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Your vision will become clear only when you
look into your heart. Who looks outside, dreams.
Who looks inside, awakens.

Carl Gustav Jung, psychiatrist

1Introduction
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1.1 Motivation and goals

Recent statistics [6] point out that in 2006 over 80000000 of people were affected
by one or more types of cardiovascular disease (CVD) in the Unites States only,
causing over 800000 of deaths (34.3% of all deceases for that year). Figure 1.1
illustrates the percentage breakdown of deaths due to cardiopathy. However,
the statistics also show that the mortality related to heart illness has dimin-
ished with the years (see Figure 1.2). A possible explanation is related to the
continuous warnings for a healthy life style and to the improvements of tech-
niques like cardiac imaging, which covers a major role in the early diagnosis of
the disease.

One of the major challenges in medical imaging is the automatic estimation
of cardiac motion. Assessment of the heart movement and deformation is of
crucial importance, since quantitative evaluation of the parameters (i.e. kinetic
energy, strain, stress) may reveal information about the health condition of the
myocardium [158]. In presence of a disease it would be interesting to measure,
for instance, the location and the extent of the affected regions, since this may
help physicians to formulate therapy treatments.

Another application would be the quantification of the response of the heart
muscle after a therapy treatment, for example after the implantation of stem
cells in the diseased cardiac tissue [25, 44, 159]. These cells are found inside
different types of tissue and able to differentiate into specialized cell types.
These therapies employ stem cells in the replacements during cardiac surgery
instead of foreign material, which may provide infection, loss of functional and
biological properties.

Over the years we have seen an increase of techniques used to visualize car-
diac illness. Coronary angiography, radionuclide imaging and echocardiogra-
phy have been largely employed to visualize and estimate coronary artery dis-
eases. Echocardiography has been also applied for cardiac motion estimation
by tracking myocardial irregularities that appear as speckles [45, 18, 96, 104, 9].
This modality however presents limited spatial resolution and suboptimal im-
age quality. MRI has already a significant history in medical imaging (first MR
image appeared in 1973 [102]), but for a long period it has been considered an
additional technique used when data provided by other modalities were incom-
plete or needed confirmation. However, due to the fact that MRI is noninvasive,
fast, highly versatile and due to recent strong technical improvements, such as
an increase of spatial and temporal resolution, improvement of signal to noise
ratio and elimination of motion artifacts, MRI imaging is playing a primary
role especially in areas like congenital heart disease, aortic diseases and ventric-
ular function [144, 132]. For these reasons MR images have been chosen in our
experiments.
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Figure 1.1: Percentage death due to cardiovascular diseases in the United States in
2006. Image adapted from [6].

Figure 1.2: Leading cause of death for all ages from 1959 to 2005 in the United States.
The estimations are age-adjusted. Image acquired from [61].

In order to highlight heart movement, in the literature we find methods that
manipulate MR images imposing artificial patterns (tags) that move along with
the cardiac tissue such as (Complementary) SPAtial Modulation of Magnetiza-
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tion (SPAMM) [179, 14, 53] or HARmonic Phase (HARP) images [126, 139].
Therefore, several methodologies carry out cardiac motion extraction by esti-
mating the movement of these patterns. Such techniques are mainly based on
stripe following and HARP tracking [8, 177, 126, 127], which employ material
mesh models and optic flow approaches [68, 147, 163, 59, 21, 22]. It’s inter-
esting to mention also a new technique for cardiac motion extraction named
SINne wave MODeling (SinMod) [11]. Velocity estimation is based on pixelwise
detection of local phase shift and spatial frequency in a bandpass-filtered image.

According to the general computer vision literature, the best performing motion
estimation methods are based on differential optic flow approaches [27, 28,
181]. Therefore also in this thesis a differential optic flow technique has been
investigated. Most of the differential optic flow techniques are based on the
so-called optic flow constraint equation (OFCE) [76]. This equation assumes
constancy of the brightness in the image sequence. In tagged MR images, this
assumption cannot hold, since tags fade with relaxation time T1. In [68] an
optic flow methodology was proposed where tag fading was modeled using Bloch
equations. This model however requires specific knowledge of T1 of the target
sequence and such knowledge is not always available. In [163, 59] a multi-scale
OFCE was applied directly on HARP images, where the constancy assumption
in the brightness was preserved. However the procedure of generating HARP
images may remove motion information that compromise the final evaluation.
Another issue related to OFCE is the aperture problem, that is, the single
equation, having two unknowns, can not be solved uniquely.

In this thesis we try to overcome these problems. We propose a novel variational
optic flow methodology based on multi-scale feature points to extract cardiac
motion from tagged MR images. For such an approach, feature points used like
maxima, minima or saddles do not suffer from fading, since they retain their
characteristic even in the presence of brightness changes. Another advantage
is that the proposed technique does not suffer from the aperture problem. The
method takes also the advantages from the multi-scale framework.

A smoothness term of the proposed optic flow is defined as the sum of contract-
ing/relaxing (rotation-free) and rotating (divergence-free components) contri-
butions, since we noticed that the heart motion can also be described in terms
of contractions and rotations. Moreover, the proposed smoothness term takes
into account previous knowledge of the vector field. Experiments on phantoms
and comparison with similar methodologies that do not take into account prior
knowledge of the vector field or vector field decomposition, highlight that the
proposed method performs best.

The evaluation of the kinetic energy parameter in a number of volunteers and in
a patient with acute myocardial infarction is also addressed in this thesis. In the
literature evaluation of total cardiac kinetic energy using a Horn and Schunck
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optic flow method [76] has been already investigated by [70, 42]. In this thesis
we estimate moreover the kinetic energy of the rotation-free and divergence-
free components of the motion field and this provides crucial information of
the heart behavior, since it allows to quantify the contribution of the single
components to the heart beat. We also evaluate the local kinetic energy and
visualize it by means of bull’s eye plots [34] and experiments on the patient
suggest that regions with a local kinetic energy minimum can be associated to
infarcted areas.

In order to evaluate critical points (maxima, minima and saddles), used as
feature points for motion extraction, of scalar images in arbitrary number of
dimensions, a reformulation of the winding number - a topological number - will
be proposed. The case of 3-dimensional images will be extensively discussed
and other applications, such as neuron counting in cerebellum images, ovarian
follicle counting and tag crossings detection in tagged cardiac MR images, will
be investigated.

Finally, a 3-dimensional approach for cardiac motion estimation is proposed.
The benefits of the technique, such as the retrieval of the through-plane com-
ponent of the velocity field, essential for a more reliable motion estimation of
the cardiac muscle.

In this chapter, sections 1.2 and 1.3 illustrate the cardiac anatomy and major
cardiac diseases. In section 1.4 and 1.5 the most used cardiac imaging modalities
and cardiac motion estimation techniques are discussed. The chapter concludes
with a paragraph 1.6 where we provide the outline of this thesis.

1.2 The heart anatomy

The heart is a fundamental organ of the human body, big as a fist and located
between diaphragm and lungs. It is the most important part of the circula-
tory system and carries out the function of a pump. To perform this task,
the heart is a rhythmically contracting hollow muscle consisting of two pairs of
independently contracting chambers . The top consists of the two chambers,
called atria, which receive oxygen-depleted blood from the body (right atrium)
and oxygenated blood from the lungs (left atrium) and pass it to the larger
ventricles. The Left and the Right Ventricle (LV and RV), pump blood into
the aorta and the pulmonary artery respectively. The left ventricle pumps the
oxygen-enriched blood to the rest of the body to provide all organs and tissue
with the necessary energy for life. (Figure 1.3). The left atrium and ventricle
are connected by the Mitral Valve, while the right atrium and ventricle are
connected by the Tricuspid Valve. The ventricular cycle is divided in two main
phases: diastole and systole. Diastole is the expansion (volume increase and
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blood filling) of the ventricle while systole is the contraction (volume reduction
and blood ejection). During diastole the mitral and tricuspid valve is open
and blood flows from the atria into the ventricles. During systole the valve
is closed, and blood is pushed through the Aortic Valve (AV) and Pulmonary
Valve (PV) into the aorta (systemic circulation) or the pulmonary artery (pul-
monary circulation) respectively. A good closure of the valves prevents blood
leakage (regurgitation due to valve insufficiency) and backward flow.

Figure 1.3: Anatomy of the heart muscle. Image used with permission of the Edwards
Lifesciences Corporation, Irvine, California [48].

1.3 Cardiac diseases

As already mentioned, cardiac disease is one of the major causes of death in the
world [136, 6, 4, 7]. In this section we provide an overview of the main forms
of cardiopathy.

Atherosclerosis. Atherosclerosis is a condition caused by depositing of plaques
in the arteries. Such plaques consist of fatty material such as cholesterol or other
substances such as calcium, which accumulate in the vessel walls provoking a
decrease of the vessel’s diameter (stenosis). If the plaque is vulnerable, i.e. the
cap on lipid pool is thin, the cap may rupture, and leaking lipid (cholesterol)
may generate a blood clot. This may occlude vessels further upstream and lead
to myocardial infarction
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Valvular failure. In this case cardiac valves do not close/open normally
causing blood regurgitation or limiting the blood flow. Valvular failure is due to
valvular displacement, inflammation of the cardiac valves and valvular stenosis.

Congenital heart disease. Congenital cardiac diseases are the result of de-
fects in the heart structure or vessels in the newborn. One of the most common
cardiac congenital defects is hypoplasia, where either the left or the right ven-
tricle does not develop properly. Other defects are related to the abnormal
narrowing of vessels or valves, or presence of holes in the septum, the wall
tissue that separates the right from the left part of the heart. The abnormal
development of vessels such as in the persistent truncus arteriosus is a defect
of main concern. In this case the truncus arteriosus never properly divides into
pulmonary artery and aorta.

Arrythmia. Arrythmia is an irregular heart beat, causing the heart to pump
blood less effectively. The blood is pushed in the four chambers of the heart
through a sequence of controlled muscular contractions. Disturbances on the
sequence, that is skipping a heart beat or adding an extra beat, generate heart
arrythmia. Symptoms are fatigue, fainting, short of breath, chest pains, dizzi-
ness.

Hypertension. Such diseases are due to the high blood pressure in the arteries.
Chronical conditions of the disease may lead to stroke, heart failure, and arterial
aneurysm.

Hypertrophy. Cardiac hypertrophy is an increase of thickness in the my-
ocardium, which results in decrease in size of the chamber of the heart. Hyper-
tension and heart valve stenosis, abnormal narrowing of the valve orifice, are
common causes of hypertrophy.

Heart Failure. Heart failure is a progressive disorder defined as inability of
the cardiac muscle to provide sufficient blood flow to meet the body’s needs.
Common causes of heart failure are due to myocardial infarction, (interruption
of blood supply to part of the heart, causing heart cells to die), hypertension
and valvular heart diseases.

1.4 Cardiac Imaging: Acquisition techniques

Cardiac imaging represents a major area of research in the medical imaging
community, since it allows to visualize and investigate the complex behavior of
the cardiac muscle. In the following sections the major imaging modalities used
in clinical practice will be discussed.
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1.4.1 Computed tomography (CT)

Computed tomography is a medical imaging method based on X-ray techniques
[65]. Such technique exposes the body of a subject to a high energy ionizing
radiation (typically 140 KeV) and the different absorption of radiation in differ-
ent tissues generates different shadows in the image. Tissues with high atomic
weight such as the bones absorb and block the radiation and therefore may
appear opaque. Tissues with less atomic weight such as the lungs are instead
darker on the image. The pixels are described in terms of radiodensity, the
property of relative transparency to the passage of X-rays through a material.
The radiodensity is defined in Hounsfield units (HU), and for a certain material
X, HU is

HU = µX − µwater
µwater − µair 1000

where µ is the linear attenuation coefficient, which describes how easily a ma-
terial can be penetrated by a beam of light, sound and particles. Bones present
HU = 400 or more, the water has HU = 0, whereas for the air HU = −1000.
The heart exhibits HU around 0, therefore the CT images of the heart do not
present shadows.

In CT scanners software techniques, like multiplanar reconstruction or 3D ren-
dering, build image volumes by "stacking" the slices acquired at different depths
one on top of the other. Advantages of using such methodology are the fast
image acquisition time, high spatial resolution and nearly isotropic voxel size.
Current generation of CT scanners generate images with spatial resolution of
0.4× 0.4× 0.4 mm3 and temporal resolution of 80− 160 ms [37].

1.4.2 Positron Emission Tomography (PET)

PET is a nuclear medicine imaging modality that produces 3-dimensional visu-
alizations of tissue in the body. The methodology employs radionuclides, atoms
with nuclei characterized by an excess of energy available to be emitted. The
radionuclides, tracers, are incorporated in molecules used by the body such
as glucose or in drugs and administered to the patient. After a certain wait-
ing period such molecules concentrate in the region of interest. At this point
the patient is placed in the imaging scanner. Radionuclides decay producing
positrons, particles with same mass but opposite electric charge with respect
to the electron. Positrons interact with nearby electrons producing photons
(with 511 KeV each) in opposite directions. Emissions of photons coinciding in
time are detected by PET scanners, increasing the radiation information of the
region of interest and therefore increasing the resolution (Figure 1.4, row 1, col-
umn 2). PET scanners allow to carry out functional measurements: perfusion,
oxygenation, protein concentration). However, these methods imply the use of
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nuclear radiations and present low spatial resolution [12]. PET images present
spatial resolution of 4− 6 mm3 and temporal resolution of 1 second [43].

1.4.3 Single Photon Emission Computed Tomography (SPECT)

SPECT is similar to PET, as radioactive tracers and detection of gamma rays
are employed. The main difference between the 2 techniques is that SPECT
emits gamma photons measured directly, whereas PET emits positrons that,
interacting with electrons up to few millimeters away, produce photons emit-
ted in opposite directions. An advantage of the SPECT imaging acquisition
methodology is the cost of the complete scanner, much lower than PET scan-
ners. Also such methodology allows performing functional measurements due
to molecular concentration around a region of interest. Such a technique, how-
ever, implies the use of a nuclear tracer and presents worse spatial and temporal
resolution with respect to the PET image acquisition modality (Figure 1.4, row
1, column 3) [12]. Tipically images present spatial resolution 1 × 1 cm2 and
temporal resolution of 4× 10−2 s.

1.4.4 Echocardiography

Echocardiography is the imaging modality based on ultrasound techniques. In
ultrasound scanners a sound wave with frequencies between 2.5 and 5 MHz
(the audible range of sound is 20 Hz-20 KHz) is produced by a piezoelectric
transducer. The sound is partially reflected in regions where changes in sound
velocity in the body occur, such as at blood cell borders or small structures in
organs. Parts of the reflected sounds may return to the transducer and are con-
verted into electric signals. These signals are later processed by the ultrasonic
scanner and converted into images. Such signals provide information about the
position associated to the investigated object. The time delay of the sound to
come back to the transducers provides information about the position of the
object, namely the more time it needs, the deeper the object is in the body.
The amplitude of the reflected signal determines instead the pixel’s brightness:
the stronger is the signal, the brighter will be the pixel. An example echocar-
diogram is presented in Figure 1.4, row 2, column 1. Ultrasound modalities
are widely applied, since they are relatively inexpensive and portable. Other
advantages are the fast acquisition time and high temporal resolution. On the
other side such methodologies exert limited spatial resolution and suboptimal
image quality [12]. Tipically echocardiographic images presents spatial resolu-
tion 0.6× 0.6× 0.6 mm3 and temporal resolution of 15− 60 ms [37].
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1.4.5 Magnetic resonance Imaging (MRI)

Magnetic resonance imaging is a noninvasive imaging modality that, due to
interaction between radio frequency pulses (short electromagnetic signals used
to alter the direction of the magnetic field) with a strong magnetic field and
body tissue, provides high quality images of organs inside the body. During the
MRI the image acquisition procedure, the body is introduced into a scanner with
a high magnetic field, usually 1.5 Tesla in clinical practice (earth’s magnetic
field strength is only about 5 10−5 Tesla). The body consists mainly of water
molecules and each molecule presents two hydrogen nuclei or protons. Under
application of a strong magnetic field the magnetic moments of protons align
with the direction of the field. The magnetization can be perturbed by imposing
a different magnetic field, causing the magnetic moments of protons to alter
their alignment relative to the original field and bringing the protons to a higher
energy level. Once the new magnetic field is turned off, protons return to their
alignment at the original magnetization with a certain relaxation time (so-called
T1 and T2). The change in alignment provides a signal detected by the scanner.
Different types of tissue (e.g. muscle, fat) present different relaxation times and
this is reflected as source of contrast in MR images.

In clinical routine practice cardiac MRI images are acquired in short axis view
(SA) and long axis view (LA). SA images are registered at planes perpendicular
with respect to the left ventricle axis. The registration is performed at multiple
slices from apex to base. Acquisition in the LA modality is instead carried out
at planes parallel to the LV axis. See Figure 1.4, row 2, column 2.

A useful way to investigate cardiac mechanical function is through MR Tagging.
Tagging is a method for noninvasive assessment of myocardial motion. An
artificial brightness pattern, represented as dark stripes, is superimposed on
images by spatially modulating magnetization with the aim to improve the
visualization of intramyocardial motion [179, 14, 53] (Figure 1.4, row 2, column
3).

MRI image acquisition presents several advantages. The method is noninva-
sive, presents high spatial resolution, high temporal resolution, intrinsically
high blood-myocardium contrast and arbitrary image orientation. On the other
side patients are exposed to prolonged examination times. Many MRI acqui-
sitions require breath holding, which may be difficult for patients with a heart
condition. Moreover persons with metallic implants may be excluded from MR
imaging. Finally, MR images present low through-plane resolution and repro-
ducibility of quantitative results depends on the accuracy of the positioning of
the image slices [40, 12]. The MR images used in this thesis present spatial
resolution of 1.2× 1.2 mm2 and temporal resolution of 2× 10−2 − 3× 10−2 ms.
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Figure 1.4: Image acquisition modalities. Row 1 column 1. Volume rendered CT an-
giography of coronary arteries [80]. Row 1, column 2: 3-dimensional PET/CT image
[30]. Row 1, column 3. SPECT images [29]. Row 2, column 1: 2-dimensional echocar-
diogram [31]. Row 2, column 2 and 3: Long axis view of MR and Tagged MR image
samples. Courtesy of LUMC, Leiden, Netherlands.

1.5 Methods for cardiac motion estimation: an overview

In everyday world many objects move. Animals distinguish themselves from
plants, since they show voluntary movement and use it to communicate, to
eat or to avoid to be eaten. Even when the objects around us are stationary,
their images on the retina move, since the eyes and head are never entirely
still (Figure 1.5). The motion perception represents a fundamental function
of the visual system. The brain perceives motion as the result of sequential
displacements of static objects in different spatial positions. At the beginning of
the nineties Goodale and Milner [67], and previously Ungerleider and Mishkin
[157], recognized the so-called dorsal pathway (Figure 1.6, left image) as the
area of the brain, where the spatial awareness and guidance of actions take
place. These conclusions followed the response of lesion studies carried out on
the visual cortex of monkeys, which underlined that posterior parietal lesions
interfered with the neural mechanism related to spatial perception.

In biological cybernetics, motion perception is expressed through models such
as the Reichardt detector [134]. The model, inspired by the visual system of
the fly, assumes that correlation of the input signals coming from two separate
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Figure 1.5: Rotating snakes: Optical illusion on motion perception. Permission of
image usage given by Prof. Akiyoshi Kitaoka of the Ritsumeikan University, Kyoto,
Japan [118].

receptive fields and going to the same ganglion cell may provoke a subsequent
action potential. Figure 1.6, right image, provides a scheme of the model. We
assume that an object, in this case a circle, moves from position "A" to position
"B". In response to light, neuron "A" sends a signal through a device "D" that
delays the stimulus to the ganglion cell "G". Neuron "B" sends a signal directly
down its axon and it synapses with the ganglion cell "G". The ganglion cell fires
in proportion to the amount of the input it receives over the short period of
time. Therefore, in case the input signals arrive simultaneously the neuron will
produce the maximum response, in case the input signals are not simultaneous,
the neuron will provide a weaker response or nothing.

Motion estimation is also a large area of research in medical imaging, since it
may underline abnormalities in organs where complex motion is involved. In
the following sections we describe the most common techniques used in cardiac
motion extraction, providing also an extensive overview of optic flow method-
ologies.
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Figure 1.6: Left Image: Ventral and Dorsal Pathway. The ventral pathway is involved
in object recognition, whereas the dorsal pathway processes the spatial location [91].
Right image: Scheme of a simple Reichardt’s detector.

1.5.1 Tag tracking

This type of approach relies on tracking the deformation of lines generated on
MR images [13, 116]. Tagging methodologies are promising, since the tags move
along with the tissue, but have also certain limitations, such as:

• difficulty in tracking tags over the complete left ventricle cycle, due to
decay of the tagging pattern over time.

• extraction of 3D information only after multiple acquisitions.

There are three main approaches related to tagging techniques:

• tracking intersections of tagged planes [8, 177].

• Tracking whole tag lines [71, 86]

• Tracking tag lines and tag crossings using optic flow methodologies [68,
57, 163, 59, 147, 21, 22]. This argument will be described in section 1.5.3.

