282 research outputs found

    Model-Based Shape and Motion Analysis: Left Ventricle of a Heart

    Get PDF
    The accurate and clinically useful estimation of the shape, motion, and deformation of the left ventricle of a heart (LV) is an important yet open research problem. Recently, computer vision techniques for reconstructing the 3-D shape and motion of the LV have been developed. The main drawback of these techniques, however, is that their models are formulated in terms of either too many local parameters that require non-trivial processing to be useful for close to real time diagnosis, or too few parameters to offer an adequate approximation to the LV motion. To address the problem, we present a new class of volumetric primitives for a compact and accurate LV shape representation in which model parameters are functions. Lagrangian dynamics are employed to convert geometric models into dynamic models that can deform according to the forces manifested in the data points. It is thus possible to make a precise estimation of the deformation of the LV shape endocardial, epicardial and anywhere in between with a small number of intuitive parameter functions. We believe that the proposed technique has a wide range of potential applications. In this thesis, we demonstrate the possibility by applying it to the 3-D LV shape and motion characterization from magnetic tagging data (MRI-SPAMM). We show that the results of our experiments with normal and abnormal heart data enable us to quantitatively verify the physicians\u27 qualitative conception of the left ventricular wall motion

    Feature based estimation of myocardial motion from tagged MR images

    Get PDF
    In the past few years we witnessed an increase in mortality due to cancer relative to mortality due to cardiovascular diseases. In 2008, the Netherlands Statistics Agency reports that 33.900 people died of cancer against 33.100 deaths due to cardiovascular diseases, making cancer the number one cause of death in the Netherlands [33]. Even if the rate of people affected by heart diseases is continually rising, they "simply don’t die of it", according to the research director Prof. Mat Daemen of research institute CARIM of the University of Maastricht [50]. The reason for this is the early diagnosis, and the treatment of people with identified risk factors for diseases like ischemic heart disease, hypertrophic cardiomyopathy, thoracic aortic disease, pericardial (sac around the heart) disease, cardiac tumors, pulmonary artery disease, valvular disease, and congenital heart disease before and after surgical repair. Cardiac imaging plays a crucial role in the early diagnosis, since it allows the accurate investigation of a large amount of imaging data in a small amount of time. Moreover, cardiac imaging reduces costs of inpatient care, as has been shown in recent studies [77]. With this in mind, in this work we have provided several tools with the aim to help the investigation of the cardiac motion. In chapters 2 and 3 we have explored a novel variational optic flow methodology based on multi-scale feature points to extract cardiac motion from tagged MR images. Compared to constant brightness methods, this new approach exhibits several advantages. Although the intensity of critical points is also influenced by fading, critical points do retain their characteristic even in the presence of intensity changes, such as in MR imaging. In an experiment in section 5.4 we have applied this optic flow approach directly on tagged MR images. A visual inspection confirmed that the extracted motion fields realistically depicted the cardiac wall motion. The method exploits also the advantages from the multiscale framework. Because sparse velocity formulas 2.9, 3.7, 6.21, and 7.5 provide a number of equations equal to the number of unknowns, the method does not suffer from the aperture problem in retrieving velocities associated to the critical points. In chapters 2 and 3 we have moreover introduced a smoothness component of the optic flow equation described by means of covariant derivatives. This is a novelty in the optic flow literature. Many variational optic flow methods present a smoothness component that penalizes for changes from global assumptions such as isotropic or anisotropic smoothness. In the smoothness term proposed deviations from a predefined motion model are penalized. Moreover, the proposed optic flow equation has been decomposed in rotation-free and divergence-free components. This decomposition allows independent tuning of the two components during the vector field reconstruction. The experiments and the Table of errors provided in 3.8 showed that the combination of the smoothness term, influenced by a predefined motion model, and the Helmholtz decomposition in the optic flow equation reduces the average angular error substantially (20%-25%) with respect to a similar technique that employs only standard derivatives in the smoothness term. In section 5.3 we extracted the motion field of a phantom of which we know the ground truth of and compared the performance of this optic flow method with the performance of other optic flow methods well known in the literature, such as the Horn and Schunck [76] approach, the Lucas and Kanade [111] technique and the tuple image multi-scale optic flow constraint equation of Van Assen et al. [163]. Tests showed that the proposed optic flow methodology provides the smallest average angular error (AAE = 3.84 degrees) and L2 norm = 0.1. In this work we employed the Helmholtz decomposition also to study the cardiac behavior, since the vector field decomposition allows to investigate cardiac contraction and cardiac rotation independently. In chapter 4 we carried out an analysis of cardiac motion of ten volunteers and one patient where we estimated the kinetic energy for the different components. This decomposition is useful since it allows to visualize and quantify the contributions of each single vector field component to the heart beat. Local measurements of the kinetic energy have also been used to detect areas of the cardiac walls with little movement. Experiments on a patient and a comparison between a late enhancement cardiac image and an illustration of the cardiac kinetic energy on a bull’s eye plot illustrated that a correspondence between an infarcted area and an area with very small kinetic energy exists. With the aim to extend in the future the proposed optic flow equation to a 3D approach, in chapter 6 we investigated the 3D winding number approach as a tool to locate critical points in volume images. We simplified the mathematics involved with respect to a previous work [150] and we provided several examples and applications such as cardiac motion estimation from 3-dimensional tagged images, follicle and neuronal cell counting. Finally in chapter 7 we continued our investigation on volume tagged MR images, by retrieving the cardiac motion field using a 3-dimensional and simple version of the proposed optic flow equation based on standard derivatives. We showed that the retrieved motion fields display the contracting and rotating behavior of the cardiac muscle. We moreover extracted the through-plane component, which provides a realistic illustration of the vector field and is missed by 2-dimensional approaches

