross sectional shape of channel on the mass transfer coefficient of dissolving bubbles, (b) the influence of the presence of surface active agents on the bubble shape, velocity and also on the mass transfer rate of bubbles and (c) the intensification effect of oscillation of channels on the mass transfer performance of Taylor bubbles. For the study of gas-liquid mass transfer high-resolution X-ray radiography and tomography were used as measurement techniques. The X-ray imaging methods were chosen as their accuracy is less affected by changes in the refractive index, as it is the case for conventional optical methods. The mass transfer was calculated by measuring the changes in the size of the bubbles at constant pressure. The utilization of X-ray visualization enabled the acquisition of a series of radiographic images of bubbles. The images gave the volume, interfacial area and length of the bubble with high accuracy as a function of time and were used to evaluate the mass transfer coefficient using the mass conservation equations. In case of circular channels, the results show that Sherwood numbers have a large dependency on the bubble length and also equivalent diameter which is in accordance with previous results for larger channel diameters. However, the values of measured Sherwood numbers could not be predicted by available correlations which are valid only for larger pipes. As a result, a new mass transfer correlation in the form of Sherwood number as a function of Peclet number as well as bubble size ratio was derived. The proposed correlation is applicable for a large range of bubble sizes with high accuracy. The comparison of the results for the square and circular channels showed that despite the fact that the rise velocity of bubbles in the square channel is about three times higher than in the circular channel, the mass transfer coefficient is about the same. Furthermore, the results show that in square channels the dissolution curves are relatively even, while the dissolution curves of circular channels exhibit some distinguishable change in the slope. In addition, the results show that the calculated mass transfer coefficient based on the measured data show good agreement with the data predicted by the penetration theory. Regarding the influence of surfactants on the mass transfer in small channels with Taylor flow, it was shown that a small amount of surfactant reduces the mass transfer and its impact is more pronounced on small bubbles. Furthermore, it was demonstrated that the presence of surfactants causes the change of the bubble shape and leads to a slight increase of the liquid film thickness around the bubble and as a result the elongation of contaminated bubbles. Intensification of mass transfer in small channels with Taylor bubbles was investigated by measuring the motion, shape and dissolution rate of individual elongated Taylor bubbles of air and CO2 in water. The comparison of the results for the stationary and oscillating channel showed that mechanical vibration of the channel is able to enhance the mass transfer coefficient from 80% to 186%. Moreover, the mass transfer rate positively correlates with frequency and amplitude of oscillation, which is more pronounced at higher amplitudes. In addition, it was shown that the intensification of mass transfer with increase of amplitude/frequency of vibration is mainly attributed to the increase of bubble surface wave oscillations that causes an enlargement of contact area between the phases and also a reduction of mass transfer resistance in the liquid-side boundary layer

    Continuous and scalable polymer capsule processing for inertial fusion energy target shell fabrication using droplet microfluidics

    Get PDF
    High specification, polymer capsules, to produce inertial fusion energy targets, were continuously fabricated using surfactant-free, inertial centralisation, and ultrafast polymerisation, in a scalable flow reactor. Laser-driven, inertial confinement fusion depends upon the interaction of high-energy lasers and hydrogen isotopes, contained within small, spherical and concentric target shells, causing a nuclear fusion reaction at ~150 M°C. Potentially, targets will be consumed at ~1 M per day per reactor, demanding a 5000x unit cost reduction to ~$0.20, and is a critical, key challenge. Experimentally, double emulsions were used as templates for capsule-shells, and were formed at 20 Hz, on a fluidic chip. Droplets were centralised in a dynamic flow, and their shapes both evaluated, and mathematically modeled, before subsequent shell solidification. The shells were photo-cured individually, on-the-fly, with precisely-actuated, millisecond-length (70 ms), uniform-intensity UV pulses, delivered through eight, radially orchestrated light-pipes. The near 100% yield rate of uniform shells had a minimum 99.0% concentricity and sphericity, and the solidification processing period was significantly reduced, over conventional batch methods. The data suggest the new possibility of a continuous, on-the-fly, IFE target fabrication process, employing sequential processing operations within a continuous enclosed duct system, which may include cryogenic fuel-filling, and shell curing, to produce ready-to-use IFE targets

    Civil Space Technology Initiative: a First Step

    Get PDF
    This is the first published overview of OAST's focused program, the Civil Space Technology Initiative, (CSTI) which started in FY88. This publication describes the goals, technical approach, current status, and plans for CSTI. Periodic updates are planned

    Assessment of water quality in Canaanland, Ota, Southwest Nigeria

    Get PDF
    In this study, water points in Canaanland, Ota, and nearby Iju River were analyzed for biological and physicochemical properties including heavy metal content. Water quality parameters examined were pH, alkalinity, salinity, conductivity, turbidity, total hardness, total solids (TS), total dissolved solids (TDS), total suspended solids (TSS), dissolved oxygen (Do), biochemical oxygen demand (BOD), iron (Fe), lead (Pb), zinc (Zn) and chromium (Cr). All the water samples were slightly acidic (5.96 – 6.54) except the bottled/ sachet Hebron water and Iju River water. The results were compared against drinking water quality standards laid by World Health Organization (WHO) and Nigerian Standard for Drinking Water (NSDW). The potable water samples were within the standards for consumable water and so are considered safe for human consumption. The surface waters, on the other hand, have high levels of total dissolved solids, conductivity and salinity. The BOD of the effluent water showed that the water was contaminated and the use of the water for domestic purposes by the inhabitants could lead to hazardous side effects

    Ocean foam generation and modeling

    Get PDF
    A laboratory investigation was conducted to determine the physical and microwave properties of ocean foam. Special foam generators were designed and fabricated, using porous glass sheets, known as glass frits, as the principal element. The glass frit was sealed into a water-tight vertical box, a few centimeters from the bottom. Compressed air, applied to the lower chamber, created ocean foam from sea water lying on the frit. Foam heights of 30 cm were readily achieved, with relatively low air pressures. Special photographic techniques and analytical procedures were employed to determine foam bubble size distributions. In addition, the percentage water content of ocean foam was determined with the aid of a particulate sampling procedure. A glass frit foam generator, with pore diameters in the range 70 - 100 micrometers, produced foam with bubble distributions very similar to those found on the surface of natural ocean foam patches

    Instrumentation

    Get PDF
    NASA derived instrumentation hardware, application, and management for utilization in electric power industr

    NASA JSC water monitor system: City of Houston field demonstration

    Get PDF
    A water quality monitoring system with on-line and real time operation similar to the function in a spacecraft was investigated. A system with the capability to determine conformance to future high effluent quality standards and to increase the potential for reclamation and reuse of water was designed. Although all system capabilities were not verified in the initial field trial, fully automated operation over a sustained period with only routine manual adjustments was accomplished. Two major points were demonstrated: (1) the water monitor system has great potential in water monitoring and/or process control applications; and (2) the water monitor system represents a vast improvement over conventional (grab sample) water monitoring techniques
    • …
    corecore