Tracking intersections of tagged planes. Here each stripe is modeled as
an active contour [93] and all grid intersection points belong to two stripes. In
order to extract tag displacements, a minimization of a functional is computed
that takes into account the pixel intensity and an internal energy functional
that measures the resistance of each contour to bend and estimates the smooth
displacements between snakes in successive time points. Other terms may be
related to user interaction and guide each contour to the correct intersection
point. In order to extract 3 dimensional motion, information related to tag
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displacements of each deformed image is incorporated into a volumetric finite
element model (FEM) of the endocardial and epicardial contours [177] or in a
parametric cardiac kinematic model [8].

Tracking whole tag lines. Also in this case motion estimation is performed
by minimizing an energy functional and feeding a kinematic cardiac model
to retrieve 3-dimensional cardiac motion [71, 86]. In this approach, however,
information of the whole tagging line is tracked. With respect to tracking in-
tersections, this technique has the advantage of being more robust with respect
to noise, since it uses more information of the tag line during the tracking pro-
cedure and it may provide more information in regions where few intersections
occur, such as in the right ventricle, where the cardiac walls are thinner.

1.5.2 Phase Contrast Methods

In this method [109] velocity estimation is performed on the assumption that
spins of protons, that move along an external magnetic field gradient, receive
a shift in their phase of rotation in comparison to stationary spins. For linear
field gradients, the phase shift is proportional to the velocity of the moving
spins. The measurement is repeated with an inverted bipolar gradient. The
value of the phase difference generated by subtracting these two data sets is
used for a voxelwise calculation of velocities. In moving regions and stationary
regions the phase change is different, that is the velocity of the protons is
different. Moving regions are presented as black or white. Black regions exhibit
motion toward the viewer, whereas white regions show motion away from the
viewer. Stationary regions are illustrated in gray (Figure 1.7). In such velocity
plots, the vector field extracted near the epicardial and endocardial boundaries
does not present high accuracy. The reason is that the region of interest, in
which the motion estimation is carried out, is large, due to signal-to-noise ratio
purposes, and may contain information also of the regions outside the cardiac
walls [117, 38, 180, 164, 121, 128].

1.5.3 Optic Flow methods

Optic flow methods measure the apparent motion of moving patterns in an
image sequence. In the literature several approaches have been proposed and
they can be classified in 3 main classes [20]:

• gradient based (or differential) methods.

• correlation-based (or area) methods.
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Figure 1.7: Slice from volumetric data obtained using the phase contrast methods.
The image on the left displays the image magnitude. Right image is a phase constrast
image. Black colors illustrate motion toward the viewer, while white colors show motion
away from the viewer. Gray colors represent regions characterized by small movements.
Courtesy of LUMC, Leiden, Netherlands

• frequency domain methods.

1.5.3.1 Differential Techniques

Differential techniques compute the velocity from spatiotemporal derivaties of
the image intensity or filtered versions of the image. Given an image sequence
f(x, y, t) : R2 × R+ → R, where x, y and t represent the spatial and temporal
coordinates respectively, it can be assumed that the pixel brightness does not
change over a small displacement

f(x+ δx, y + δy, t+ δt) = f(x, y, t) (1.1)

where δx, δy, δt are the small displacements in space and time. Expressing the
left hand side part of equation (1.1) in Taylor series, we have

f(x+ δx, y + δy, t+ δt) = f(x, y, t) + ∂f

∂x
δx+ ∂f

∂y
δy + ∂f

∂t
δt+ ε (1.2)

where ε contains sencond and higher order terms in δx, δy and δt. After sub-
stituting equation (1.2) in 1.1 and after simplifications, we obtain the so-called
Optic Flow Constraint Equation (OFCE) [76]

∂f

∂x

δx

δt
+ ∂f

∂y

δy

δt
+ ∂f

∂t
= 0 (1.3)
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where δx
δt = u, δyδt = v denote the velocities in x and y direction. Velocities u and

v are unknown and, since there is only one equation for two unknowns, a unique
solution cannot be found. This leads to the so-called "Aperture Problem", that
is, it is only possible to determine the flow component normal to the image
edge (Figure 1.8). In order to reduce the symbolic notation, further in this
paragraph we use the convention ∂f

∂x = fx, ∂f∂y = fy and ∂f
∂t = ft.

Figure 1.8: Visualisation of the aperture problem. Suppose that the green dot moves to
either one of the red dots on the right. The component normal (dashed blue arrow) to
the edge (left) of the moving object (black line) is the only motion component retrieved.

Differential techniques can be subdivided in 3 main categories further explained
below:

• Variational optic flow techniques.

• Local differential techniques.

• Multi-scale approaches.

According to the literature, differential techniques provide the best performance
in terms of error measurements [27, 28, 181], but are also sensitive to noise due
to the high order of differentiation.

Variational Optic Flow Techniques. If we combine equation (1.3) (data
term) with a homogeneous regularizer (smoothness term), that is, if we impose
a global smoothness, we obtain the Horn and Shunck regularized optic flow
technique [76]

∫

Ω⊂R2

(fxu+ fyv + ft)2 + λ(|∇u|2 + |∇v|2)dxdy (1.4)

where ∇ represents the gradient and λ is a positive weight which reflects the
influence of the smoothness term. Large values of λ lead to a smoother flow
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field. In order to extract the velocity components u and v, equation (1.4) is
minimized using the Euler-Lagrange formalism. The equations are then solved
numerically by iterative solvers. If we take into account the discontinuities in the
image, and we model the regularization term such that we smooth isotropically
at locations where the magnitude of the spatial image gradient is large, we
obtain Alvarez et al. [5].

∫

Ω⊂R2

(fxu+ fyv + ft)2 + λw(|∇f |2)(|∇u|2 + |∇v|2)dxdy (1.5)

where w(|∇f |2) = 1√
1+ |∇f |

2
ε2

is a positive weighting function and ε2 is a param-

eter that controls the penalization of the image gradient magnitude. In 1986
Nagel and Enkelmann [119] proposed an anisotropic image driven regularizer,
where the smoothing occurred only along the component orthogonal to the local
image gradient, to avoid smoothing across discontinuities in the image data:
∫

Ω⊂R2

(fxu+fyv+ft)2+λ((∇u)TDNE(∇f)∇u+(∇v)TDNE(∇f)∇v)dxdy (1.6)

where DNE(∇f) = 1
|∇f |2+2ε2

[
f2
y + ε2 −fxfy
−fxfy f2

x + ε2

]
.

At the end of the nineties Weickert and Schnoerr applied the penalization
directly to the flow field. In [169] they introduced the so-called flow driven
isotropic regularization, where, by reducing the smoothness at the edges of the
flow, velocity contributions at the edges of the flow field were preserved:

∫

Ω⊂R2

(fxu+ fyv + ft)2 + λΨ(s2)(|∇u|2 + |∇v|2)dxdy (1.7)

where Ψ(s2) =
√
s2 + ε2 represents a positive weighting function, where ε2 is a

regularization parameter.

While in (1.7) Ψ(s2) has been applied on the magnitude of the vector field, in
[168] Weickert and Schnoerr propose the so-called flow driven anisotropic reg-
ularization, which takes into account also the direction of the velocity vectors,
by applying Ψ(s2) on the tensor (∇u)(∇u)T + (∇v)(∇v)T .

∫

Ω⊂R2

(fxu+ fyv + ft)2 + λΨ(s2)
(
(∇u)(∇u)T + (∇v)(∇v)T

)
dxdy. (1.8)

The main advantage of these variational global techniques is that they provide
a dense flow field. Variational optic flow techniques have been applied also to
cardiac motion retrieval such as in [18, 68].
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Local differential techniques: Lucas and Kanade method. The Lucas
and Kanade approach is a local differential technique, which solves the aperture
problem by assuming the flow field is constant in a small spatial neighborhood
Ω1 ⊂ R2 [111]. Imposing Ω1 is a window of dimension m×m, velocities u and
v satisfy the equation

AV = −b (1.9)

such that A =




fx1 fy1
fx2 fy2
...

...
fxm2 fym2



, V =

[
ũ
ṽ

]
and b =




ft1
ft2
...

ftm2




where f(x, y, t) : R2×R+ → R is an image sequence where x, y and t represent
the spatial and temporal coordinates respectively.

The system is over-determined and can, for instance, be solved by least squares
methods. A weighting function, such as a Gaussian function, with size W (i, j)
with i, j ∈ {1, ...,m}, can be added in order to provide more prominence to
the central pixel of the window. According to [20], the Lucas and Kanade
approach presents higher robustness in the presence of noise in comparison to
the variational approaches, but fails in flat regions, since the spatial gradient
vanishes.

An application of the Lucas and Kanade approach to cardiac imaging has been
provided by [100].

Multi-scale Methods. The scale space representation L of an image f(x, y, t),
with x, y and t spatial and temporal coordinates respectively, is given by the
convolution between the input image sequence f(x, y, t) and the spatiotemporal
Gaussian kernel

φ(x, y, t, σ, τ) = 1
2πσ2

√
2πτ2

e−
1
2 (x

2+y2
σ2 + t2

τ2 ).

Hence
L(x, y, t, σ, τ) = f(x, y, t) ∗ φ(x, y, t, σ, τ). (1.10)

where σ > 0 and τ > 0 denote the isotropic spatial and temporal scales respec-
tively.

A generalization of (1.3) in the multi-scale framework has been proposed by
Florack et al. [57] and Niessen et al. [122, 123]. The optic flow scheme makes use
of a local polynomial expansion of the flow field (at each point) up to a certain
order. For expansion up to the first order, the two components of the velocity
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field are U(x, y, t) = u + uxx + uyy + utt and V (x, y, t) = v + vxx + vyy + vtt.
Therefore (1.3) becomes

AV = −a (1.11)

where

A =


Lx Ly Lxtτ2 Lytτ2 Lxxσ2 Lxyσ2 Lxyσ2 Lyyσ2

Lxt Lyt Lx+Lxttτ2 Ly+Lyttτ2 Lxxtσ2 Lxytσ2 Lxytσ2 Lyytσ2

Lxx Lxy Lxxtτ2 Lxytτ2 Lx+Lxxxσ2 Ly+Lxxyσ2 Lxxyσ2 Lxyyσ2

Lxy Lyy Lxytτ2 Lyytτ2 Lxxyσ2 Lxyyσ2 Lxσ2+Lxyyσ2 Lyσ2+Lyyyσ2




V = (u, v, ut, vt, ux, vx, uy, vy)T , a = (Lt, Ltt, Lxt, Lyt)T .

The system presents 4 equations and 8 unknowns and can be solved by adding
4 extra equations, as is done in [57, 122] by incorporating an extra constraint,
such as normal flow.

Recently the multi-scale optic flow equation has been extended to applications
on cardiac phase images extracted from tagged MRI [163, 59]. In this case
the aperture problem was solved by applying (1.11) to two orthogonal mea-
surements of the same moving tissue. Namely (1.11) has been applied to a
sequence representing the tissue with vertical MR tags and to a sequence repre-
senting the tissue with horizontal MR tags, previously transformed into phase
images.

This boils down to the following system of equations

BV = −b (1.12)

where B =
[
Aht
Avt

]
and b =

[
aht
avt

]
, where the acronyms ht and vt refer to the

sequence with horizontal and vertical tags. This system presents 8 equations
and 8 unknowns and can be solved uniquely.

A particular subclass of the multi-scale optic flow techniques are the varia-
tional multi-scale feature point based methodologies. In such approaches the
motion field is measured by minimizing an energy functional, where the data
term consists of velocity vectors extracted from a sparse set of so-called anchor
points [165, 84, 55, 21, 22]. Anchor points are singular points of Gaussian scale
space, such as extrema and saddles, for which the gradient vanishes. Critical
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points move through critical paths and the creation or annihilation of the point
generates so-called top points [131, 17, 85, 82]. Cardiac motion estimation
based on multi-scale feature points is also one of the key subjects of this thesis.
This methodology will be extensively explored in the remaining chapters of this
manuscript.

1.5.3.2 Region Based Matching Techniques

Another class of optic flow techniques is region matching. The velocity is defined
as the shift d = (dx, dy) between regions of subsequent images that minimize a
distance measure in order to find the best match. A commonly used distance
measure is the sum of squared differences (SSD). Given an input image sequence
f(x, y, t), SSD is calculated as

SSD(x, y, dx, dy) =
n∑

j=−n

n∑

i=−n
W (i, j)× [f(x+ i, y + j)− f(x+ dx + i, y + dy + j)]2 (1.13)

where W is a 2-D window function and d = (dx, dy) indicates the displacement
vector in integer values. In [142, 143] Singh investigates SSD values computed
from three adjacent band-pass filtered images in order to average temporal error
in the SSD. Then, a Laplacian pyramid is employed to give a more symmetric
distribution of the displacement estimated with the SSD. The estimates are
finally plugged into a covariance matrix, whose eigenvalues produce a measure
of confidence about the estimations. These approaches provide robustness with
respect to numerical differentiation, noise and small number of frames, but show
also less accurate velocity estimation in comparison with differential techniques,
due to a weak ability of SSD to estimate subpixel displacements [20]. In cardiac
motion estimation region matching techniques are especially used for ultrasound
speckle tracking [24, 105].

1.5.3.3 Frequency Based Techniques

In frequency based techniques, velocity extraction is carried out in the Fourier
domain. The Fourier transform of a uniformly translating 2-D pattern f(x, y, t)
is:

f̂(k, ω) = f̂0(k)δ(ω + vTk) (1.14)

where f̂0(k) is the Fourier transform of f(x, y, 0), δ(k) is a Dirac delta function,
ω is the temporal frequency, k = (kx, ky) is the spatial frequency and v = (û, v̂)
are the components of the velocity in the frequency domain. Equation (1.14)
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does not vanish in the so-called motion plane [129]. This plane passes though
the origin of the frequency domain and therefore

ω + vTk = 0. (1.15)

Equation (1.15) represents the (OFCE) in the Fourier domain. In order to find
a solution Heeger [75] expresses the expected velocity components in terms of
energy, using Gabor filters. Then he applies a least square fit to minimize the
difference between the predicted and measured motion energies.

Frequency-based methods are in general more robust to noise with respect to
differential methods. Frequency techniques, however, are sensitive to temporal
aliasing and present high computational cost since they involve a large number
of filters. An example of cardiac motion estimation using frequency based
techniques has been discussed in [32].

1.6 Thesis Outline

The outline of this thesis is as follows.

Chapter 2 discusses a new scale space feature based optic flow method with
a regularization term described in terms of the so-called covariant derivatives.
This regularization term takes into account prior notion of the velocity field,
which is employed to influences the final motion field reconstruction. Experi-
ments on an artificial phantom for which the ground truth is known and com-
parison with similar techniques, where prior knowledge of the vector field was
not used, emphasize the high improvements in the accuracy of the reconstructed
vector field provided by the new method.

Chapter 3 extensively illustrates the framework behind the new regularizer
based on covariant derivatives. The chapter tackles also another issue: the heart
movement can be described in terms of contractions and rotations. Therefore,
the regularizer is also combined with the so-called Helmholtz decomposition.
This is a decomposition of a vector field in its divergence-free and rotation-free
components. Following this assumption, the vector field extraction will be car-
ried out by first reconstructing the dense divergence-free and rotation-free parts
from the extraction in a sparse set of points separately, and then combining the
two components into the final vector field. This has the advantage to allow a
separate tuning in reconstructing the two components. Experiments and com-
parisons with methods where the decomposition is not employed will show an
increase in performance for the newly proposed approach.

In chapter 4 the new optic flow methodology will be applied on datasets of
a group of volunteers and a patient. Helmholtz decomposition gives informa-
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tion of the rotating and contracting contributions to the cardiac motion in
each phase of the cardiac cycle. Quantification of such contributions will be
expressed in parameters such as kinetic energy. Local measurements suggest
that regions with a "sudden" local kinetic energy minimum can be related to
infarcted area. Therefore such measurements may be crucial additions to the
toolbox of physicians in their usual practice.

Chapter 5 provides a comparison of the performance of the proposed optic flow
method and the performance of other widely used cardiac motion estimation
methods in the literature such as [76, 111, 163]. Assessment on a phantom with
a known ground truth shows that the proposed optic flow algorithm provides
the most accurate velocity field estimations.

In chapter 6 a reformulation of the so-called winding number - a topological
number - for 3-dimensional critical point extraction will be proposed. In this ap-
proach the simplification of the mathematics and the implementation involved
with respect to previous work [150] will be presented. Tests on a variety of ap-
plications such as ovarian follicle and neuronal cell counting, and 3-dimensional
cardiac motion estimation of a tagged MRI sequence have been provided.

Chapter 7 illustrates the application on 3-dimensional tagged MRI of a scale
space feature optic flow method with regularized standard derivatives. This ap-
proach successfully estimates expansions, contractions, twistings and through
plane velocity components of the cardiac motion. These velocity fields provide
more information on heart behaviour in comparison to motion fields extracted
by 2-dimensional approaches, since in this latest case the through-plane com-
ponent is not estimated.

In chapter 8 the work concludes with a discussion of future directions opened
by the proposed methods.



I can calculate the motion of heavenly bodies, but
not the madness of people.

Isaac Newton
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Chapter 2. Extraction of cardiac motion using scale-space feature points and

gauged reconstruction

Abstract
Motion estimation is an important topic in medical image analysis. The in-
vestigation and quantification of, e.g., the cardiac movement is important for
assessment of cardiac abnormalities and to get an indication of response to
therapy. In this chapter we present a new aperture problem-free method to
track cardiac motion from 2-dimensional MR tagged images and corresponding
sine-phase images. Tracking is achieved by following the movement of scale-
space critical points such as maxima, minima and saddles. Reconstruction of
the dense velocity field is carried out by minimizing an energy functional with
a regularization term influenced by covariant derivatives.

As MR tags deform along with the tissue, a combination of MR tagged images
and sine-phase images was employed to produce a regular grid from which the
scale-space critical points were retrieved. Experiments were carried out on
real image data, and on artificial phantom data from which the ground truth
is known. A comparison between our new method and a similar technique
based on homogeneous diffusion regularization and standard derivatives shows
a notable increase in performance. Qualitative and quantitative evaluation
emphasize the reliability of the dense motion field allowing further analysis of
deformation and torsion of the cardiac wall.

2.1 Introduction

Among the available techniques, optic flow of tagged MR acquisitions is a non-
invasive method that can be employed to retrieve cardiac movement. Optic
flow provides information about the displacement field between two consecutive
frames, that is, it measures the apparent motion of moving patterns in image
sequences. In several optic flow methods it is assumed that brightness does not
change along the displacement field and the motion is estimated by solving the
so-called Optic Flow Constraint Equation (OFCE):

Lxu+ Lyv + Lt = 0 (2.1)

where L(x, y, t) : R3 → R is an image sequence, Lx, Ly, Lt are the spatiotempo-
ral derivatives, u(x, y, t), v(x, y, t) : R3 → R are unknown and to be established,
sought velocity vectors and x, y and t are the spatial and temporal coordinates
respectively. Equation (2.1) is ill-posed since its solution is not unique, due to
the two unknown velocities u and v. This has been referred to as the "aperture
problem". In order to overcome the problem, Horn and Schunck [76] intro-
duced a gradient constraint in the global smoothness term, finding the solution
by minimizing an energy functional. Lately results were impressively improved
by Bruhn et al. [28], who combined the robustness of local methods with the
full density of global techniques using a multigrid approach.
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Motion estimation has also been performed by means of feature tracking. Thyrion
[154] investigated a technique where the brightness is preserved and the features
are driven to the most likely positions by forces. Cheng and Li [36] explored
optic flow methods where features are extracted taking into account scatter of
brightness, edge acquisition and features orientation. A multi-scale approach to
equation (2.1) has been first proposed by Florack et al. [57] and an extension to
the technique and an application to cardiac MR images has been investigated
by Van Assen et al. and Florack and Van Assen [163, 59]. In this chapter
we estimate the 2-dimensional cardiac wall motion by employing an optic flow
method based on features points such as maxima, minima and saddles. The
features have been calculated in the robust scale-space framework, which is in-
spired by findings from the human visual system. Moreover, our technique does
not suffer from the aperture problem and is also not dependent on the constant
brightness assumption, since we assume that critical points retrieved at tag
crossings, such as from the grid pattern described in section 2.2, still remain
critical points after a displacement, even in the presence of fading. Therefore,
the algorithm can be robustly applied on image sequences, such as the tagged
MR images, where the intensity constancy is not preserved. The reconstruction
of the velocity field has been carried out by variational methods and the reg-
ularization component is described in terms of covariant derivatives influenced
by vector fields acquired previously. In this work we add vector field informa-
tion from previous frames, which allows a better velocity field reconstruction
with respect to the one provided by similar techniques which employ standard
derivatives. Tests have been carried out on phantom image sequences with a
known ground truth and real images from a volunteer. The outcomes empha-
size the reliability of the vector field. In section 2.2 the image data-set and the
preprocessing approach used in the experiments is presented. In section 2.3 the
multi-scale framework and the topological number, introduced as a convenient
technique for extracting multi-scale features, are explored. In section 2.4 and
2.5, we present the calculation of a sparse velocity vector field and the dense
flow’s reconstruction technique. Finally, in section 2.6 and 2.7 the evaluation,
the results and the future directions are discussed.