    Modified mass-spring system for physically based deformation modeling

    Get PDF
    Mass-spring systems are considered the simplest and most intuitive of all deformable models. They are computationally efficient, and can handle large deformations with ease. But they suffer several intrinsic limitations. In this book a modified mass-spring system for physically based deformation modeling that addresses the limitations and solves them elegantly is presented. Several implementations in modeling breast mechanics, heart mechanics and for elastic images registration are presented

    Modified mass-spring system for physically based deformation modeling

    Get PDF
    Mass-spring systems are considered the simplest and most intuitive of all deformable models. They are computationally efficient, and can handle large deformations with ease. But they suffer several intrinsic limitations. In this book a modified mass-spring system for physically based deformation modeling that addresses the limitations and solves them elegantly is presented. Several implementations in modeling breast mechanics, heart mechanics and for elastic images registration are presented

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography

    Modelling the Human Cardiac Fluid Mechanics. 4th ed

    Get PDF
    With the Karlsruhe Heart Model (KaHMo) we aim to share our vision of integrated computational simulation across multiple disciplines of cardiovascular research, and emphasis yet again the importance of Modelling the Human Cardiac Fluid Mechanics within the framework of the international STICH study. The focus of this work is on integrated cardiovascular fluid mechanics, and the potential benefits to future cardiovascular research and the wider bio-medical community

    Reference ranges ("normal values") for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update

    Get PDF
    Cardiovascular magnetic resonance (CMR) enables assessment and quantification of morphological and functional parameters of the heart, including chamber size and function, diameters of the aorta and pulmonary arteries, flow and myocardial relaxation times. Knowledge of reference ranges ("normal values") for quantitative CMR is crucial to interpretation of results and to distinguish normal from disease. Compared to the previous version of this review published in 2015, we present updated and expanded reference values for morphological and functional CMR parameters of the cardiovascular system based on the peer-reviewed literature and current CMR techniques. Further, databases and references for deep learning methods are included

    Development of MRI techniques for the assessment of chronic kidney disease

    Get PDF
    It is well established that patients with Chronic Kidney Disease (CKD) are more susceptible to develop cardiovascular disease in comparison to the healthy population. This thesis aims to develop and apply MRI techniques to assess the human heart and kidney in patients with chronic kidney disease (CKD). Magnetic resonance imaging (MRI) can be used to inform on structure, function, perfusion and blood flow, without the need for ionizing radiation. In order to assess blood flow using MRI, gadolinium based contrast agents are often used. Patients with compromised kidney function are contraindicated to these contrast agents and so it is necessary to develop imaging techniques that can be used without a contrast agent. Arterial spin labelling (ASL) is an MRI technique that provides a non-contrast enhanced method to assess tissue perfusion using the intrinsic signal from the water in the body. ASL is now becoming a well-established technique in the brain, however applications of ASL in the body are currently limited. In this work, a cardiac ASL technique is developed using a modified Look-Locker scheme to study the myocardium of the heart. This technique is then applied in patients with CKD Stage 3 and age-matched healthy control subjects to assess the changes in myocardial perfusion during a handgrip exercise challenge. MRI measurements of cardiac index and stroke volume index, global and regional contractile function (myocardial strain), coronary artery flow and myocardial perfusion using ASL are applied to assess changes in cardiac function in CKD Stage 5 patients during dialysis treatment. The measures are performed in a randomised design to assess the cardiovascular effects in patients undergoing both haemodialysis and haemodiafiltration. Finally, a comparison of 2D readout schemes for renal ASL is performed. Gradient and spin echo based readout schemes for multi-slice ASL of the kidney at 3 T are evaluated and directly compared in terms of temporal SNR, image SNR, spatial coverage, perfusion quantification and variability across slices/subjects. This work aims to determine the optimal readout scheme for pulsed ASL (PASL) of the kidneys at 3 T in healthy volunteers with normal renal function. In future work this could be applied to patients with compromised renal function where a robust imaging technique is needed. Finally, a summary of the key findings of this thesis and an outline of the potential future directions of this work is provided
    • …
    corecore