2.2 Image data-set and preprocessing approach

Tagging is a method for noninvasive assessment of myocardial motion. An arti-
ficial brightness pattern, represented as dark stripes, is superimposed on images
by spatially modulating magnetization with the aim to improve the visualiza-
tion and quantification of intramyocardial motion [179] (Figure 2.1 column 1).
In 1999 Osman et al. [126] introduced the so-called HARmonic Phase (HARP)
technique which overcomes the fading problem by taking into account the spa-
tial information from the inverse Fourier transform of the filtered images. Our
experiments have been carried out by employing a similar technique based on
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Gabor filters [64]. After acquisition of two tagged image series with mutu-
ally perpendicular tag lines (Figure 2.1 column 1), the first harmonic peak has
been retained using a band-pass filter in the Fourier domain and the inverse
Fourier transform has been applied to the resulting image spectrum. The fil-
tered images present a saw tooth pattern, whose phase varies from 0 to 2π. In
the experiments a sine function has been applied to the phase images to avoid
spatial discontinuities due to the saw tooth pattern (Figure 2.1 column 2). A
combination of sine phase frames generate a grid from which the critical feature
points (maxima, minima, saddles) have been extracted (Figure 2.1 column 3).

Figure 2.1: Column 1: Short axis view of a volunteer’s left ventricle. Column 2.
The tagged MR images have been filtered in the Fourier domain. Successively inverse
Fourier transform and sine function have been applied. Column 3. Image obtained by
combination of sine-phase images. The image provides a new pattern from which the
feature points have been retrieved.

2.3 Extraction of scale-space critical points

In the real world, objects are processed by the visual system at different scale
levels. Given a static 2-dimensional image f(x, y) ∈ L2(R2), its scale space
representation L(x, y; s) ∈ L2(R2×R+) is generated by the spatial convolution
with a Gaussian kernel φ(x, y; s) = 1

4πs exp(−x2+y2

4s ) such that

L(x, y; s) = (f ∗ φ)(x, y; s) (2.2)

where x and y are the spatial coordinates, and s ∈ R+ denotes the scale.
Equation (2.2) generates a family of blurred versions of the image, where the
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degree of blurring is determined by the scale [94, 151, 54].

Singularities (critical points) induced by the MR tagging pattern are interesting
candidates for structural descriptions. Detection and classification of critical
points can be performed in an efficient way by the computation of the so-called
topological number [146, 89, 90]. We examine a point P in image L and its
neighborhood NP . Suppose that NP does not have any other critical points
with exception of the point P itself, and suppose ∂NP is the boundary of NP ,
which is a D − 1 dimensional oriented closed hypersurface. Since there are no
critical points at ∂NP , the normalized gradient of the image L on ∂NP is defined
component-wise as: ξi = Li√

LiLj
with Li = ∂iL and i = (1, ...D) (summation

convention applies. Here we have D = 2). For a non-singular point we may
define the D − 1 dimensional form

Φ = ξi1dξi2 ∧ ... ∧ ξiDεi1,...,iD (2.3)

where the symbol ∧ represents the wedge product and εi1,...,iD is the permuta-
tion tensor of order D such that

εi1,...,il...ik,...,iD =





+1 if i1, ..., il...ik, ..., iD is an even permutation
−1 if i1, ..., il...ik, ..., iD is an odd permutation
0 if any two labels are the same.

In 3D the permutation tensor is

εi1,i2,i3 =





+1 if {i1, i2, i3}, {i3, i1, i2}, {i2, i3, i1}
−1 if {i1, i3, i2}, {i3, i2, i1}, {i2, i1, i3}
0 otherwise: i1 = i2 or i2 = i3 or i3 = i1.

Making the substitution of ξi in Φ we obtain:

Φ = Li1dLi2 ∧ ... ∧ LiDεi1,...,iD
(LjLj)D/2

(2.4)

The topological number can then be defined as

ν∂NP = 1
AD

∮

x∈∂NP
Φ(x) (2.5)
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where AD represents the area enclosed by ∂NP . In 2-dimensional images the
topological point is referred as the winding number and represents the inte-
grated change of angle of the gradient vector when traversing any closed curve in
a plane around a point. In two dimensions, equation (2.3) and (2.5) can be rep-
resented in a convenient way using complex numbers. Given the complex couple
of coordinates z = x+iy and the complex conjugate z = x−iy, the gradient vec-
tor field of the image L(z, z) can be expressed asW = (Lx+iLy)/2 ≡ ∂zL(z; z).
Hence, expression (2.3) can be written as

Φ = ξxdξy − ξydξx = LxdLy − LydLx
LxLx + LyLy

=

ImLx − iLyd(Lx + iLy)
LxLx + LyLy

= Im(dW
W

) = Im(d lnW )
(2.6)

where lnW = ln |W | +i argW . Φ can, therefore, be read as the angle change
of the gradient field.

The winding number is always an integer multiple of 2π and its value pro-
vides information of the detected critical point. The winding number is zero
for regular points, it is +2π for extrema, and −2π for saddle points, −4π (and
higher) for monkey saddles (and more complex saddles). Finally, winding num-
bers superimpose; when more singular points are inside the closed path, they
add to a new number. In chapter 6 we discuss theory and applications for the
3-dimensional winding number.

2.4 Sparse feature point velocity estimation

MR tags have the property to move along with the moving tissue, critical points
are located on and between the tag’s crossings and therefore also move along
with tissue. At a critical point’s position the image gradient vanishes. Tag
fading, which is a typical artifact in MR images, leaves this property intact,
hence critical points satisfy equation (2.7) over time

∇L(x(t), y(t), t) = 0 (2.7)

where ∇ represents the spatial gradient and L(x(t), y(t), t) denotes intensity at
position x, y and time t. If we differentiate equation (2.7) with respect to time
t and apply the chain rule for implicit functions, we obtain

d

dt
[∇L(x(t), y(t), t)] =

[
Lxxui + Lxyvi + Lxt
Lyxui + Lyyvi + Lyt

]
= 0 (2.8)

where d
dt is the total time derivative, and where we have dropped space-time

arguments on the right hand side in favor of readability. Equation (2.8) can
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Figure 2.2: Gradient vector fields and winding number (ν) path. Row 1: left image,
maximum (ν = 2π), right image, minimum (ν = 2π). Row 2: left image, saddle
(ν = −2π), right image, regular point (ν = 0). Plots adopted from [151].

also be written as: [
ui
vi

]
= −HL−1∂∇LT

∂t
(2.9)

where H represents the Hessian matrix of L(x(t), y(t), t) and T indicates trans-
pose. Equation (2.9) provides the velocity field at critical point positions. The
scalars ui, vi represent the horizontal and vertical components of a sparse ve-
locity vector at position xi and yi, with i = 1...N where N denotes the amount
of critical points.

2.5 Reconstruction of the dense velocity field

We aim to reconstruct a dense motion field that provides the most accurate
approximation of the true velocity field making use of sparse velocities calcu-
lated by equation (2.9). In literature, examples of velocity field reconstruction
as well as image reconstruction techniques based on features can be found in
[55, 84, 85, 106]. Given the horizontal and vertical components of the true
dense velocity field utf and vtf , we extract a set of velocity features at scale
si, such that ui = (φi, utf ) and vi = (φi, vtf ), where (., .)L2 denotes the L2 in-
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ner product, φi is the Gaussian kernel φi(xi, yi; si) = 1
4πs exp(− (x−xi)2+(y−yi)2

4s ).
We look for the scalar functions U and V such that (φi, U)L2 ≈ (φi, utf )L2 and
(φi, V )L2 ≈ (φi, vtf )L2 , and minimize the energy functional

E(U, V ) =
N∑

i=1
αi((φi, U)L2 − ui)2 + αi((φi, V )L2 − vi)2+

λ

2

∫

R2

‖∇U‖2 + ‖∇V ‖2dxdy
(2.10)

where αi ∈ R+ is a weighting factor for each feature and the parameter λ ∈ R+

controls the quality of the approximation. As λ increases, the smoothness de-
gree in the vector field increases, reducing the influence of the sparse velocity
vectors. The minimization of equation (2.10) is carried out by solving the cor-
responding Euler-Lagrange equations [49]. In equation (2.10) we have chosen
a weighting factor αi ∈ R+, such that, αi(ci, β) = 1 − exp( −β

(ci−1)2 ). The jus-
tification for αi is as follows: the weighting factor α ranges from 0 to 1 and
depends on an arbitrary parameter β ∈ R+ and on ci, the condition number of
the Hessian matrix in equation (2.9). The condition number of a matrix M is
defined as c(M) = ‖M−1‖ · ‖M‖ [125]. Its value varies from 1 to infinity and
gives an indication of the sensitivity of a matrix to numerical operations. In
case of a high condition number, the solution of equation (2.9) is less accurate
and the retrieved velocities are weighted by a small α.

In the next step the velocity field reconstruction is influenced by a certain vector
field h ∈ R2, called gauge field, with components h = {Uh, Vh}, called gauge
functions. In equation (2.10) the gradient of the regularization term is replaced
by the so-called covariant derivatives. In this work the covariant derivatives of
scalar functions U and V biased by scalar functions Uh and Vh are defined as

DUhU = ∂xiU −
∂xiUh
Uh

U

DVhV = ∂xiV −
∂xiVh
Vh

V

(2.11)

where ∂xi indicates the derivative operator with respect to coordinates {x1, x2} =
{x, y}. Equation (2.10) can now be written in terms of covariant derivatives,
hence

E(U, V ) =
N∑

i=1
αi((φi, U)L2 − ui)2 + αi((φi, V )L2 − vi)2+

λ

2

∫

R2

‖DUhU‖2 + ‖DVhV ‖2dxdy.
(2.12)

In equation (2.10) the regularization term selects U and V from all possible ap-
proximations to the solution such that they are as smooth as possible (gradient



2.6. Evaluation 31

is minimized). In the regularization term of equation (2.12), scalar functions
Uh and Vh are used to tune the covariant derivatives, therefore deviations from
Uh and Vh are penalized. This means, that in case the vector field h is similar
to what we are expecting, the regularization term will take into account this
information, and therefore this may positively influence the reconstruction of U
and V . A detailed description of the method for image reconstruction is given
in [83].

In the evaluation, we first compute the motion field using equation (2.10) and
we use the vector field at frame j as the vector field h. The vector field h is
then applied to equation (2.12), with the aim to influences the reconstruction
of vector field at frame j + 1. In the same way, the vector field at frame j + 1
computed by equation (2.12) is used as vector field h and provides the infor-
mation to construct the velocity field at frame j + 2. The process is performed
for all frames in the sequence.

2.6 Evaluation

We compare the performance of our optic flow algorithm with the reconstruc-
tion technique based on covariant derivatives as described in section 2.5 with
a similar method based on conventional derivatives. The accuracy of the re-
trieved vector fields has been assessed by analyzing a contracting and expanding
artificial phantom of 19 frames and resolution of 99 × 99 pixels. The artificial
phantom presents a pattern similar to Figure 2.1 column 3 and deforms ac-
cording to the analytic function a(x, y, t) = { (x−l)(m−2n·t)

(l+(m−n·t)t) ,
(y−l)(m−2n·t)
(l+(m−n·t)t) }, which

provides also the vector field’s ground truth. The variables x, y, t represent the
spatial and temporal coordinates, whereas l,m, n are constant parameters set
to 50, 5, and 0.25 respectively. The retrieved vector field and the true vector
field of frame 6 are displayed in Figure 2.3, column 1 and 2 respectively. In the
tests we have employed feature points such as maxima, minima and saddles at
4 spatial scales σ = {1, 1.3, 1.6, 2.} and time scale 1. In order to reduce the
influence of velocity outliers during the reconstruction process, sparse velocity
vectors extracted using equation (2.9) have been weighted by employing the
weighting function α(c, β) dependent on the condition number c and parameter
β, which we set to 50. Figure 2.4, column 1 and 2 illustrate the effects of the
weighting function on frame 5 of the real sequence. Moreover, the smoothing
parameter λ has been optimized for equation (2.10) and (2.12). Best perfor-
mance has been achieved with λ = 10−2 and λ = 10−0.5 respectively. In order
to avoid outlier vectors at the boundaries, the two reconstruction methods have
been assessed from frame 5 to frame 9, and 10 pixels distant from the bound-
aries. The test evaluation has been conducted by comparing the extracted flow
field with the corresponding ground truth, whereas the accuracy in the results
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has been described in terms of the so-called Angular Error [20]. The outcomes,
illustrated in Table 2.1, emphasize an increase in performance for our optic flow
algorithm with reconstruction technique based on covariant derivatives. More-
over, once we reconstruct the vector field for all image sequences using equation
(2.12), we can employ this new motion field as gauge fields and apply equation
(2.12) again. Outcomes of this process have shown further improvements in the
accuracy for our tests. This procedure can be carried out iteratively.

We have also applied our optic flow method on a real sequence of 11 tagged MR
images with a resolution of 86× 86 pixels, which depicts the left ventricle of a
volunteer in the phase of contraction. The filtered vector fields on sine HARP
frame 5, 6, 7, and 8 are displayed in Figure 2.5. The plots are color encoded,
where the color gives information of the vector direction.

Feature Maxima Minima Saddles
AAE Std AAE Std AAE Std

Conventional Derivatives 2.35◦ 1.72◦ 3.15◦ 1.47◦ 1.54◦ 2.06◦
Covariant Derivatives 1.90◦ 2.11◦ 1.55◦ 1.00◦ 1.34◦ 1.12◦

Covariant Derivatives 1 Iterations 1.88◦ 1.07◦ 1.53◦ 1.00◦ 1.33◦ 1.12◦

Table 2.1: Performance of the vector field reconstruction methods based on conven-
tional derivatives and covariant derivatives. The methods have been tested on an
artificial contracting phantom using maxima, minima and saddles as feature points at
spatial scales σ = {1, 1.3, 1.6, 2.} and time scale 1. The accuracy of the method has
been described in terms of average angular error (AAE) and standard deviation (Std)
both expressed in degrees. Best performance has been achieved by the employment
of covariant derivatives after 1 iteration with AAE = {1.88◦, 1.53◦, 1.33◦} for max-
ima, minima and saddles respectively. The error measurements are averaged over the
investigated 4 frames.

Figure 2.3: Vector Fields. Plots depict the vector field of frame 6 extracted from our
artificial phantom (left) and the respective ground truth (right).
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Figure 2.4: Motion field of frame 5 retrieved from real data before and after the weight-
ing procedure, where outliers have been penalized using the outcome coming from the
condition number of the Hessian matrix of equation 2.9.

Figure 2.5: Motion fields of frames 5, 6, 7 and 8, extracted from sequence of sine
HARP images of real data. The direction of the velocity vectors is color-encoded, that
is, regions in the motion field with the same color show vectors that are pointing in
the same direction.

2.7 Conclusion

We analyze cardiac motion by employing a new optic flow feature based method
with regularization term described by covariant derivatives influenced by a
gauge field. We have tested the technique on an artificial contracting and
expanding phantom of which we know the ground truth, using maxima, min-
ima and saddles as feature points. Outcomes of the comparison with a similar
approach, based on conventional derivatives, emphasize high improvements in
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the accuracy reconstruction provided by our new method. The average angu-
lar error of motion fields reconstructed using maxima, minima and saddle as
feature points decreased of 19.1% , 50.7% and 13% respectively.

We have also shown that further improvements in the accuracy are achieved,
in case the method is repeated one second time with a gauge field based on
the vector field calculated using covariant derivatives. In this case the average
angular error decreased of 1%, 1.3% and 0.74% respectively for motion field
estimation using maxima, minima and saddles.

We have applied moreover the technique to a real tagged MR image sequence
displaying a heart in phase of contraction. Qualitative results highlight the
reliability of the extracted vector field. Finally, in a test evaluation we calculate
velocity fields at fixed scales, where the most suitable scale is chosen according
to the performance with respect to the ground truth. However, deformations
of the cardiac walls differ in different regions, therefore features belonging to
two different regions may present the best performance at different scales. In
the next chapter we take into account this issue by introducing a new scale
selection method based on drift velocities. We provide furthermore an extensive
theoretical explanation of the regularization approach and we study the motion
field by decomposing it in its rotation free and divergence free components.



Vision is the art of seeing what is invisible to
others.

Jonathan Swift, poet

3Feature based cardiac motion estimation using
covariant derivatives and Helmholtz decomposition

This chapter is adapted from:
Becciu A., Duits R., Janssen B.J., Florack L.M.J., ter Haar Romenij B.M.
and van Assen, H.C. Feature based optic flow estimation using covariant
derivatives and Helmholtz decomposition: Application to cardiac tagged
MRI sequences. To be submitted to the international journal IEEE Trans-
actions on Medical Imaging.

Duits, R., Becciu, A., Janssen, B.J, Florack, L.M.J., Assen, H.C. van, Haar
Romenij, B.M. ter. Cardiac motion estimation using covariant derivatives
and Helmholtz decomposition. CASA Report No. 10-31, Eindhoven: Tech-
nische Universiteit Eindhoven, 40 pp.(2010)
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Note This work was carried out in close cooperation with Dr Remco Duits. The
idea of combining the covariant derivatives with the Helmholtz decomposition
for vector fields is of both authors. The theory was developed by Remco Duits.
The author of this thesis adapted the algorithms for applications on cardiac
motion estimation and carried out all the numerical experiments.

Abstract
The investigation and quantification of cardiac movement is important for
the assessment of cardiac abnormalities and treatment effectiveness. There-
fore we consider a new aperture-problem-free method to track cardiac motion
from 2-dimensional MR tagged images and corresponding sine-phase images.
Tracking is achieved by following the movement of scale-space maxima, yield-
ing a sparse sampling of the unknown dense optic flow vector field. Interpo-
lation/reconstruction of the velocity field is then carried out by minimizing
an energy functional expressed in covariant derivatives (rather than standard
derivatives). These covariant derivatives are used to express prior knowledge
about the velocity field in the variational framework employed. Furthermore,
the optic flow vector field is decomposed in a divergence-free and a rotation-free
part, using our multi-scale Helmholtz decomposition algorithm. Finally, this
multi-scale Helmholtz decomposition is combined with vector field reconstruc-
tion (based on covariant derivatives) in a single algorithm and present some
experiments of cardiac motion estimation are presented.

Further experiments on phantom data with ground truth show that both the in-
clusion of covariant derivatives and of the multi-scale Helmholtz decomposition
improve markedly the optic flow reconstruction.

3.1 Introduction

In cardiology literature [51] it has been noted that variation in movement of the
cardiac wall may provide a quantitative indication of the health of the cardiac
muscle. Cardiac motion extraction is therefore an important area of research.
Monitoring and quantification of irregular cardiac wall motion may help in early
diagnosis of cardiac abnormalities such as ischemia, area of tissue suffering from
obstruction of blood circulation, as well as in providing information about the
effectiveness of treatment. In order to characterize the contracting behavior of
the cardiac muscle, non-invasive acquisition techniques such as MR tagging can
been applied. This methodology allows to locally imprint brightness patterns
in the muscle, which deform according to the cardiac muscle and aid to retrieve
motion within the heart walls.

At the beginning of the eighties Horn and Schunck introduced a mathematical
formulation of optic flow assuming that intensities associated to image objects
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did not change along the sequence, [76]. This formulation has been referred to
as the Optic Flow Constraint Equation (OFCE):

fxu+ fyv + ft = 0 (3.1)

where (x, y, t) → f(x, y, t) : R2 × R+ → R is an image sequence, fx, fy, ft are
the spatial and temporal derivatives; v(·, t) is a vector field on R2 given by
v(x, y, t) = (u(x, y, t), v(x, y, t))T , where u and v are unknown and x, y and
t are the spatial and temporal coordinates respectively. Since scalar-valued
functions u and v are unknown, equation (3.1) does not generate a unique
solution, caused by the so-called "aperture problem" and therefore Horn and
Schunck added a homogeneous smoothness constraint based on the gradient
magnitude to a data term, equation (3.1), and minimized the energy functional
using a variational approach [76]. A similar scheme has been employed in more
recent and sophisticated techniques by Bruhn et al. [28] and Zimmer et al.
[181], who used an anisotropic smoothness term and carried out tests on the
Yosemite sequence [133] and Middlebury benchmark [175] outperforming the
results of most of the current optic flow methods. A multi-scale extension of
equation (3.1) has been investigated by Florack et al.[57] and has adopted for
cardiac MR images in [59, 122, 147, 163].

Extraction of object displacements has been studied also by means of feature
tracking. Thirion [154] has investigated a technique, in which the brightness
is preserved and the features are driven to the most likely positions by forces.
Janssen et al. and Van Dorst et al. [165, 84] propose multi-scale feature based
optic flow methods, where the reconstruction of the dense flow field is obtained
from a sparse set of velocities associated to multi-scale anchor points. These
last methods, however, are rather general and are not tuned for applications on
cardiac motion estimation.

In this chapter the properties of the velocity field generated by rotation and
compressibility of the cardiac tissue are taken into account are used during the
evaluation of the motion field. This will lead to an improvement of the final
result.

Local rotation and contraction of the cardiac muscle can be calculated by in-
vestigating the divergence-free and rotation-free parts resulting from the well-
known Helmholtz decomposition [10, 167]. This allows to estimate the motion
field for the two separate components and to optimize separately the parameters
involved in the motion estimation algorithm.

Exploring this decomposition may also play a fundamental role in the clini-
cal diagnosis procedure, since it reveals the essential components of the heart
movement. Therefore, for applications such as cardiac motion extraction, blood
flow calculation and fluid motion analysis information of these properties may
be more suitable. Examples of such optic flow methods have been provided by
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[39, 69, 95, 178].

In this work we extract 2-dimensional cardiac wall motion by employing an
optic flow method based on feature points: maxima. The dense flow field is
reconstructed by employing variational methods; in the smoothness term infor-
mation obtained by our multi-scale Helmholtz decomposition is included and
the regularization components are described in terms of covariant derivatives
biased by a gauge field. Advantages of this approach are significant:

(i) This method does not suffer from the aperture problem.

(ii) The features are not dependent on constant brightness, since critical
points such as maxima will retain their characterization even after oc-
currence of fading in the image. Therefore, the algorithm can be robustly
applied on image sequences (like tagged MR images) in which the inten-
sity constancy is not preserved.

(iii) The proposed technique takes into account the contraction and rotation
of the heart muscle by means of a multi-scale Helmholtz decomposition.

(iv) The algorithm benefits from the advantages provided by a multi-scale
approach:

– An adaptive scale selection scheme for the feature points has been
introduced in this chapter.

– In our multi-scale approach we analytically pre-compute the con-
catenation of the linear diffusion operator combined with Helmholtz
decomposition in order to avoid grid artifacts.

(v) Finally a new regularization component described in terms of covariant
derivatives is investigated. The regularization term includes information
from a so-called gauge field and allows a better flow field reconstruction
with respect to the one provided by similar techniques, which use standard
derivatives [21] instead. For a different optic flow approach where pre-
knowledge in the regularization term is included we refer to Nir et al.
[124].

The algorithm performance is assessed with two phantoms of which the ground
truth is known and tests have been carried out with real data obtained from
a patient with myocardial infarcts and a healthy volunteer. Tests on the two
phantoms reveal that the proposed optic flow approach improves the motion
field reconstruction by roughly 20% with respect to similar methods that do
not include the covariant derivatives and multi-scale Helmholtz decomposition
in the smoothness term of the energy functional.
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Figure 3.1: Overview of the algorithm. The box on the right shows how the Helmholtz
decomposition and covariant derivatives are applied in the dense motion field recon-
struction.

Outline of algorithm and chapter

An overview of the proposed algorithm is provided in Figure 3.1 and every
step is described as follows. In section 3.2 the preprocessing steps needed to
convert raw data into phase images are illustrated. In section 3.3, the scale-
space framework is defined and the winding number is used as a tool to extract
critical points in scale-space. Moreover, in this section a technique for the
refinement of the position of the retrieved feature points up to sub-pixel location
is discussed. Section 3.4 describes a methodology used to calculate velocity
features and a scale selection scheme. Section 3.5 is dedicated to the multi-
scale Helmholtz decomposition of vector fields. In sections 3.6, 3.7 the concept
of covariant derivatives is introduced and the mathematical formulation of the
proposed optic flow method is provided. Finally in section 3.8 and 3.9 the
outcomes of the experiments carried out are presented and discussed.

3.2 Image data set and preprocessing

As already discussed in section 2.2, tagging is a noninvasive technique based on
locally perturbing the magnetization of the cardiac tissue via radio frequency
impulses. MR tags are artificial patterns, represented as a sinusoidal pattern
on the MR images with the aim to improve the visualization of the deformation
of tissue [179]. An example of a tagged heart image is displayed in Figure
3.2, column 1. In order to increase the number of tags in the image, Axel
and Dougherty [14] spatially modulated the degree of magnetization in the
cardiac tissue, whereas Osman et al. [126] proposed the so-called harmonic
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phase (HARP) method, which converts MR images to phase images. In our
experiments we apply a similar technique and we extract phase images by means
of Gabor filters [64]. Such images allow to extract feature points such as maxima
minima and saddles with high accuracy. A sine function has been applied for
smoothing purposes to the calculated phase images with horizontal and vertical
stripes. Later, these images have been combined in order to create a chessboard-
like grid from which critical points have been retrieved (see Figure 3.2).

Figure 3.2: Column 1: Short axis views of a patient’s left ventricle. Column 2. Sine-
phase images. Column 3. Sum of sine-phase images. This sum of sine phase images
serves as input in our algorithms and will be denoted by f(x, t) where x = (x, y) ∈ R2

denotes position and t > 0 denotes time. Images are 86 × 86 pixels with pixel size of
1.2× 1.2 mm2.

3.3 Extraction of critical points in scale space

Our visual system observes (objects in ) an image simultaneously at multiple
scales. The scale space theory allows to mimic this behavior. The Gaussian
scale space representation I : R2 × R+ of a 2-dimensional static image x 7→
f(x) ∈ L2(R2) is defined by the spatial convolution with a Gaussian kernel

I(x, s) = (f ∗ φs)(x) ,

with φs(x) = 1
4πs exp(−‖x‖

2

4s ) , s > 0,
(3.2)
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where x = (x, y) ∈ R2 and where s > 0 represents the scale1 of observation
[79, 170, 107, 108, 94, 151, 54]. This procedure naturally extends to a multiple-
scale representation of a dynamic image (x, y, t) 7→ f(x, y, t):

I(x, y, s, t) := (Gs ∗ f(·, ·, t))(x, y),

with t, s > 0,x = (x, y) ∈ R2.

A convenient tool to extract and classify critical points at different scales is
represented by the so-called topological number [146]. The topological number
characterizes the local structure of a function by exploring the neighborhood of
a certain point. For 2-dimensional functions the topological number is denoted
as the winding number and represents the integrated change of the angle of
the gradient when traversing a closed curve in a plane around the point. The
winding number is always an integer multiple of 2π and its value classifies
intrinsically the extracted critical point. The winding number is zero for regular
points, it is +2π for extrema, and −2π for saddle points.

3.3.1 Critical point position refinement

Due to signal discretization, the retrieved critical point location (for example
computed by means of the winding number) most likely does not correspond to
the real extremum or saddle point position (Figure 3.3). This problem can be
solved by describing a fixed time frame image gradient ∇I(·, s, t), with s, t > 0
fixed, in terms of Taylor series expansions to first order such that

∇I(xa, s, t) =[
Ix(xe,s,t)+(xa−xe)Ixx(xe,s,t)+(ya−ye)Ixy(xe,s,t)
Iy(xe,s,t)+(xa−xe)Iyx(xe,s,t)+(ya−ye)Iyy(xe,s,t)

] (3.3)

where xa = (xa, ya) and xe = (xe, ye) represent the true and the estimated
critical point location respectively. At critical point positions the image gradient
vanishes, therefore the left hand side (l.h.s.) of equation (3.3) vanishes, hence

xa =
[
xa
ya

]
=

[
xe
ye

]
−
[
Ixx(xe, s, t)Ixy(xe, s, t)
Iyx(xe, s, t)Iyy(xe, s, t)

]−1 [
Ix(xe, s, t)
Iy(xe, s, t)

] (3.4)

1The Gaussian kernel is often defined as

φσ(x) = 1
2πσ2 exp(−‖x‖

2

2σ2 ).

The relationship between this definition of Gaussian function and the definition given in
equation (3.2) is s = 1

2σ
2.
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Equation (3.4) provides position estimation at subpixel level and can be iterated
until the desired accuracy has been reached. In the remainder of this article
refined critical points positions will be abbreviated as follows x = xa.

Figure 3.3: Critical point refinement. Left image: a continuum Gaussian signal in 1
dimension and the corresponding sampled signal. The sampled signal shows maxima
at two nearby positions (points in red), which are at different locations from the real
maximum (point in green). Right image: rasterized version of a 2-dimensional Gaussian
signal. Red points are the retrieved maxima, whereas the green point is the true
maximum obtained after the refinement.

3.4 Calculation of sparse velocity features

The chessboard like pattern displayed in Figure 3.2 is constructed from stripes
that move along with the moving tissue, as a property of MR tags. We are
interested in tracking critical points that occur at and between the tags cross-
ings. Critical points move along with the tissue as part of the tags. Tag fading
is an MR property and occurs due to finite relaxation time T1. This property,
however, does not affect the vanishing image gradient (as long as the tag still
exists) and therefore does not affect the critical point localization.

In tracking critical points over time we satisfy the equation

∇I(xqs(tk), s, tk) = 0 (3.5)

where ∇ denotes the spatial gradient and I(xqs, s, tk) represents the intensity at
position xqs, scale s and time frame tk, where xqs(t) = xqs(0)+

∫ t
0 ṽq(xqs(τ))dτ such

that d
dtxqs(t) = ṽq(xqs(t)) with v(x(t), t) = ṽ(x(t)). Index k = 1...K corresponds

to the time frame number and q represents the branch of a certain critical point.
NB represents the amount of branches/critical points per frame and K denote
the amount of frames. Differentiating equation (3.5) with respect to time tk
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and applying the chain rule for the implicit functions yields

d

dt
[∇I(xqs(t), s, t)]

∣∣∣∣
t=tk

=


Ixx(xqs(tk),s,tk)ũq(xqs(tk))+Ixy(xqs(tk),s,tk)ṽq(xqs(tk))+

+Ixt(xqs(tk),s,tk)
Iyx(xqs(tk),s,tk)ũq(xqs(tk))+Iyy(xqs(tk),s,tk)ṽq(xqs(tk))+

+Iyt(xqs(tk),s,tk)


 = 0

(3.6)

where d
dt is the total time derivative. In order to extract the critical point

velocities, we can rewrite equation (3.6) as:
[
ũ(xqs(tk))
ṽ(xqs(tk))

]
=
[
u(xqs(tk), tk)
v(xqs(tk), tk)

]
=

−(HI(·, ·, tk)(xqs, s))−1∂(∇I(xqs, s, tk))T
∂tk

(3.7)

whereH represents the spatial Hessian matrix of image I. The scalars ũ(xqs(tk))
and ṽ(xqs(tk)) are the horizontal and vertical components of a velocity vector
at position xqs at the time tk at scale s > 0.

In the remainder of this chapter we will abbreviate the velocity vectors at the
critical points as follows

dkq :=
(
dk,1q
dk,2q

)
:=
(
ũ(xqs(tk))
ṽ(xqs(tk))

)
. (3.8)

In the subsequent section we will consider a scale selection scheme per critical
point indexed by q and per time-frame t > 0.

3.4.1 Scale selection for features at fixed time frames

So far we assumed that velocities are retrieved at a certain scale without spec-
ifying the size of the basis function (Gaussian filter) applied at each critical
point location. The choice of scale higher than zero may provide more robust-
ness with respect to the noise due to smoothing related to the increase of scale.
Moreover, the appropriate scale at different locations in the cardiac muscle may
be different, since the heart exhibits different deformations in different regions
(i.e stretching. compression).

In choosing the scale, we consider the strength of blobs moving in the image
sequence. In this work the word "strength" is related to the spatial extend
and intensity contrast of the blob. The stronger a blob is in scale space, the
more vertical is its critical path and the higher is the scale of the corresponding
annihilation point (top point), see Figure 3.5, left image. A top point (x, s) is
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a singular point in scale space where the gradient and the determinant of the
spatial Hessian with respect to an image I vanish [99, 130], i.e.

∇I(x, s, t) = 0
and detHI(x, s, t) = Ixx(x, s, t)Iyy(x, s, t)− (Ixy(x, s, t))2 = 0

(3.9)

and as a result top points are the singular points where spatial extrema (where
eigenvalues of the Hessian share the same sign) and spatial saddles merge (where
eigenvalues of the Hessian have different signs).

On the other hand we need to avoid strong dislocation of spatial extrema in
scale-space and instable parts of critical curves (see figure 3.4). Typically, the
slope of the tangent vector along a critical branch in scale space provides a
measure on the stability and dislocation. At scale 0 an extremal branch of a
strong extremum (i.e. sq(t)� 0 ) is nearly vertical, whereas at top-point scale
s∗q(t) the slope is horizontal [56]).

Figure 3.4: From left to right. From row 1 to row 2. Four subsequent frames of the
heart chessboard representation illustrated together with the respective critical paths
(white lines) and top points (red dots). The plots have been visualized using the
software ScaleSpaceVis [92].

Figure 3.4 exhibits four subsequent frames of the heart represented together
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with the critical paths in white lines. Due to the symmetry of the MRI tag-
ging chessboard pattern, critical branches annihilate with different neighbors
through the sequence. Top points show strong dislocation and have been dis-
carded from our choice of features for this type of images. We choose therefore
critical points with scale s < s∗q(t). Hence for each fixed time t > 0, we choose
the highest scale sq such that the slope (in scale-space) of the tangent vectors
along the critical path is below a certain a priori angle ϑ with respect to the
scale direction (0, 0, 1). We propose the following scale selection per q-th critical
branch:

sq(t) := max
{
s = smin e2τ ∈ [0, s∗q(t)) | for all

s′ = smin e2τ ′ ∈ [0, s) we have

arccos( β√
‖ d
dτ

xqs(t)|τ=τ ′‖2+β2
) < ϑ



 .

(3.10)

where τ is the so-called natural scale parameter, a dimensionless parameter
introduced by Florack et al. in [58]. The parameter τ can be any real number,
even negative. In equation (3.10) smin is the scale for τ = 0 and gives the
resolution for which the width of the blurring kernel is of the same order of
magnitude as the pixel size of the original image. The tangent vector along the
critical curve in scale-space is given by

d

dτ
xqs(t) = 2s d

ds
xqs(t) = −2s[HI(xqs(t), s, t)]−1∆∇I(xqs(t), s, t),

as derived in [108, p.189], where ϑ is an a priori threshold angle (10 de-
grees in the experiments) , and where β is a parameter with physical di-
mension [Length], see Figure 3.5, right image. In our experiments we set
β = (∆τ)−1√(∆x)2 + (∆y)2, where ∆x,∆y,∆τ denote step-sizes.

In this way the top point scale is discarded in the experiments (by setting
0 < ϑ � π/2), which avoids similar problems as with top points matching
and symmetric structures [130] such as the chessboard like structure created by
combining frames with horizontal and vertical tags.

3.5 Vector field decomposition

The behavior of the cardiac muscle is characterized by twistings and con-
tractions, which can be studied independently by application of the so-called
Helmholtz decomposition. In 1858 Helmholtz [167] showed that any vector field,
with properties described below, can always be decomposed in irrotational and
solenoidal components. Given a bounded domain Ω ⊆ R3 and a smooth vec-
tor field v, in our case the reconstructed cardiac motion field, v ∈ C0(Ω) and
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Figure 3.5: Left image: white lines represent critical paths in scale space (where we
keep time t fixed) of certain blobs: (0, 0, 1) direction is the scale direction. The red dot
on the critical path is the so-called top-point, Eq. (3.9). Right image: Scale selection.
Scale s∗q denotes the top point scale. The highest scale sq is chosen such that the slope
(in scale-space) of the tangent vectors along the critical path is smaller than a certain
angle ϑ. The corresponding spatial dislocation of the critical path is denoted by δ.

v ∈ C1(Ω), where Ω = Ω⋃ ∂Ω, functions Φ and A ∈ C1(Ω) exist such that

v(x) = ∇Φ(x) +∇×A(x) (3.11)

and
∇ ·A(x) = 0 (3.12)

where x = (x, y, z) ∈ R3 . In equation (3.11) functions Φ and A are the so-called
scalar potential and vector potential, whereas ∇Φ(x) and ∇ ×A(x) represent
the irrotational and solenoidal components of vector field v. However in our
cardiac MRI tagging application we consider Ω ⊆ R2 and in R2 one does not
have an outer product at hand and therefore we need the following definition.
Definition 1. Recall that the rotation of a vector field in 3D is in Euclidean
coordinates expressed as

rotv = ∇× v =



∂yv

3 − ∂zv2

∂zv
1 − ∂xv3

∂xv
2 − ∂yv1


 (3.13)

with v = {ṽ1, ṽ2, ṽ3}. In this article we define the rotation of a 2D-vector vector
field in Euclidean coordinates as follows

rotv := ∂xv
2 − ∂yv1 . (3.14)

with v = {ṽ1, ṽ2} and we define the rotation of a scalar field in Euclidean
coordinates by

r̃otF :=
(
∂yF
−∂xF

)
(3.15)
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The theory of Helmholtz decomposition in 3D is extended to 2D by replacing
the rotation (3.13) consistently by respectively (3.14) and (3.15). For example,
the fundamental identity underlying 3D-Helmholtz decomposition is

∆v = grad divv− rot rotv (3.16)

where ∆ indicates the Laplacian operator ∆ = ∇2. In 2D equation (3.16)
becomes

∆v = grad divv− r̃ot rotv . (3.17)

In order to obtain an explicit decomposition (3.22), we derive a solution to the
Poisson equation in Ω [41] such that

4ξ(x) = v(x) (3.18)

by means of
ξ(x) =

∫

Ω

G2D(x− x′)v(x′)dx′ (3.19)

where
G2D(x− x′) = 1

2π ln ‖(x− x′)‖ (3.20)

is a so-called Green’s function of the 2 variables Poisson equation. Moreover,
ξ(x) satisfies the identity

4ξ(x) = ∇(∇ · ξ(x))− r̃ot (rot ξ(x)) (3.21)

therefore combining

v = ∆ξ = grad div ξ − r̃ot rot ξ = gradΦ + r̃otA (3.22)

(the 2D equivalent of (3.11)), (3.18) and (3.21), we obtain

Φ(x) = ∇ · ξ(x) and A(x) = −rot ξ(x). (3.23)

However, the decomposition (3.22) is not unique, since if we replace ξ 7→ ξ+ h
with h a arbitrary harmonic vector field, we have ∆(ξ + h) = ∆ξ = v. The
decomposition is unique if we prescribe the field to vanish at the boundary [47].
In order to do so, we subtract the harmonic infilling (see definition 2) from the
original vector field. Hence

ṽ = v(x)−ψ(x) =

∇
∫

Ω

∇x ·G2D(x− x′)ṽ(x′)dx′ − r̃ot
∫

Ω

rot xG
2D(x− x′)ṽ(x′)dx′ (3.24)

where vector field ṽ(x) vanishes at the boundaries, with ψ = (v|∂Ω)H as the
unique harmonic infilling.
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Definition 2. The Harmonic infilling ψ = (v|∂Ω)H of the field v|∂Ω restricted
to the boundary ∂Ω is by definition the unique solution of
{
4ψ(x) = 0 x ∈ Ω
ψ|∂Ω = v|∂Ω .

3.5.1 Multi-scale Helmholtz decomposition of the optical flow
field

Instead of using standard derivatives in the Helmholtz decomposition (3.24),
we can differentiate the involved Green’s functions by regularized Gaussian
derivatives, i.e. convolution with a derivative of a Gaussian kernel. In this
procedure the kernel is affected by a diffusion, which depends on parameter
s = 1

2σ
2, the scale. This diffusion removes the singularity at the origin and,

therefore, discretization artefacts. The first order Gaussian derivative (with
respect to x) of the Green’s function through the Fourier domain is:

∂xG
2D
s (x) =

F−1
(
(ω1, ω2) 7→ ıω1

2π(ω2
1 + ω2

2) exp(−s(ω2
1 + ω2

2))
)
(x) =

F−1
(
(ω1, ω2) 7→ ıω1

2π

∞∫

s

exp(−t(ω2
1 + ω2

2)) dt
)
(x, y) =

∞∫

s

F−1
(
(ω1, ω2) 7→ ıω1

2π exp(−t(ω2
1 + ω2

2))
)
(x, y) dt =

∞∫

s

x exp(−x2+y2

4t )
8πt2 dt = x

2π
1− exp(−x2+y2

4s )
x2 + y2

(3.25)

where ω1 and ω2 denote the two-dimensional frequency variables. The derivative
of the Gaussian blurred Green’s function with respect to y can be calculated
using the same approach, hence

∂yG
2D
s (x) = y

2π
1− exp(−x2+y2

4s )
x2 + y2 , x = (x, y). (3.26)

We notice that if the scale s > 0 tends to zero the diffused/blurred Green
function derivatives tend to the ordinary derivatives

lim
s→0

∂xG
2D
s (x) = 1

2π
x

x2 + y2

lim
s→0

∂yG
2D
s (x) = 1

2π
y

x2 + y2

(3.27)
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where x 6= 0. Figure 3.6 shows the graphs of the derivatives of the blurred
Green’s function G2D

s (x) for s = 0 and s = 1.

By combining (3.24), (3.25), (3.26) we obtain

ṽs := grad (∂xG2D
s (x) ∗ ṽ1 + ∂yG

2D
s (x) ∗ ṽ2)−

r̃ot (−∂yG2D
s (x) ∗ ṽ1 + ∂xG

2D
s (x) ∗ ṽ2)

(3.28)

where ∗ is the symbol for the convolution operation. Hence, taking into account
the contribution of the Harmonic infilling ψ, the vector field original vector field
is given by

v(x) = ṽs +ψ(x). (3.29)

Figure 3.6: Plots of derivatives (3.25) of the 2-dimensional Green’s function G2D
s with

respect to x and y. The two plots on row 1 display plots of the first order derivatives
of the Green’s function at scale s = 0. The two plots on row 2 show the case s > 1. At
scale s > 0 the kernel no longer has a singularity at the origin and thereby one avoids
sampling errors and grid artefacts.
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Figure 3.7: Helmholtz decomposition (top row) of the Phantom field v, given by (3.30)
and the output vHDs of the Helmholtz decomposition algorithm (bottom row, cf. Eq.
(3.29)) on domain [−1, 1] × [−1, 1]. From left to right: the field, rotation-free part of
the field, diverging-free part of the field. Most right image shows the harmonic infilling
(definition 2), which we amplified by 104 since it is extremely small on [−1, 1]× [−1, 1].

3.5.2 Experiments on the decomposition of the vector field

In order to assess the accuracy of the extracted rotation-free and divergence-
free components, as well as the accuracy of the recomposed vector field (the
sum of the rotation free, divergence free and Harmonic infilling), we created
a software phantom displaying a combination of divergence and rotation, see
Figure 3.7 first row. The rotation-free and divergence-free part of the proposed
phantom are given by

v(x, y) = (xe1 + ye2) 1
4πγ exp(−x

2 + y2

4γ )
︸ ︷︷ ︸

∇Φideal

− (ye1 − xe2) 1
4πγ exp(−x

2 + y2

4γ )
︸ ︷︷ ︸

r̃otAideal
(3.30)

(x, y) ∈ [−1, 1] × [−1, 1], γ = 1
50 (i.e. standard deviation of 1

5) fixed where
e1 = (1, 0)T and e2 = (0, 1)T represent a Cartesian orthonormal basis. The
phantom has been furthermore blurred at scale s = 1. The decomposition and
recomposition of the phantom’s vector field has been carried out using equation
(3.28) and (3.29) respectively. The computation has been performed at scale
s = 1(step size)2 on an equidistant discrete 101×101 grid with spatial step size
1
50 and has been evaluated using the average angular error (AAE) (3.31) given
by

AAE = 1
(101)2

50∑

i,j=−50
arccos(vHDs (xij)

‖vHDs ‖ ·
v(xij)
‖v(xij)‖), (3.31)
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xij = 1
50(i, j), where vHDs represents the sum of the divergence free and rota-

tion free part of the Helmholtz-decomposition algorithm and v is ground truth.
Tests on the artificial phantom showed errors AAE = 0.35 degrees for decom-
posing the vector field in rotation-free and divergence-free components, and
errors AAE = 0.4 degrees for recomposing again the vector field.

In Figure 3.7 we show a comparison between the analytic phantom and its
components (first row), and the recomposed vector field and its components
(second row). A visual inspection and of the Figures in 3.7 confirms that the
decomposition and recomposition of the phantom has been performed with high
accuracy. The rotation free and divergence free components of the phantom
(Figure 3.7 row 1) are hardly distinguishable from the rotation free, divergence
free components and their sum (Figure 3.7 row 2) calculated with the equation
(3.29).

3.6 A motivation for using covariant derivatives.

Usually one considers the derivative of a scalar-valued grey-value image (for
example the components of a vector-field) f : Ω → R by means of a Gaussian
derivative

∂(s)
x f = ∂x(φs ∗ f) = (∂xφs) ∗ f

or by a finite difference (i.e. replace first order Gaussian by the discrete [1,−1]-
stencil filter). In this section we will refer to such derivatives as standard
derivatives.

However, there is a short-coming to such an operator. It only compares the
difference of local luminous intensities {f(x + y) | ‖y‖ < 2σ} with f(x) and
it does not take into account the actual values f(x + y) of local luminous
intensities. Visual perception, however, does not work like this. Consider for
example Figure 3.8. Gradients in dark areas are often perceived differently as
gradients in light areas. This could be due to the fact that the visual system
has some a priori gauge function that it expects due to typical surrounding (see
Figure 3.9).
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Figure 3.8: The left visual illusion illustrates that because of the surrounding grey-
values a gradient is perceived in the rectangle, although the rectangle has constant
brightness (so computation of a ordinary gradient in the rectangle yields zero). The
right visual illusion illustrates the opposite dependence: due to different surrounding
gradient structure the same brightness is perceived differently. Along the diagonal cross
sections of the square the brightness is perceived higher than along the horizontal cross
sections.

Figure 3.9: Gradient illusion. The rectangle in the middle of the gradient has constant
brightness (function f(x, y)), which is not perceived as constant by the human visual
system. Standard derivatives are not a suitable operator to interpret such an illusion,
since the regular gradient vanishes within the rectangle. In the right image, gauge
functions have been defined as the dashed boxes, with intensity i.e. hi(x̃, y) = x̃− x+
hi(0) for points within the box. The covariant derivatives expression givesDhif(x, y) =
∂xf(x, y)− 1

hi(x,y) ∂xhi(x, y) f(x, y) = 0+ 1
hi(0) (−1, 0). The origin of the coordinates has

been put in the middle of the rectangles. Black vectors show direction and magnitude of
covariant gradients whereas white vectors indicate direction and magnitude if gradients
of standard derivatives. The index i has been used to distinguish different gauge
functions.

In literature derivatives that take into account the influence of these surrounding
areas, by means of gauge functions, are the covariant derivatives.

Here we provide the definition of a covariant derivative of a scalar function.
This definition can be extended also to the covariant derivatives of a vector
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field, since the components of a vector field are also scalar functions.

Given a scalar function f : Ω → R with respect to an a priori gauge function
h : Ω→ R, the covariant derivative is defined by

Dhf(x, y) = {∂xf(x, y)− 1
h(x, y) ∂xh(x, y) f(x, y),

∂yf(x, y)− 1
h(x, y) ∂yh(x, y) f(x, y)}

(3.32)

where (x, y) ∈ Ω ⊂ R2 if h(x, y) 6= 0.

Note that the covariant derivative is invariant under scalar multiplication of the
gauge function, so that

Dλhf = D|h|f = Dhf , (3.33)
for all h 6= 0.

The derivative model proposed allows to interpret the Figure 3.9. The illustra-
tion shows an image gradient with a rectangle in the middle (f(x, y)), which
has constant brightness. The pixel values inside the rectangle are not per-
ceived as constant by our brain. This suggests that our visual system does
not use standard derivatives to process this type of images, since the regular
gradient vanishes within the rectangle. Moreover, the pixels on the left part of
the rectangle seem brighter than the pixels in the right part of the rectangle.
The covariant derivatives take into account these observation. In Figure 3.9 we
define a gauge function as the portion of image in the white dashed box, i.e.
hi(x̃, y) = x̃− x+ hi(0). By applying the equation (3.32) for points within the
rectangle, we obtain

Dhif(x, y) = 0 + 1
hi(0)(−1, 0).

The resulting expression is not constant and has opposite sign with respect to
the input gauge function. Here we consistently put the origin of coordinate in
the middle of the rectangles. Black vectors indicate covariant gradients whereas
white vectors indicate regular gradients. The index i distinguishes between
different gauge functions.

In our optic flow algorithm we are interested in dense motion reconstruction
from a sparse set of velocity vectors. We use the covariant derivatives and the
gauge functions in the smoothness term of an energy functional in order to
influence the reconstruction of the velocity field. This is useful for instance in
the case of very sparse velocity vectors. If the gauge field presents information
in the areas, where the sparse velocity vectors are not present, this information
will be taken into account during the reconstruction of the dense motion field.
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3.6.1 Fibred Space and Covariant Derivatives

In this subsection we briefly explore the concept of a fiber bundle and we extract
the formulation of covariant derivative (equation (3.32)) used in this work.

3.6.1.1 Fibred Space

In order to define the covariant derivative of a scalar function, such as an image,
as a single component of a field, we have to define the scalar function in the
fibred space (see [87]).

In differential geometry a fibred space (E, π,B) is defined by the total space E,
a base space B, and a projection π, a mapping of the total space onto the base.
Space B presents lower dimension with respect to total space E, that is, several
points of E map to the same point of B. In such definition R2 ×R2 defines the
total space E, the base B is defined in the image plane R2 and the projection
π : E → B provides the location of each pixel in the image plane, such that
π(x, y, f1(x, y), f2(x, y)) = (x, y), where f1 ∈ R2 and f2 ∈ R2, provide the
magnitude at position (x, y) of each of the two components of the vector field.
Each point p ∈ B corresponds to a fibre in E, that is, a collection of all points
projected to the same point p by the mapping π (see Figure 3.10). A section
associated to function f in a fibred space is instead a mapping Sf : B → E
such that Sf (x, y) = (x, y, f1(x, y), f2(x, y)). The section selects one point
out in each fibre. A grayscale image is a section in a fibred image space with
(Ẽ = {x, y, f1, f2} ∈ E|f2 = 0} ≡ R2 × R+, π, B = R2).

3.6.1.2 Covariant Derivatives

In fibred spaces the slope of a section is measured by so-called connections or
covariant derivatives, which are used in this model to compare pixel values from
different fibres. A covariant derivative in a fibre space (E, π,B) is a mapping
on E. Given f(x, y) ∈ B and h(x, y) ∈ B two scalar functions, the standard
derivative of the product of these functions with respect to x is defined by the
Leibnitz rule as ∂x(f h) = (∂xf)h+ f(∂xh). We obtain a similar expression for
the y direction. The Leibnitz rule of the derivative product can be extended
also to the sections. Section Sf given by Sf (x, y) = (x, y, f1(x, y), f2(x, y)) can
be represented as a linear combination2 of a set of basis sections with a function

2The product of a function ψ : R2 → R+ and a section Sf : R2 → R4 is given by
(ψ · Sf )(x, y) = (x, y, ψ(x, y)f(x, y)).
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Figure 3.10: A visualization of the fibred space Ẽ = {x, y, f1, f2} ∈ E|f2 = 0} ≡
R2×R+, base B = R2, the mapping π(x, y, f1(x, y)) = (x, y), where x, y represent the
Cartesian coordinates and f1(x, y) gives the pixel value at position x and y. Sf (x, y) =
(x, y, f1(x, y)) describes the section of function f . A grayscale image is a section in
fibred image space.

f(x, y), hence

Sf (x, y) =
2∑

i=1
(f i · Si)(x, y) (3.34)

in which 2 is the dimension of a fiber. The basis section Si is defined as
S1(x, y) = {x, y, 1, 0} and S2(x, y) = {x, y, 0, 1}. The derivative product with
respect to x and y for equations (3.34) is

∇xSf (x, y) = ∇x
2∑

i=1
(f i · Si)(x, y) =

2∑

i=1
(∂x(f i · Si)(x, y) + (f i · ∇xSi)(x, y))

∇ySf (x, y) = ∇y
2∑

i=1
(f i · Si)(x, y) =

2∑

i=1
(∂y(f i · Si)(x, y) + (f i · ∇ySi)(x, y))

(3.35)

where ∂x and ∂y are the derivative on a function, whereas ∇x and ∇y represent
the derivative of a section with respect to x and y coordinates respectively. By
definition, the derivative of a section is again a section representable by the
basis sections [87], therefore
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∇xSi(x, y) =
2∑

j=1
(Ajix · Sj)(x, y)

∇ySi(x, y) =
2∑

j=1
(Ajiy · Sj)(x, y)

(3.36)

where Ajix(x, y) and Ajiy(x, y) are matrix valued functions defined in x and y (for
vector fields with only one component, such as grayscale images, Ajix(x, y) =
Ax(x, y) and Ajiy(x, y) = Ay(x, y) correspond to functions). And combining the
equations (3.35) and (3.36), we obtain

∇xSf (x, y) =
2∑

i=1
∂xf

i(x, y) +
2∑

j=1
((Aijxf j) · Si)(x, y)

∇ySf (x, y) =
2∑

i=1
∂yf

i(x, y) +
2∑

j=1
((Aijyf j) · Si)(x, y).

(3.37)

Since sections can be defined with functions f : R2 → R2

(Dxf
i)(x, y) = ∂xf

i(x, y) +
2∑

j=1
(Aijx · f j)(x, y)

(Dyf
i)(x, y) = ∂yf

i(x, y) +
2∑

j=1
(Aijy · f j)(x, y)

(3.38)

and for n = 1 we have

(Dxf
1)(x, y) = ∂xf

1(x, y) + (Ax · f1)(x, y)
(Dyf

1)(x, y) = ∂yf
1(x, y) + (Ay · f1)(x, y)

(3.39)

The expressions Dx = ∂x + Ax(x, y) and Dy = ∂y + Ay(x, y) represent the
so-called covariant derivatives for a function with respect to x and y respec-
tively. Given a function h : Ω → R, by definition (see [87]), we have that any
section given by S(x, y) = (x, y, h(x, y)) can be considered constant in the co-
variant sense with respect to the chosen Ax(x, y) and Ay(x, y), where the term
"constant" means

Dxh(x, y) = ∂xh(x, y) + (Ax · h)(x, y) = 0
Dyh(x, y) = ∂yh(x, y) + (Ay · h)(x, y) = 0

(3.40)
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Figure 3.11: Covariant derivative: geometrical interpretation. Given functions f : R→
R and h : R → R, left image, we want to calculate Dh(x)f(x) = f

′(x) − h
′
(x)

h(x)f(x) at
point x = 3. Therefore, we scale the gauge function h such that its graph contains
(3, f(3)), hence h̃(x) = h(x) f(3)

h(3) , central image. Then we calculate the difference of
the slopes of f(x) and h̃(x) at x = 3, right image.

hence,
Ax(x, y) = −∂xh(x, y)

h(x, y)

Ay(x, y) = −∂yh(x, y)
h(x, y)

(3.41)

Therefore, applying the result of equation (3.41) to equation (3.39), a covariant
derivative of a function f1 with respect to a function h is given by

Dh(x,y)
x f1(x, y) = ∂xf

1(x, y)− f1(x, y)∂xh(x, y)
h(x, y)

Dh(x,y)
y f1(x, y) = ∂yf

1(x, y)− f1(x, y)∂yh(x, y)
h(x, y)

(3.42)

If we suppose f : R → R and h : R → R, the covariant derivative can be
geometrically interpreted as the difference between the slope of function f(x)
and the slope of a gauge function h scaled with respect to function f(x), see
Figure 3.11.

A more rigorous mathematical definition provided by Dr Remco Duits have
been reported in the appendix (A.1).

3.6.1.3 Interpolation between conventional derivatives and covari-
ant derivatives

In this section we briefly explain that a monotonic transformation on the com-
ponents of the gauge field takes care of the interpolation between standard
derivatives and covariant derivatives. For the sake of illustration we restrict
ourselves to the scalar valued case (with positive gauge function h : Ω → R+)
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as the vector valued case follows by applying everything on the two separate
components. By applying a monotonic transformation h 7→ hη on the gauge
function we obtain the following covariant derivative

Dhη(x,y)f(x, y) = Df(x, y)−D(log hη(x, y))f(x, y) =
Df(x, y)− η(D log h(x, y))f(x, y) .

(3.43)

If η = 0 the expression (3.43) provides a conventional derivative, whereas the
case η = 1 yields a covariant derivative with respect to gauge function h(x, y).

On the one hand we want to preserve the influence of the gauge field (initial
guess) h(x, y). On the other hand outliers in the magnitude of the gauge field
h(x, y) get too much influence in the final reconstruction if η ≥ 1. So we observe
a trade-off situation for the choice of η in our application. Experiments with
different η will be discussed in section 3.8, Figure 3.14.

3.7 Feature based optic flow equation with covariant
derivatives and Helmholtz decomposition

In image analysis gauge functions and covariant derivatives have been previ-
ously introduced by T. Georgiev [66] in an Adobe Photoshop inpainting prob-
lem and subsequently have been studied by [21, 83] for image and vector field
reconstruction.

In this work we extrapolate dense motion through the regularization of the optic
flow equation by means of covariant derivatives and gauge functions and taking
into account the decomposition of the motion field in the divergence-free and
rotation-free components. The gauge field imposes an a priori balance between
velocity magnitude and velocity field changes, and thereby it is supposed to be
close to the velocity field that we would like to reconstruct from a sparse set
of features. There are several options in choosing the gauge field. In this work
we choose gauge fields as motion fields obtained from regularization reconstruc-
tion with standard derivatives (see equation (2.10)) and then we carry out a
regularization reconstruction using covariant derivatives (recall the algorithm
overview in Figure 3.1). The latter step is then to be considered as a refinement
of the first.

In chapter 2 we worked with previous time frame as gauge field. In this chapter
we instead employ current time frame as gauge field. Experiments have shown
to provide an improvement in the velocity field reconstruction for this latest
choice of gauge field. This is not surprising as the images examined in the
experiments display sudden transitions over time.
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We aim to retrieve the velocity field v at time-step k, by minimizing the energy
functional

Eλ,hk,dk(vk) =

Ehk
reg(vk) + Edk

data(vk) =
NB∑

q=1
wkq

2∑

j=1
|(φsq ∗ vkj)(xq)− dk,jq |2 + λ

∫

Ω

2∑

i=1

2∑

j=1
|Dhk,j

xi vk,j(x)|2 dx
(3.44)

where wkq ∈ R+ is a weighting factor, the parameter λ > 0 provides balance
between regularization part (Ehk

reg(vk)) and the data term (Edk
data(vk)), index

k indicates the time frame and q enumerates the extremal branches. Index
j ∈ {1, 2} indicates the vertical and horizontal component of the field and
xi ∈ {x1 = x, x2 = y}. Moreover,

φqk(x) := φsq(x− xq) (3.45)

denotes the Gaussian kernel (3.2) centered around xq with scale sq > 0, recall
Figure 3.5, and where the sparse velocity components dk,jq , Eq. (3.8), are derived
by solving Eq. (3.7).

Minimization of (3.44) has been carried out by solving the Euler Lagrange
equations and the resulting expression has been discretized by using B-splines.
A solution to this minimization problem has been calculated by Dr Remco Duits
and has been reported in the appendix (A.2).

In order to investigate and reconstruct separately the rotation-free and divergence-
free components of a vector field, the multi-scale Helmholtz decomposition has
been furthermore included in equation (3.44). To this end we also decom-
pose the sparse velocities into the divergence-free and rotation-free components.
Namely, we reconstruct the velocity field by a regularization with standard
derivatives at very small 0 < λ� 1, to obtain a regularized velocity field that
(nearly) satisfies the hard constraints (as 0 < λ� 1). Then we apply a multi-
scale Helmholtz decomposition on this field and we extract the divergence-free
part and rotation-free part vectors at the position of interest xq and scale of
interest sq.

Hence, in order to calculate a dense motion field, we minimize the following
energy forms
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Eλ,hk,dkdivfree (vk) =
NB∑

q=1
wkq

2∑

j=1
|(φqk, vk,j,divfree)L2(Ω) − dk,j,divfreeq |2+

λ1

∫

Ω

2∑

i=1

2∑

j=1
|Dhk,j,divfree

xi vk,j,divfree(x)|2 dx

Eλ,hk,dkrotfree (vk) =
NB∑

q=1
wkq

2∑

j=1
|(φqk, vk,j,rotfree)L2(Ω) − dk,j,rotfreeq |2+

λ2

∫

Ω

2∑

i=1

2∑

j=1
|Dhk,j,rotfree

xi vk,j,rotfree(x)|2 dx

(3.46)

Finally we add up the outcomes of the minimized equation (3.46), such that

vk(x) = vk,divfree(x) + vk,rotfree(x) (3.47)

3.8 Experiments

In order to assess the accuracy of the proposed optic flow method depicted in
Figure 3.1, we reconstruct/interpolate the motion fields of two different phan-
toms from which we know the ground truth. Phantom one is a sequence consist-
ing of 19 time-frames with size 99×99 pixels of purely contracting and expanding
patterns (Figure 3.12, column 2), whereas phantom 2 consists of 13 frames of
93 × 93 pixels in size and displays non-rigid rotation (Figure 3.12, column 4).
Equations for phantom 1 have been provided in section 2.6, whereas a detailed
description of phantom 2 has been given in section 5.2. The motion vanish
in both phantoms at the boundaries. Extraction of the motion field has been
carried out at several spatial scales s = {1, 1.22, 1.48, 1.81, 2.21, 2.69, 3.28, 4.}
with time scale 1.

Since our approach consists of separate reconstruction of the divergence-free
and rotation-free part we index our parameters accordingly. For example λ1
controls the degree of smoothness in the dense flow field reconstruction of the
rotation-free part and η1 denotes the interpolation parameter between covariant
and standard derivatives of the dense flow field reconstruction of the rotation-
free part. The corresponding parameters for the divergence-free component are
λ2 and η2.
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Figure 3.12: Phantoms and reconstructed vector fields. Larger arrows and arrow heads
are related to larger flows. In these plots the arrow’s length has been amplified 15
times. Column 1 and 2 display frame 5 of the expanding and contracting phantom:
ground truth (column 1) and reconstructed vector field using the proposed algorithm
(column 2). Column 3 and 4 display frame 3 of the rotating phantom: ground truth
(column 3) and reconstructed vector field using the proposed algorithm (column 4).
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Figure 3.13: Performance of velocity field reconstruction method based on covariant
derivatives and Helmholtz decomposition using different values for the smoothing pa-
rameter λ (expressed in logarithmic scale). The experiments have been carried out
with fixed λ2 = 102 for phantom 1 and λ1 = 102 for phantom 2, and we vary param-
eter λ1 for phantom 1 and λ2 for phantom 2 according to a predefined range, such
that λ = {10−2, 10−1, 1, 10, 100, 103, 104, 105, 106}. Left plot displays AAE behavior
for phantom 1. Best performance AAE = 0.97◦± 0.62◦ for λ1 = 10−2 (log10 λ1 = −2).
Right plot shows AAE behavior for phantom 2. Best results AAE = 6.68◦ ± 9.48◦ are
achieved for λ2 = 103 (log10 λ2 = 3).

Increasing the value of λ > 0 increases the smoothness of the reconstructed
motion field. We choose λ such that the AAE and the L2 norm error of our
phantoms with ground truth is minimized, where we set a range of values defined
beforehand such as

λ = {10−2, 10−1, 1, 10, 100, 103, 104, 105, 106}.

The reconstruction method based on conventional derivatives showed best re-
sults at λ = 10−2 and λ = 1 for the phantom 1 and phantom 2 respectively. The
reconstruction method based on covariant derivative performed best at λ = 102

and λ = 10 for phantom 1 and phantom 2 respectively.

In case of reconstruction based on covariant derivatives and Helmholtz decom-
position, we assign a fixed component λ2 = 102 and λ1 = 102 for phantom 1
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Figure 3.14: AAE behavior for different values of parameter η for the reconstruction
method based on both covariant derivatives and Helmholtz decomposition. Parameter
η takes into account the influence of the gauge field, recall subsection 3.6.1.3. In the
experiments we keep fixed η2 = 0.5 for phantom 1 and η1 = 0.5 for phantom 2, and
we vary parameter η1 for phantom 1 and η2 for phantom 2 according to a predefined
range η = {0.5, 0.7, 0.9, 1., 1.1, 1.3}. Left plot shows AAE behavior for phantom 1. Best
performance AAE = 0.97◦ ± 0.62◦ is obtained for η1 = 0.9. Right plot shows AAE
behavior for phantom 2. Best result AAE = 6.68◦ ± 9.48◦ is achieved for η2 = 0.7.

and phantom 2 respectively and we choose the other λ component from the
already defined range. In Figure 3.13 we displayed the AAE behavior for phan-
tom 1 and 2 using the proposed technique imposing different values to λ1 for
phantom 1 and to λ2 for phantom 2. Here the horizontal axis is expressed in
a logarithmic scale with base 10. Best performance is achieved at λ1 = 10−2

(log10 λ1 = −2) and at λ2 = 103 (log10 λ2 = 3) for phantom 1 and phantom 2
respectively.

Once the choice of the λi parameter is established, we investigate parameter ηi,
i = 1, 2 which takes into account the influence of the gauge field in the velocity
field reconstruction, recall subsection 3.6.1.3.

In the experiments we impose a gauge field equal to the outcome of the optic
flow method based on conventional derivatives time frame k to reconstruct
the motion field at time k (Figure 3.1). This is only one of the possible
gauge field choices. Again we select parameter η from a range of a values
η = {0.5, 0.7, 0.9, 1., 1.1, 1.3} such that AAE is minimized. The reconstruction
method based on covariant derivatives achieved best results for η = 0.7 and
η = 0.9 for phantom 1 and 2 respectively. In case of the reconstruction method
based on covariant derivative and Helmholtz decomposition we assign a fixed
η, η2 = 0.5 and η1 = 0.5 for phantom 1 and 2 respectively, and we choose the
other ηi from the defined range. In Figure 3.14 we display the behavior of AAE
for phantom 1 and 2 for different values of η. The proposed reconstruction
method provides best performance for η1 = 0.9 and η2 = 0.7 for phantom 1 and
2 respectively.

In Table 3.1 we display the performance of the optic flow method, where the
smoothness component has been described in terms of standard derivatives,
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covariant derivatives, and covariant derivatives combined with Helmholtz de-
composition. In the assessment the error measure is based on the average
angular error (AAE) [20], expressed in degrees, the L2 norm and their corre-
sponding standard deviation. Algorithm evaluation has been performed on 3
subsequent frames for phantom 1 and phantom 2. A comparison with simi-
lar optic flow techniques, that do not take into account covariant derivatives
and Helmholtz decomposition, shows that the proposed algorithm provides the
most accurate reconstruction reaching AAE= 0.97± 0.62 degrees and L2 norm
error of 3.3 × 10−2 ± 0.03 for phantom 1 and AAE= 6.68 ± 9.48 degrees and
L2 norm error of 0.16± 0.24 for phantom 2. The error measurements outcomes
are averaged over the 3 investigated frames.

Figure 3.12 illustrates one frame of the retrieved motion fields for phantom 1
(column 1) and phantom 2 (column 3) and their ground truths in columns 2
and 4 for phantom 1 and 2 respectively. In the plot larger arrows and arrow
heads are related to larger flows.

Error Measurements Phantom 1 Error Measurements Phantom 2
Reconstruction Methodology AAE L2 Norm AAE L2 Norm
Conventional Derivatives 1.26◦ ± 1.11◦ 4.2× 10−2 ± 0.04 8.05◦ ± 9.09◦ 0.21± 0.26
Covariant Derivatives 1.20◦ ± 1.01◦ 3.6× 10−2 ± 0.03 7.30◦ ± 9.81◦ 0.19± 0.25

Helmholtz Dec. and Covariant Derivatives 0.97◦ ± 0.62◦ 3.3× 10−2 ± 0.03 6.68◦ ± 9.48◦ 0.16± 0.24

Table 3.1: Performance of the proposed optic flow method using different reconstruc-
tion modalities. In the experiments the Average Angular Error (AAE), is expressed
in degrees, L2 norm and their corresponding standard deviation have been used as
error measure. The measurements are averaged over the investigated 3 frames. Best
performances are obtained by the Helmholtz Decomposition and Covariant Derivative
reconstruction method, AAE= 0.97◦ ± 0.62◦ and L2= 3.3 × 10−2 ± 0.03 for phantom
1, and AAE= 6.68◦ ± 9.48◦ and L2= 0.16± 0.24 for phantom 2.

Divergence-free and rotation-free parts of the vector field may be employed
to reveal and quantify abnormal deformation in the tissue. In the following
experiments we compare the behavior of motion fields extracted from a healthy
volunteer and from a patient, whose heart displays infarcted areas as indicated
in Figure 3.17. Acquisition of the heart images has been performed during the
systolic phase; we assess 11 frames with resolution of 86×86 pixels and pixel size
of 1.2× 1.2 mm2. In these images the temporal resolution is roughly 2× 10−2

seconds and with thickness of 8 mm. In Figures 3.15 and 3.16 we show the
sampled motion field (column 1), rotation-free (column 2) and divergence-free
(column 3) parts of the healthy heart case and the diseased case respectively.
By means of our Helmholtz decomposition we observe that at the beginning of
systole, the healthy heart exhibits a strong rotation (row 1, column 3) and little
contraction (row 1, column 2). Halfway the systolic phase, the contribution of
rotation-free parts becomes comparable to the contribution of the divergence-
free part, that is, vectors inside the cardiac walls present similar length (row
2, column 2 and 3). At the end of systole, contraction becomes more relevant
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(row 3, column 2), whereas rotation is almost absent (row 3, column 3). In
the investigated diseased case, the heart exerts modest rotation through the
whole sequence (row 1,2,3, column 3), leaving contraction as the almost only
contribution to the heart beat (row 1,2,3 column 2).

optic flow field rot-free part div-free part
Healthy Volunteer

Figure 3.15: Cardiac motion field behavior for a healthy volunteer. We assess frame
3, 6 and 8 of a sequence of 11 frames displaying the cardiac muscle during systole.
Column 1 shows the extracted motion fields, column 2 shows the rotation-free part,
whereas column 3 shows the divergence-free part.

3.9 Discussion and Conclusion

We have introduced a new approach to estimate cardiac motion by means of
gauge fields and Helmholtz decomposition, and thereby we have provided a tool
to explore heart behavior.
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The proposed optic flow technique contains regularization components described
in terms of covariant derivatives, ∂hjxi = ∂xiv

j − ∂xih
j

hj
vj , where v = (v1, v2)T

and h = (h1, h2)T are the unknown vector field and gauge field respectively
with coordinates {x1, x2} = {x, y}. Gauge fields influence the regularization of
the flow field reconstruction (see section 3.6) and in the energy minimization
process they typically provide an a priori balance between magnitude (hj) and
spatial variations of velocities (∂xihj). In this new approach the smoothness
term does not penalize for changes from an imposed global assumption such as
isotropic or anisotropic smoothness, like in many methods in the literature, but
rather penalizes for deviations from a predefined motion model: in our case the
gauge field. Furthermore, we include a fast multi-scale Helmholtz decomposi-
tion with the aim to reconstruct the divergence-free and rotation-free parts of
the vector field separately.

We have tested the method with two different phantoms and the extracted
motion fields have been compared with the outcomes of similar techniques,
for which the smoothness component was expressed in terms of conventional
derivatives and covariant derivatives only. The proposed approach provided
the best performance and shows the advantage of both using covariant deriva-
tives and using Helmholtz decomposition. Besides improving the quality of
reconstruction, Helmholtz decomposition is used as a tool to study cardiac be-
havior, since vector field decomposition allows to analyze cardiac contraction
and cardiac rotation independently.

Finally, we have applied our method on real tagged MR images displaying the
left ventricle of a healthy volunteer and a patient. Qualitative results illustrate
the reliability of the estimated motion field.

Future work and further improvements

In the algorithm we use gauge fields obtained from the outcomes of optic flow
equations based on standard derivatives. This is just one of the possible choices.
Gauge fields could also be deformed according to criteria that specifically reflect
the heart behavior. Finally, the assessment has been carried out on two real
data-sets. It would be interesting to apply the proposed technique on a larger
population of images acquired from different volunteers and patients, with the
aim to extract parameters that distinguishes cardiac healthy behavior from the
presence of diseases.



66
Chapter 3. Feature based cardiac motion estimation using covariant

derivatives and Helmholtz decomposition

optic flow field rot-free part div-free part
Patient

Figure 3.16: Cardiac motion field behavior a patient. We assess frame 3, 6 and 8 of a
sequence of 11 frames displaying the cardiac muscle during systole. Column 1 shows
the extracted motion fields, column 2 shows the rotation-free part, whereas column 3
shows the divergence-free part.

Figure 3.17: Diseased Heart. Arrows show areas where infarction occurred



Es ist nicht genug zu wissen, man muss auch
anwenden.
Es ist nicht genug zu wollen, man muss auch tun.

Johann Wolfgang von Goethe

4Cardiac motion estimation: analysis of the kinetic
Energy
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Abstract
Estimations of the heart movement may help studying abnormalities of the
myocardium. Cardiac motion fields are however difficult to interpret due to
the high amount of information displayed at the same time. In order to sim-
plify the visualization and analysis of such measurements, we extract kinetic
energy from the cardiac motion fields. We also calculate the kinetic energy of
the divergence-free and rotation-free components of the vector field, in order
to study separately the contributions to the heart beat of the cardiac contrac-
tions and rotations. In the experiments we investigated the heart behavior of a
group of healthy volunteers and one patient. Such experiments reveal that the
patient’s heart is characterized by a lower kinetic energy in comparison to the
healthy subjects. The work concludes with an investigation of the local cardiac
kinetic energy measurements. In an experiment with the patient, the kinetic
energy estimations allowed to visualize areas associated to myocardial infarct.

4.1 Introduction

The analysis and quantification of cardiac movement is of great interest for the
research community, since measurements of alterations in the wall motion may
be indicators of diseases such as ischemia. Another great challenge is to localize,
to measure the extension and to interpret the severity of infarcted areas in the
myocardium. In the literature we find several techniques to detect and analyze
abnormal cardiac wall deformation. Such methods are mostly related to stress
and strain computation, which explore material deformation of the myocardium
and provide information on the forces acting on the cardiac muscle and the
influence of the blood pressure [2, 78, 15, 60]. In this work, however, we limit
ourself to the analysis of the cardiac kinetic energy and we show that it is a
highly promising parameter to explore dynamic cardiac behavior.

Optic flow methods provide automatic quantification of the cardiac dynamic
behavior and visualize this information as velocity fields. In the optic flow
method used in this work, dense motion fields are reconstructed from a sparse
set of velocity features associated to the movement of critical points. The veloc-
ity estimation of critical points is carried out with respect to a local reference
system with origin located at the critical point position.

Motion fields may be of great help in such investigations, but are complex
and hard to interpret due to the high amount of information provided at the
same time. A useful and compact way to display such information is to express
cardiac movement in terms of scalar fields by means of kinetic energy evaluation.

The kinetic energy represents the energy characterizing an object due to its mo-
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tion. In cardiology literature kinetic energy, associated with the cardiac blood
flow estimation, has been employed to investigate the left atrium behavior in
volunteers and patients with heart failure [155] or to analyze the blood pressure
of the pulmonary artery in the presence of stenoses [3]. In such an approach the
kinetic energy estimation is carried out by taking into account measurements
of volume changes during systole and information of blood density. In order to
study the left ventricle kinetics, energy measurements have been mainly carried
out by optic flow methods [70, 42] with variational techniques based on the
Horn and Schunck approach [76] illustrated in chapter 1.5.3.1. Also in these
approaches, the authors tried to establish a measure of distinction between
healthy subjects and the patients, providing global and local measurements.

In this chapter we investigate the kinetic energy of the computed motion field
and the kinetic energy associated to its rotation-free and divergence-free com-
ponents. Such a decomposition provides information on the contracting and
rotating movements of the cardiac muscle, illustrating what component is more
dominant (has higher energy) in different periods of the cardiac cycle. These
measurements are carried out over time, globally and locally, where local esti-
mations are displayed by means of the so-called bull’s eye plot as a visualization
tool.

In the tests we investigated motion extracted from tagged MR images, acquired
from a group of 10 volunteers and a patient with myocardial infarcts. The
measurements highlighted a strong difference in the amount of kinetic energy
between the two groups, with the patient showing less kinetic energy for the
whole period of investigation. Moreover, a comparison of the patient’s local
kinetic energy estimations with a late enhancement MR image, where infarcted
areas were highlighted, showed an interesting correspondence between area with
a local minimum kinetic energy and an area with scar tissue.

This chapter is subdivided as follows. In section 4.2 and 4.3 the kinetic en-
ergy formulation and the bull’s eye plot visualization tool have been described.
Finally in 4.4 and 4.5 the experiments and the results obtained are discussed.

4.2 Dense Motion Field and Kinetic Energy

For the sake of illustration in this section we briefly reformulate the optic flow
equation proposed in section 3.7 and explore its extension for kinetic energy
calculation.

As already seen, the optic flow equation relies on two major steps: scale space
feature tracked over time and a dense velocity field reconstruction. In order
to estimate moving patterns in an image sequence, given a bounded domain
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Ω ⊆ R2, we look for a velocity vector field v ∈ C0(Ω) and v ∈ C1(Ω) that
minimizes the following energy functional

Eλ,hk,dk(vk) =
NB∑

q=1
wkq

2∑

j=1
|(φqk, vk,j,divfree)L2(Ω) − dk,j,divfreeq |2+

λ1

∫

Ω

2∑

i=1

2∑

j=1
|Dhk,j,divfree

xi vk,j,divfree(x)|2 dx+

NB∑

q=1
wkq

2∑

j=1
|(φqk, vk,j,rotfree)L2(Ω) − dk,j,rotfreeq |2+

λ2

∫

Ω

2∑

i=1

2∑

j=1
|Dhk,j,rotfree

xi vk,j,rotfree(x)|2 dx

(4.1)

In equation (4.1) λ ∈ R+ controls the degree of smoothness. Symbol hk repre-
sents the so-called gauge field, a motion field of the target phenomenon calcu-
lated previously and k is a variable indicating the time frame. In the proposed
equation, (φqk, vk,j)L2(Ω) − dk,jq represents the soft constraint, where φ is the
Gaussian kernel and d is the velocity associated to a feature at certain scale;
q ∈ {1, ..., NB} enumerates the critical branch associated to each scale-space
feature, j ∈ {1, 2} represents the vertical and horizontal component of the field
and w is a weighting factor. The smoothness term of (4.1) can be written as

2∑

i=1

2∑

j=1
|Dhk,j

xi vk,j(x)|2 =

2∑

i=1

2∑

j=1
|vk,j(x)− ∂xi(log hk,j)vk,j(x)|2.

(4.2)

In (4.1) divfree and rotfree indicate the divergence-free and rotation free com-
ponents of the vector field, obtained by employing results of the so-called
Helmholtz decomposition (3.5). The minimization of equation (4.1) is carried
out by solving the corresponding Euler-Lagrange equations.

Equation (4.1) provides a velocity vector for each pixel in the image sequence.
Due to the highly complex information illustrated simultaneously, such vector
fields are hard to interpret in clinical practice. In order to reduce the degree of
complexity, the estimated vector fields have been converted into scalar fields by
calculating the kinetic energy. Given a 2-dimensional cardiac image sequence,
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the kinetic energy is defined as

KE = 1
2m

∫

Ω

2∑

j=1
v2
k,j(x)dx (4.3)

where m indicates the cardiac mass, which has been assumed constant in
the experiments. Definition (4.3) has been used as the basis to define a set
of measurements such as: KEk, KEk,divfree, KEk,rotfree, KEk,divfree

KEk,divfree+KEk,rotfree ,
KEk,rotfree

KEk,divfree+KEk,rotfree and KEk,divfree

KEk,rotfree
, where k indicates the time frame.

In order to evaluate the contribution to the motion of certain areas in the
cardiac walls, kinetic energy has been calculated in sectors defined by the bull’s
eye plot described in (4.3) and it has been integrated over a time period T ,
which in the tests correspond to the systolic period. Hence,

KE¤ = 1
2m

T∫

0

∫

¤⊆Ω

2∑

j=1
v2
j (x, t)dxdt (4.4)

where ¤ represents the spatial sector of the cardiac walls over which the kinetic
energy is calculated.

4.3 Bull’s eye plot

The localization and size estimation of infarcted areas in the myocardium play a
fundamental role in evaluating the severity of the patient’s health condition and
in planning therapy treatments. In routine clinical practice scar tissue detection
occurs mostly by visual inspection, relying on the expertise and experience of
the cardiologist. In order to improve this task, visualization techniques are
required. According to the literature, the bull’s eye plot is a widely used tool
for the analysis and visualization of 2-dimensional slices in the left ventricle
[34]. The bull’s eye plot consists of three series of concentric rings, which, from
extern to intern, provide information of the basal, middle and apical image
slices of the left ventricle in the short-axis view (Figure 4.1, row 1). Every
ring is divided into four (for apical slices) or six (for middle and basal slices)
equi-spaced angular segments, which are color-coded and reflect the parameter
values extracted from the myocardium. In our case the parameter is the kinetic
energy. Segment 17 defines the apical cap, called apex, and represents the true
muscle at the extreme tip of the ventricle. Such rings and angular segments
can be subdivided in smaller regions in order to refine the visualization for
smaller areas. An extension of such a visualization tool has been provided in
[152], where information of the myocardial walls has been illustrated without
showing discontinuities.



72 Chapter 4. Cardiac motion estimation: analysis of the kinetic Energy

13

14

15

16Apical Cavity

7

8

9

10

11

12

Middle Cavity

1

2

3

4

5

6

Basal Cavity

Basal Cavity

Middle Cavity

Apical Cavity

17

1

2

3

4

5

6
7

8

9

10

11

1213

14

15

1617

Figure 4.1: A bull’s eye plot consists of 3 rings (basal, middle, apical cavity and the
apex) and is divided in 17 segments. Row 1 shows the short axis slices. Row 2 left
image displays the long axis slices. Row 2, right image illustrates the combination of
bull’s eye plots.

4.4 Experiments

In order to investigate the dynamic cardiac behavior, equation (4.1) has been
applied on tagged MR images datasets acquired from 10 volunteers and one
patient. In this section we consider only experiments carried out on short axis
visualizations of the basal slice of the cardiac walls. The image acquisition
took place at Leiden University Medical Center (LUMC) using a MR 1.5 Tesla
scanner. In general each dataset has been acquired during both the systolic
phases and consisted of more than 30 frames acquired in each session. Each
image presented an in-plane spatial resolution of 1.2 mm × 1.2 mm with time
resolution of 2 × 10−2 seconds and with thickness of 8 mm. Of such frames,
the first 15 presented well defined tags, which faded afterwards. Therefore,
motion estimation has been carried out from frame 3 to frame 13 in order to
reduce the temporal boundaries’ influence. In the optic flow equation (4.1)
we track feature points such as saddles over time and we reconstruct a dense
motion field by imposing λ = 10−6. In this case weighting factor w depends on
the condition number of the Hessian matrix of the sparse velocity vectors as
described in section 2.5.
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In order to perform measurements only between the endocardium and epi-
cardium of the left ventricle, motion fields have been masked by employing car-
diac wall contours which were manually extracted. Finally, the kinetic energy
has been calculated using the measurements defined in (4.2). In the estima-
tions, the frame mean velocity has been removed, in order to decrease energy
contributions from the rigid motion of the heart as a whole.

In the plots 4.2 and 4.3 kinetic energy estimations of the volunteers and the
patient are compared. Measurements have been carried out with respect to the
time frame, displayed in the x axis. In Figures 4.2 and 4.3 the patient’s kinetic
energy is illustrated with dots. In column 1 the ratio of the kinetic energy of
either the divergence-free or rotation-free component and the sum of the kinetic
energy of divergence-free and rotation-free is expressed. Column 2 shows the
behavior of the kinetic energy ratio of the divergence-free and the rotation-free
components. Finally column 3 provides information of the kinetic energy of the
extracted velocity field, and its divergence-free and rotation-free components.
In this latest case the mass is assumed constant, equal to 1 gram per pixel and
uniformly distributed.

In Figures 4.2 and 4.3 column 3, it can be seen that in each frame the pa-
tient always presents less kinetic energy than the volunteers; namely, the pa-
tient maximum kinetic energy of the extracted motion field, rotation-free and
divergence-free components are 241.4 Joules, 162 Joules and 33.8 Joules re-
spectively. On the other side, the smallest kinetic energy maximum of the
volunteers’ motion field and its rotation-free and divergence-free components
are 373.9 Joules, 222.2 Joules, 172.7 Joules respectively.

By using equation (4.4), the kinetic energy has been moreover calculated in
sectors and displayed by means of the so-called bull’s eye plot. Each one of
the original 6 sectors of the visualization plot has been further subdivided into
96 sub-sectors, in order to provide a more accurate representation of the tissue
behavior. Figure 4.4, 4.5, 4.6 and 4.7 illustrate the kinetic energy of the motion
field, divergence-free and rotation-free components of the volunteers and patient
integrated over the systolic period. In order to show strong differences in kinetic
energy magnitude between the the volunteers and the patient, the intensity
values of the volunteers plots were clipped by imposing the range of kinetic
energy estimations calculated for the patient case (see Figures 4.4, 4.5 and 4.6).
The range of kinetic energy in column 1 is 0 ≤ KE ≤ 7.6 Joules, in column 2 is
0 ≤ KE ≤ 5.98 Joules and in column 3 is 0 ≤ KE ≤ 1.51 Joules. Such plots are
color encoded, where colors provide information of kinetic energy magnitude,
such that low energy is displayed in blue, middle high energy in green and high
energy in yellow. The septum location is associated to the boundaries of sectors
2 and 3 of the bull’s eye plot and is enhanced in red color. Such estimations
point out once again that the patient kinetic energy is weak all over the cardiac
walls, whereas volunteer plots present large green and yellow areas.
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Figure 4.8 displays a late enhancement MR image of the patient’s heart (top
image), with scar tissue highlighted by a contrast agent, and the respective
bull’s eye plot (bottom image). The bull’s eye plot shows a green region with
relatively high kinetic energy, which provides the main contribution to the heart
beat. This region illustrates in sector 1 an area with a localized minimum
highlighted by a black arrow. This area is located close to an infarcted area
highlighted by the white arrow in the Figure 4.8 top image. In sectors 4, 5, 6 the
late enhancement image displays other infarcted regions, which in the bull’s eye
plot correspond to areas with very low kinetic energy (see black arrows Figure
4.8 bottom image).

4.5 Discussion

In this chapter we explore heart motion analysis and provide preliminary and
promising results, by estimating the kinetic energy of a group of ten healthy
subjects and one patient. Such measurements are useful for analyzing the car-
diac behavior, may provide information of the cardiac health condition and
may help in localizing areas with abnormal cardiac movement. Finally, in this
work the kinetic energy of the rotation-free and divergence-free components
have been also studied and the measurements have been carried out globally
and locally.

Tests on the rotation-free and divergence-free components highlight that during
the systole cardiac contractions present a higher energy, with respect to rota-
tion, for both volunteers and the patient. However, compared to the volunteer
estimations, the patient shows an overall weaker kinetic energy. It’s interesting
to notice that the patient’s divergence-free kinetic energy contribution presents
a maximum five times smaller than the volunteer’ smallest energy maximum of
the same type. We can therefore conclude that the rotational contribution is
almost absent in the patient. This is also clear in the visualization of the pa-
tient’s divergence-free motion field in Figure 3.16, column 3, where the vectors
present a very small magnitude.

However, global measurements do not tell which part of the cardiac wall is
contributing to the motion. Therefore, local kinetic measurements have been
carried out and the outcomes have been visualized in a modified version of the
classical bull’s eye plot. Tests performed on volunteers show large areas with
green to yellow colors (i.e. high energy) across the whole ring, while in the
patient the motion contributions are located especially in sectors 1, 2 and 6.
Moreover, tests carried out on the patient highlighted in sector 1 a region with
a local minimum between regions with significant kinetic energy. A comparison
with a late enhancement cardiac image showed that there was correspondence
between the location of the infarcted area in the image and the location of the
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local minimum in the bull’s eye plot (Figure 4.8). The late enhancement cardiac
image display other infarcted areas in sectors 4, 5 and 6, which correspond to
regions with very low kinetic energy in sectors 4, 5 and 6 of the bull’s eye plot.
However, the whole sectors 4, 5, and 6 exhibit low and similar kinetic energy
and this leads to a more difficult visual detection of the infarcted areas.

In such MR images contrast agents are used to enhance patterns, such as in-
farcted areas. Contrast agents, however, have to be injected in the human body
and may provoke allergic reactions [26]. On the other side the newly presented
kinetic energy quantification technique is not invasive and showed promising
results in finding a scar tissue area. In the future it would be interesting to
test this method on a larger group of patients. If similar performance would
be achieved and the kinetic energy provides information of infarcted areas also
in other cases, then besides strain [162], cardiac kinetic measurements might
become an effective tool to be employed to limit the usage of contrast agents.

Finally, in this work we assumed the mass constant and equal to 1 gram per
pixel. This is of course a very simple choice that does not take into account the
density changes due to contraction and relaxation. In estimating the kinetic
energy from 2-dimensional cardiac images, the area of tissue from which we
carry out the measurements, changes over time also due to through plane heart
movement. The total mass of the heart is therefore not preserved and this
affects the accuracy of the measurements. In order to overcome this, in the
future research we will constrain the optic flow equations such that the mass
will be kept constant.
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Figure 4.2: Kinetic energy behavior of volunteer 1, 2, 3, 4, 5 and the patient are
compared. Patient’s behavior is displayed with dots. In the graph KE, DF, RF are
kinetic energy, divergence-free and rotation-free components respectively.
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Figure 4.3: Kinetic energy behavior of volunteer 6, 7, 8, 9, 10 and the patient are
compared. Patient’s behavior is displayed with dots. In the graph KE, DF, RF are
kinetic energy, divergence-free and rotation-free respectively.
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Figure 4.4: Bull’s eye plot: Kinetic energy integrated over systole. Row from 1 to 4
illustrate the kinetic energy of the first 4 volunteers. From left to right, kinetic energy
of motion field, rotation-free and divergence-free component respectively. Range of
kinetic energy: in column 1 0 ≤ KE ≤ 7.6 Joules, in column 2 0 ≤ KE ≤ 5.98 Joules
and in column 3 0 ≤ KE ≤ 1.51 Joules.
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Figure 4.5: Bull’s eye plot: Kinetic energy integrated over systole. Row from 1 to
4 illustrate the kinetic energy of volunteer 5 to 8. From left to right, kinetic energy
of motion field, rotation-free and divergence-free component respectively. Range of
kinetic energy: in column 1 0 ≤ KE ≤ 7.6 Joules, in column 2 0 ≤ KE ≤ 5.98 Joules
and in column 3 0 ≤ KE ≤ 1.51 Joules.
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Figure 4.6: Bull’s eye plot: Kinetic energy integrated over systole. Row from 1 to 2
illustrate the kinetic energy of volunteer 9 and 10. From left to right, kinetic energy
of motion field, rotation-free and divergence-free component respectively. Range of
kinetic energy: in column 1 0 ≤ KE ≤ 7.6 Joules, in column 2 0 ≤ KE ≤ 5.98 Joules
and in column 3 0 ≤ KE ≤ 1.51 Joules.
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Figure 4.7: Bull’s eye plot representing kinetic energy integrated over systole period:
patient case. From left to right, kinetic energy of motion field, rotation-free component
and divergence-free component. Range of kinetic energy: in column 1 0 ≤ KE ≤ 7.6
Joules, in column 2 0 ≤ KE ≤ 5.98 Joules and in column 3 0 ≤ KE ≤ 1.51 Joules.
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Figure 4.8: Patient’s late enhancement MR image (top image) and bull’s eye plot of
the kinetic energy extracted from the respective motion field (bottom image). In the
late enhancement image the arrows point to infarcted regions. In the bull’s eye plot
these areas present very low kinetic energy (see arrows bottom image). The area in
sector 1 corresponds to the area with a localized kinetic energy minimum in the bull’s
eye plot.



82



All life is an experiment. The more experiments
you make the better.

Ralph Waldo Emerson, poet

5Motion extraction: further experiments

Becciu A., Duits R., Janssen B.J., Florack L.M.J., ter Haar Romenij B.M.
and H.C. van Assen. Feature based optic flow estimation using covariant
derivatives and Helmholtz decomposition: Application to cardiac tagged
MRI sequences. To be submitted to the international journal IEEE Trans-
actions on Medical Imaging.
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5.1 Introduction

In literature several methodologies exist that carry out motion estimation. In
order to understand the advantages and drawbacks of each technique it is crucial
to evaluate and compare their performance with the same image sequences and
with a known ground truth. In this chapter the performance of the optic flow
algorithm illustrated and discussed in chapter 3 (equation (3.47)), feature based
optic flow with Helmholtz decomposition and covariant derivatives (FBHDCD),
is compared with the performance of well known optic flow techniques in the
literature such as the Horn and Schunck approach [76], the Lucas and Kanade
method [111] and the tuple image multi-scale optic flow equation (TIMS OFCE)
developed by Van Assen et al. [163]. Tests are carried out on a phantom with a
known ground truth. Accuracy of the extracted motion field has been assessed
using the so-called average angular error (AAE) [20] and L2 norm. Experiments
revealed that the FBHDCD exhibits the smallest error AAE = 3.84 degrees and
L2 norm= 0.1.

In tagged MR images intensity varies over time due to T1 decay. In order to
evaluate the robustness against brightness changes, the new method is tested
directly on the cardiac tagged MR images of a volunteer.

In sections 5.2, 5.3 and 5.4 we describe the phantom used, the two experiments
carried out and the performances achieved. Finally, in section 5.5 the results
and the future directions are discussed.

5.2 Phantom

In the experiments a digital phantom created in our group has been used [161].
The phantom consists of two sequences with elongated horizontal and vertical
stripes. Figure 5.2 illustrates three subsequent frames. The digital phantom
mimics the behavior of a mechanical phantom used for tagged MR image acqui-
sitions. This phantom consists of two concentric cylinders, the inner cylinder
has radius R1 and moves with angular displacement ω1 with respect to a fixed
cylinder with radius R2 (see Figure 5.1). The environment between the walls
of the two cylinders is filled with standard gelatine, which deforms according to
the movement of the inner cylinder. The angular displacement of the gelatine
at any point with radius R with respect of the center of rotation is based on
the analytic solution described by Young et al. in [176]. Hence,

ω(R) = ω1
R−2

2 −R−2

R−2
2 −R−2

1
(5.1)
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with ω(R1) = ω1 and ω(R2) = 0, where the parameter ω1 represents the angular
displacement at radius R1. Parameters R1, R2 and ω1 have been acquired
experimentally.

Ω

R1

R2

Figure 5.1: The phantom consists of two concentric cylinders with radius R1 and R2.
The inner cylinder moves with angular displacement ω1, whereas the outer cylinder is
fixed.

Figure 5.2: Three subsequent frames of the rotating digital phantom used in the ex-
periments.
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5.3 Experiment 1: performance of optic flow tech-
niques

The performance of FBHDCD has been compared with the performance of
three different optic flow techniques currently used in our group. All methods
have been implemented in Matematica [173] and are: the tuple image multi-
scale optic flow equation [163], recall equation (1.12), the Lucas and Kanade
[111], and the Horn and Schunck [76], see equations (1.9) and (1.4) respectively.
These optic flow algorithms have been applied to three subsequent frames of
the phantom described in 5.2, which consists of 13 frames of 93× 93 pixels.

The FBHDCD algorithm has been computed using a combination of maxima,
minima and saddles as feature points (over 230 feature points per frame), with
spatial scale chosen within the range s = {1, 1.22, 1.48, 1.81, 2.21, 2.69, 3.28, 4.}
and temporal scale τ = 1. As in section 3.8, we employ the same optimized
smoothing parameter values λ1 = 102 and λ2 = 103 and the same optimized
parameter values that take into account the gauge field influence in the phase
of vector field reconstruction (η1 = 0.5 and η2 = 0.9). Computational time per
frame has been estimated from five to ten minutes.

The TIMS OFCE algorithm has been assessed using a combination of the fol-
lowing spatial and temporal scales, namely

s = {1.5, 1.61, 1.72, 1.85, 1.98, 2.13, 2.28, 2.45, 2.63, 2.82, 3.02, 3.24, 3.48, 3.73, 4}

and t = (1.5, 1.73, 2). The scales were selected using the minimum condition
number of matrix B for each pixel in the image. Also in this case each frame
was calculated in roughly five minutes. However, the computational time sig-
nificantly depends on the amount of spatial and temporal scales involved. An
increase in the number of scales employed produces an increase in the compu-
tational time.

In the Lucas and Kanade algorithm (equation (1.9)), motion has been extracted
in a window of observation of 5×5 pixels. The technique employs the following
weighting function to give more prominence to the central pixel of the window

W = 1
16
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The flow for each frame has been calculated in less than 10 seconds.
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In the Horn and Schunck method (equation (1.4)) the motion field has been
estimated with a smoothness parameter λ = 0.5. Velocity fields have been
calculated in less than 40 seconds per frame.

5.3.1 Results

The extracted motion fields have been compared with a known ground truth
and the accuracy has been assessed in terms of L2 norm and Barron’s average
angular error (AAE) [20]

Angular Error = arccos( Vt√
u2
t + v2

t + 1
· Ve√

u2
e + v2

e + 1
) (5.2)

where Vt is the true vector with spatial component ut, vt, and time component
1, whereas Ve is the estimated velocity vector and ue, ve and 1 are its spatial
and time components respectively.

The FBHDCD algorithm exhibits the smallest average angular error and L2
norm. The measurements are averaged over the 3 investigated frames. The
FBHDCD method shows AAE = 3.84 and L2 norm= 0.1. Tables 5.1 and 5.2
illustrate the average angular error and the L2 norm error of the discussed
optic flow algorithms. Figure 5.3 shows the Barron’s angular error (left image)
and L2 norm error (right image) per pixel of the FBHDCD algorithm for one
frame. In Figure 5.3 the intensity values represent the error magnitude, dark
areas correspond to regions with small errors and bright intensities correspond
to pixels with high angular errors. The words "small error" and "high error"
respectively represent AAEs and L2 norm much smaller and much larger than
the FBHDCD’s AAE and L2 norm averaged over the investigated 3 frames.
Errors larger than 10 degrees have been clipped for AAE, while errors larger
than 0.5 have been clipped for the L2 norm image plot. Notice that the highest
errors are located around the inner cylinder. Figure 5.4 exhibits the retrieved
motion field of one frame and the corresponding ground truth, larger arrows
and arrow heads are related to larger flows. In these plots the arrow’s length
has been amplified 15 times.

5.4 Experiment 2: cardiac motion estimation from
tagged MR images

The tuple image multi-scale optic flow algorithm is tuned for applications on
phase images. The method assumes that the phase is preserved over the image
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Optic Flow Methods FBHDCD FBSD TIMS OFCE Lucas and Kanade Horn and Schunck
AAE Frame 3 3.50◦ 5.15◦ 4.20◦ 5.66◦ 5.55◦
AAE Frame 4 4.24◦ 5.59◦ 5.91◦ 5.19◦ 5.97◦
AAE Frame 5 3.77◦ 5.24◦ 6.27◦ 4.40◦ 5.81◦

Table 5.1: Performance of the optic flow methods. Average angular error is measured
for all pixels in the image. The optic flow method described in this thesis presents the
smallest AAE = 3.84 degrees. This error measurement value is the average of AAE for
the 3 investigated frames. The acronym FBHDCD is used for "feature based optic flow
with Helmholtz decomposition and covariant derivatives", FBSD "feature based optic
flow using standard derivatives" and TIMS OFCE is the abbreviation for "tuple Image
multi-scale optic flow constraint equation"

Optic Flow Methods FBHDCD FBSD TIMS OFCE Lucas and Kanade Horn and Schunck
L2 Norm Frame 3 0.084 0.13 0.11 0.17 0.14

L2 Norm Frame Frame 4 0.12 0.15 0.18 0.24 0.17
L2 Norm Frame Frame 5 0.11 0.15 0.19 0.25 0.17

Table 5.2: Performance of the optic flow methods: magnitude error. L2 norm is
measured for all pixels in the image. The optic flow method described in this thesis
presents the smallest L2 norm= 0.10. This error measurement value is the average
of the L2 norm for the 3 investigated frames. The acronym FBHDCD is used for
"feature based optic flow with Helmholtz decomposition and covariant derivatives",
FBSD "feature based optic flow using standard derivatives" and TIMS OFCE is the
abbreviation for "tuple Image multi-scale optic flow constraint equation"

0 °

10 °

0

0.5

Figure 5.3: Average angular error (left image) and L2 norm error per pixel of frame 3
using the FBHDCD method. Angular errors were clipped at 10 degrees (degree symbol
◦), while L2 norm error were clipped at 0.5. Dark areas represent small angular errors,
whiter regions depict larger errors. We notice that the highest errors are located around
the inner cylinder due to a strong discontinuity at the boundaries: motion is observed
outside the inner cylinder, while no motion is observed inside the inner cylinder.

sequence. A direct application of this technique on the tagged MR images might
be therefore not suitable.
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Figure 5.4: Reconstructed vector field (left image) and ground truth (right image) of
frame 3. Larger arrows and arrow heads indicate larger flows. In these plots the arrow’s
length has been amplified 15 times.

While the Lucas and Kanade and Horn and Schunck algorithms are based on
the assumption that patterns in the image sequence maintain constant intensity
over time, the optic flow algorithm FBHDCD assumes that feature points main-
tain their characteristics over time. That is, it assumes that critical points will
be still a critical points even in the presence of brightness changes. This method
has been therefore applied directly to tagged MR images, which present fading
due to T1 relaxation time. Figure 5.5 shows four subsequent frames with the
retrieved velocity fields extracted from the tagged MR images of the contract-
ing left ventricle of a volunteer. Visual inspection confirms that the retrieved
motion fields describe realistically the movement of the cardiac walls.

5.5 Discussion and Conclusion

In this chapter the algorithm defined in 3.47 has been furthermore investigated
and its performance has been compared with the performance of very well
known optic flow methods in the literature such as the Horn and Schunck
approach [76], Lucas and Kanade method [111] and the tuple multi-scale optic
flow equation of van Assen et al. [163].

The optic flow algorithms were tested on an artificial phantom from which
the ground truth is known and the accuracy of the retrieved vector field has
been described in terms of Barron’s average angular error (AAE) and L2 norm.
The optic algorithm FBHDCD showed excellent performance and provided the
smallest error (AAE = 3.84 degrees and L2 norm= 0.1). In section 3.8 the
algorithm was tested on the same three subsequent frames and using the same
parameters values (λ1, λ2, η1 and η2). However, in that case best performance
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Figure 5.5: Motion fields extracted from tagged MR images of the left ventricle of a
volunteer. The images were not converted into phase images. Motion estimation has
been performed using the motion field algorithm described in chapter 3.

has been achieved at AAE = 6.68◦ and L2 norm= 0.16. The reason for this
poorer result is related to the amount of features employed. In section 3.8
maxima were the only feature points used. Each frame exhibited roughly 60
maxima. In the experiments carried out in this chapter we instead use a combi-
nation of maxima, minima and saddle points (over 230 critical points per frame),
therefore it can be concluded that the accuracy of the reconstructed vector field
is strongly dependent on the number of features used in the algorithm. In case
of few feature points, techniques based on the optic flow constraint equation
have to be preferred.

In the future we will carry out experiments with other feature points such as
the scale-invariant feature transform (SIFT) points, which may furthermore
improve the algorithm performance.

Due to the high amount of steps undertaken by the FBHDCDmethod, recall the
algorithm overview in Figure 3.1, at the moment the time required to calculate
the motion field for each frame of the sequence is roughly 5-10 minutes. Speed
tuning was not the goal of the project and therefore it has not been carried
out in this work. However in the future, computational expensive parts of the
algorithm can be implemented in integrated circuits like field-programmable
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gate arrays (FPGAs), which will speed up considerably the final reconstruction
of the motion field.

So far we have computed optic flow fields from images with constant brightness,
such as the phase images described in 2.2 and 3.2. Tagged MR images exhibits
brightness changes over time and in the literature they are converted into phase
images, which preserve intensity, with the goal to use methods based on the
brightness constancy assumption. The optic flow method FBHDCD has been
applied also on these images. Phase images allow to create geometry patterns,
from which a large amount of critical points, that move along with the tagging
structure, is retrieved. However, the conversion of the tagged MR images into
phase images have been performed by filtering the image spectrum in the Fourier
domain. Thus we also filter out significant information related to the motion
estimation. Our feature based algorithm is not based on constant brightness. As
illustrated in Figure 5.5, our technique has been successfully applied directly to
tagged MR images. In the future we will carry out experiments on the tagged
MR images of phantoms like the one described in 5.2, to discuss how much
motion information has been lost in transforming MR images into phase images
and at the same time to quantify the accuracy of the motion field retrieved
directly from tagged MR images.

5.6 Acknowledgements

Implementation and experiments using the tuple image multi-scale optic flow
equation have been carried out by Dr Hans van Assen. Implementation and
experiments using the Lucas and Kanade approach and the Horn and Schunck
method have been carried out by Laurens Leeuwis during his internship super-
vised by the author of this dissertation.
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For the wise man looks into space and he knows
there is no limited dimensions.

Lao Tzu, philosopher

63D winding number: theory and application to
medical imaging

This chapter is based on:
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B.M. and van Assen H.C. 3D Winding Number: Theory and Application
to Medical Imaging. Accepted for publication in the special issue Modern
Mathematics in Biomedical Imaging of the International Journal of Biomed-
ical Imaging.
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Note This work was carried out in close cooperation with Dr Andrea Fuster.
The theory was conceived by Andrea Fuster and was numerically implemented
and developed into a range of applications by the author of this dissertation.

Abstract.
We develop a new formulation, mathematically elegant, to detect critical points
of 3D scalar images. It is based on a topological number, which is the gener-
alization to three dimensions of the 2D winding number. We illustrate our
method by considering three different biomedical applications, namely, detec-
tion and counting of ovarian follicles and neuronal cells and estimation of car-
diac motion from tagged MR images. Qualitative and quantitative evaluation
emphasize the reliability of the results.

6.1 Introduction

Critical points are very helpful for different purposes and applications in com-
puter vision as key points, landmark points, anchor points and others. In
segmentation, for example, critical points have been used to characterize de-
forming areas of the brain [174] or to enhance ridges and valleys in MR images
[63]. In image matching, mappings between the considered images are com-
puted based on their critical points [141, 72]. Image matching has been also
performed through so-called top points, critical points for which the determi-
nant of the Hessian matrix is equal to zero [131, 17] or through the popular
Harris points [74] and the SIFT key point detector [110]. Critical points have
also been used in motion estimation algorithms, where the optic flow field is
generated from a sparse set of velocities associated to multi-scale anchor points
[165, 21].

Critical point detection is an established research field. Blom [23], for example,
classifies critical points by counting the sign changes between the analyzed pixels
and its neighbors in a hexagonal grid. Nackman [103] defines the image topology
in terms of slope districts. The ridge and valley lines are described as the
ascending and descending slopes coming from saddle points. The dales and hills
are identified as districts whose lines of slope converge to/come from the same
pit/peak. These methods have been extensively employed for 2-dimensional
applications. In recent years there has been a strong increase of computational
power and 3D scalar images are becoming the standard data of investigation,
especially in medical imaging. Three-dimensional critical point techniques allow
for a more realistic analysis of human organ behavior. For example, tracking
algorithms applied on a 2-dimensional heart image sequence retrieve only in-
plane contractions and rotations of the cardiac walls but miss the through-
plane components. The through-plane components are instead retrieved with
3-dimensional optic flow approaches. In this work we show an application where
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the presented critical point detection algorithm is embedded in a feature point
based motion estimation technique.

In this chapter we work with a topological number (from homotopy theory)
that can locate critical points of scalar images in an arbitrary number of di-
mensions. In two dimensions it reduces to the so-called winding number and
has been studied in detail in [89, 90, 88]. In physics, and in modern cosmology
in particular, the winding number appears in the context of topological defects
such as monopoles, cosmic strings and domain walls (see, for example, [166]
and references therein). We consider this topological number in three dimen-
sions and refer to it as 3D winding number. Properties of this approach are
significant:

• The 3D winding number provides information on the character of the
critical points.

• The winding number is independent of the shape of hyper-surface S around
which is calculated. It is a topological entity.

The chapter is organized in the following way. After some preliminaries (section
6.2.1), we treat extensively the theoretical aspects of the winding number in
three dimensions and explain the implementation of our algorithm (sections
6.2.2 and 6.2.3). In sections 6.2.4 and 6.2.5 we describe a methodology to refine
the position of the retrieved critical points and we propose a classification of
critical points based on the winding number. Furthermore, we test the viability
of our method by considering three different biomedical applications, namely,
follicle and neuronal cell counting, and cardiac motion estimation in sections
6.3.1, 6.3.2 and 6.3.3 respectively. Finally, in section 6.4 we discuss the results
and possibilities for future work.

6.2 Theory

6.2.1 Preliminaries

A critical point of a smooth function f(x1, . . . , xn) is a point x = (x1, . . . , xn)
for which the gradient of f vanishes, ∇f |x = 0. In any other case the point
is said to be regular. Critical points can be further classified depending on
whether the Hessian matrix at the considered point is singular:

det (∂i∂jf)|x = 0 (6.1)
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This is obviously the case if one or more matrix eigenvalues are zero. Such
critical points are called degenerate. Otherwise we deal with non-degenerate
critical points.

We are interested in finding and classifying critical points of a scalar image
L(x). We will do so by computing a topological quantity ν at every point in
the image. The topological number of a d-dimensional scalar image at a point
x (with at most isolated singularities) is defined by [89]

ν =
∮

S

Φ(x) (6.2)

where Φ is a (d− 1)-form depending on the image intensity and its derivatives
(see for example [120] for a general discussion of differential forms). The precise
definition of Φ in d dimensions can be found in [89]. In this chapter we will
only consider the case d = 3 (further details are given in next section). The
integration is performed on a closed, oriented (hyper)surface S around the
considered point.

An important property of Φ is the fact that it is a closed form, dΦ = 0. If the
image has no singularities in the region V enclosed by S the generalized Stoke’s
theorem can be applied to (6.2):

ν =
∮

S

Φ(x) =
∫

V

dΦ(x) ≡ 0 (6.3)

Therefore, the quantity ν is just zero at a regular point. At a singular point
it takes values of kπ, with k some non-zero integer number depending on the
number of dimensions and the character of the singularity1. The described
number is called topological because it does not depend on the chosen hyper-
surface of integration in (6.2). Another important property is the fact that it
is conserved within such an hyper-surface, i.e., when two or more singularities
are enclosed their topological numbers add up. We refer to [89] for a more
detailed discussion on these and other properties of ν in an arbitrary number
of dimensions.

6.2.2 Winding number in three dimensions

In three dimensions, the integrand in equation (6.2) is a 2-form given by [89]:

Φ = Li dLj ∧ dLkεijk
(LlLl)3/2 , i, j, k, l = x, y, z (6.4)

1 This is true for d ≥ 2.
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Here the indices i, j, k, l can take on values x, y or z, L = L(x, y, z) is the
intensity function of a 3-dimensional image, Lx, Ly, Lz are the components of
the spatial gradient of the intensity function, ∇L = (Lx, Ly, Lz), and ε is the
3-dimensional Levi-Civita symbol. The wedge product is represented by ∧. In
this chapter we use Einstein’s summation convention, i.e., a sum is taken over
repeated indices appearing in both subscripts and superscripts. In explicit form
equation (6.4) reads:

Φ = 2
‖∇L‖3 (Lx dLy ∧ dLz + Ly dLz ∧ dLx + Lz dLx ∧ dLy) (6.5)

where ‖∇L‖ is the gradient norm. Using the following relations

dLi = Lix dx+ Liy dy + Liz dz (6.6)

we can rewrite (6.5) as

Φ = 2
‖∇L‖3 {dx ∧ dy [(LyxLzy − LyyLzx)Lx + (LzxLxy − LzyLxx)Ly +

(LxxLyy − LxyLyx)Lz] +
dy ∧ dz [(LyyLzz − LyzLzy)Lx + (LzyLxz − LzzLxy)Ly +
(LxyLyz − LxzLyy)Lz] +
dz ∧ dx [(LyzLzx − LyxLzz)Lx + (LzzLxx − LzxLxz)Ly +
(LxzLyx − LxxLyz)Lz]} (6.7)

This expression was also given in [150]. After further inspection we notice that
it can be reformulated in the following way:

Φ = 2
‖∇L‖3 {dx ∧ dy [(∇Lx ×∇Ly) · ∇L] +

dy ∧ dz [(∇Ly ×∇Lz) · ∇L] +
dz ∧ dx [(∇Lz ×∇Lx) · ∇L]} (6.8)

where ∇L = (Lx, Ly, Lz) and

∇Lx ≡ ∂x(∇L) = (Lxx, Lyx, Lzx) (6.9)

∇Ly, ∇Lz are defined analogously. This new form is more elegant and simpler
to work with. Comparing (6.7) and (6.8) it is also clear that the latter form
will be easier to implement. In what follows we will therefore use expression
(6.8) rather than (6.7). In compact form we have:

Φ = 1
‖∇L‖3 (∇Li ×∇Lj) · ∇L dxi ∧ dxj (6.10)

where i, j take on values x, y or z. In this formulation Φ is antisymmetric as
the vector product is anti-commutative.
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6.2.3 Implementation

We study the nature of every voxel by performing the integration of expression
(6.8) on a 3× 3× 3 cube that contains it. Note that, for each face of the cube,
only one term in (6.8) survives in the integration given by equation (6.2). For
example, if we integrate on a cube face with z = constant it is clear that dz = 0
and therefore only the first term has to be taken into account.

One of the issues we face in the implementation is the integration of differential
forms. We make use of the following identity for integration of differential forms
in Euclidean space [149]:

∫

Ω

f(x1, . . . , xn) dx1 ∧ · · · ∧ dxn = ±
∫

Ω

f(x1, . . . , xn) dx1 . . . dxn (6.11)

Here, f(x1, . . . , xn) dx1 ∧ · · · ∧ dxn is a n-form2 in Rn and Ω is an oriented
domain. Note that the integral on the right-hand side is just the usual integral
of the function f(x1, . . . , xn). The sign on the right-hand side depends on the
orientation of the considered integration domain (+ for positively oriented, −
for negatively oriented). For example, from (6.8) and (6.11), the integration on
z = constant opposite cube faces reads

νxy =
∫

z=const.
Φ = 2

‖∇L‖3
( ∫

up
(∇Lx ×∇Ly) · ∇L dxdy

−
∫

down

(∇Lx ×∇Ly) · ∇L dxdy
)

(6.12)

We consider the image intensity function on the faces of a 3× 3× 3 cube to be
L = L(xα+a, yβ+b, zγ+c), where a, b, c are shifting indices of a plane on the
cube taking on values 0, 1, 2 and α = 1, . . . , Nx − 2, β = 1, . . . , Ny − 2, γ =
1, . . . , Nz − 2 are indices of the image volume with Nx, Ny and Nz representing
the volume size in x, y and z directions. With these conventions, equation
(6.12) can be expressed numerically as

να,β,γxy =
2∑

a,b=0
(∇Lx ×∇Ly) · ∇L (xα+a, yβ+b, zγ+2)−

2∑

a,b=0
(∇Lx ×∇Ly) · ∇L (xα+a, yβ+b, zγ) (6.13)

The winding numbers on planes x = constant and y = constant can be com-
puted in a similar way. The total winding number for the considered cube is
then

να,β,γ = να,β,γxy + να,β,γyz + να,β,γzx (6.14)
2 If the considered differential form has more than one component the identity simply holds

for each one of them.
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The numerical implementation of the 3D winding number algorithm can be
summarized in the following steps:

• Initialize scalar image L(x, y, z).

• Calculate the winding number for all voxels in the image volume.
for α = 1 to Nx − 2 do
for β = 1 to Ny − 2 do
for γ = 1 to Nz − 2 do
να,β,γ = να,β,γxy + να,β,γyz + να,β,γzx

end for
end for

end for

• Divide the outcomes of να,β,γ by 4π.

• In order to distinguish the type of critical points retrieved (maxima or
minima from saddles), extract the sign of the Hessian matrix determinant
at locations where να,β,γ 6= 0.

6.2.4 Refinement of critical point positions

Due to signal discretization, the retrieved critical point location might not be
completely accurate (see Figure 6.1 for an illustration of this issue for the 1D
and 2D case). The position can be refined at sub-pixel level by considering the
Taylor expansion of the intensity gradient around the retrieved point:
∇L(x) = (Lx(xe) + (x− xe)Lxx(xe) + (y − ye)Lxy(xe) + (z − ze)Lxz(xe),

Ly(xe) + (x− xe)Lyx(xe) + (y − ye)Lyy(xe) + (z − ze)Lyz(xe),
Lz(xe) + (x− xe)Lzx(xe) + (y − ye)Lzy(xe) + (z − ze)Lzz(xe))

(6.15)
where x = (x, y, z) and xe = (xe, ye, ze) denote the true and estimated critical
point location respectively. We can write equation (6.15) in a more compact
form:

Li(x) = Li(xe) + (j − je)Lij(xe) (6.16)
where i, j can take on values x, y or z. The intensity gradient at a critical point
vanishes. The refined critical point position is therefore:



x
y
z


 =



xe
ye
ze


−HL−1(xe)



Lx(xe)
Ly(xe)
Lz(xe)


 (6.17)

Here H is the Hessian matrix. Equation (6.17) provides the critical point
position at subpixel level and can be iterated until the desired accuracy has
been reached.
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Figure 6.1: Critical point refinement. Left image: A continuum Gaussian signal in 1
dimension and the corresponding sampled signal. The sampled signal shows maxima
at two nearby positions (points in red), which are at different locations from the real
maximum (point in green). Right image: Rasterized version of a 2-dimensional Gaus-
sian signal. Red points are the retrieved maxima, whereas the green point is the true
maximum obtained after the refinement.

6.2.5 Classification of critical points

In three dimensions there are four types of non-degenerate critical points,
namely, minima, 1-saddles, 2-saddles and maxima. They are characterized by
the number of negative eigenvalues of the 3×3 Hessian matrix, the index, at the
corresponding point: 0, 1, 2 or 3. Each 1-saddle (2-saddle) point is connected
to two, not necessarily distinct, minima (maxima) by integral lines. A more
detailed description of 3D saddle points can be found in [113].

The winding number at a certain image point is given by the integral of expres-
sion (6.10) on an appropriate surface enclosing the point. The winding number
of (isolated) critical points in three dimensions takes values of 4kπ, with k = ±1
[150, 151]. We will argue that the winding number can be used for classification
of extrema and saddle points in 3D. As a matter of fact, the winding number
is able to distinguish between the two types of saddle points in 3D.

In Tables 6.1 and 6.2 we summarize the explicit values for the index and winding
number of the different types of critical points. For completeness, we treat also
the 2-dimensional case. Note that extrema in 3D can have either positive or
negative winding number, unlike the 2D case. Saddles have positive or negative
winding number as well, depending on the type of saddle point. It is now
possible to classify critical points according to their winding number. Once
the sign has been calculated it suffices to examine the image intensity at the
considered point and its close neighborhood to distinguish between a minimum
and a 2-saddle or a maximum and a 1-saddle.

The proposed correspondence between the index and winding number in three
dimensions is well-grounded. The following has been shown for a non-degenerate
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2D index winding number
minimum 0 +2π
saddle 1 −2π
maximum 2 +2π

Table 6.1: Index and winding number of critical points in 2D.

3D index winding number
minimum 0 +4π
1-saddle 1 −4π
2-saddle 2 +4π
maximum 3 −4π

Table 6.2: Index and winding number of critical points in 3D.

3D sign (det H) winding number
minimum + +4π
1-saddle − −4π
2-saddle + +4π
maximum − −4π

Table 6.3: Correspondence between the sign of the Hessian determinant and winding
number for critical points in 3D.

critical point in an arbitrary number of dimensions [89]:

ν = sign (det H) Cd (6.18)

where H is the Hessian matrix and Cd is a constant depending only on the
number of dimensions d. In three dimensions Cd is equal to 4π. The relation
between the winding number and the sign of the Hessian in d = 3 is given in
Table 6.3. This is clearly in agreement with the postulated winding number for
the different types of critical points.

6.3 Experiments

The proposed algorithm has been implemented in Mathematica [173] and it has
been tested on three different biomedical applications, viz. follicle detection,
neuronal cell counting and cardiac left ventricle motion analysis. In order to
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perform the experiments we make use of the scale-space framework [79, 108,
94, 151, 54]. The Gaussian scale-space representation L : R3 × R+ of a 3-
dimensional static image x 7→ f(x) ∈ L2(R3) is given by the spatial convolution
with a Gaussian kernel

L(x, s) = (f ∗ φs)(x) , with φs(x) = 1
4πs exp(−x2

4s ) (6.19)

where x = (x, y, z) ∈ R3 and s > 0 represents the scale. In the remainder of the
chapter the image intensity function should be regarded as a function of both
location and scale, L = L(x, s).

6.3.1 Follicle detection

Ovarian follicles are the basic eggs of the female reproductive system. In par-
ticular the number of primordial follicles decreases with the age reaching a
minimum during the menopause. Therefore, follicle analysis and counting may
provide information on fertility prospects [35, 52, 135]. At the stage of devel-
opment that they can be measured with 3D ultrasound, the human follicles
present roughly a spherical shape with a typical diameter of two to five mm
and appear darker with respect to surrounding tissue on ultrasound images (see
Figure 6.3) [114].

Detection and counting of follicles is usually carried out manually by inspecting
the 2D slices from a 3D data set. This is a repetitive and tedious task which
might introduce mistakes especially in the typically noisy data sets. Robust
and automated detection of follicles is therefore useful.

In the experiments we automatically locate and count ovarian follicles of three
different patients using ultrasound image volumes with a size of 128×110×180,
138× 116× 176 and 180× 108× 126 voxels respectively. Image acquisition has
been carried out by an experienced echographer with 3D ultrasound system
Combison 5600 (Kretz Technik AG, Medicor, Austria / Korea), which has been
equipped with a 12 MHz transvaginal 3D probe of 2.2 cm. The system per-
forms image volume acquisition in about 2 seconds and allows to reliably detect
follicles with diameter of 3 mm or bigger. The image data were processed in
order to include only the ovary after the scanning.

In the images the center of the follicles exhibits a local minimum intensity. In
these points the intensity gradient vanishes. Due to the noisy nature of the
images, the data sets exhibit several locations where minima occur outside the
follicle structure, producing false positives. The follicle detection algorithm
consists of two main steps:
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Figure 6.2: Follicle detection. The red dots highlight the detected minima. The left
image shows detected minima at scale s = 2. The image is very noisy and the algorithm
detects also the minima corresponding to noisy grains (false positives). The central
image shows minima detected at scale s = 9. The arrow shows a minimum detected
outside the ovarian tissue (false positive), whereas the red dot inside the ovarian tissue
corresponds to the center of a follicle. In the right image the false positive outside the
ovarian boundaries has been filtered out.

Figure 6.3: Follicle detection. 2D slices of the 3D ultrasound image smoothed data
set corresponding to one of the patients. Lighter areas display the ovary, dark circular
blobs are the follicles. Red dots indicate retrieved local minima in 3D at scale s = 9
voxels.

• The 3D volume images have been isotropically smoothed using different
scales.

• Evaluation of the 3D winding number is carried out in order to retrieve
the follicle centers.

In this procedure we observe a trade-off situation for the choice of the proper
scale. We notice that follicles present a larger structure with respect to grains
of the raw data. In the experiments the scale is heuristically chosen sufficiently
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high to avoid grain detection (see Figure 6.2, left image for critical point de-
tection at small scale), but not so high that smaller follicles are missed. In this
experiment the results of follicles extraction have been achieved at scale s = 9
voxels. The same critical point detection procedure has been followed also for
the experiments on neuronal cell counting and cardiac motion estimation.

After critical point localization, the ovarian tissue has been manually segmented
in each slice in order to create a mask and filter out the minima retrieved outside
the ovarian boundaries (false positives) (see Figure 6.2, central and right image).

In the three data sets, results establish the presence of 19 follicles for patient
one, 8 for patient two and 11 for patient three. Manual counting of an expert
revealed 17 follicles for patient one and 7 for patient two and 10 for patient 3
([150], pag. 68, Table 2, patient one, two and three). The computational time
for each data set at scale s = 9 is less than 5 minutes on a PC with Intel Core TM
2 Duo 2 GHz processor and 4 GB RAM. The same computer has been used to
carry out the experiments of neuronal counting and cardiac motion estimation.
For each individual the amount of detected follicles indicates relatively good
fertility prospects according to [1], especially in the case of patient one. In
Figures 6.2 and 6.3 retrieved minima are associated to red dots.

6.3.2 Neuronal cell counting in cerebellum

The cerebellum is a region of the central nervous system located in the so-called
hindbrain. It is responsible for motor activity, regulation of muscle tone and
also plays an important role in cognitive and language functions in humans.
In spite of occupying only around ten per cent of the whole brain volume, the
cerebellum contains about fifty percent of all neurons. The number of neurons
varies depending on the age and health condition, such as in Alzheimer’s disease
[171]. Cell density is useful biomarker, however neuronal cell counting is often
done manually. This is a time-consuming task where human mistakes cannot
be excluded. The eye of the observer will perform increasingly worse at such
repetitive tasks. As result, estimations made for large number of cells may
become unreliable. For example, the number of Purkinje cells (the principal
neurons of the cerebellum) in humans have been estimated to be between 14
and 26 millions [97]. Automatic counting methods are therefore preferable.

Several cell counting methods can be found in the literature. They are mostly
based on the cell density distribution in a certain volume and a good guess
of the scientist [97, 98, 16, 145, 148, 172]. These methods assume that the
cell distribution in the volume of reference stays uniform in the whole region of
interest. If this is not the case, such methods will not provide a reliable outcome.
The algorithm proposed in this chapter carries out automatic detection and
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counting without any assumptions about the cell distribution. Therefore, it
may overcome the shortcomings of such techniques and provide more accurate
results.

In the experiments we consider two image volumes of neurons labeled with
propidium iodide with dimensions 2048× 2048× 25 (164.5× 164.5× 42.7 µm3)
and 2048× 2048× 15 (230.3× 230.3× 32 µm3) voxels, respectively. The images
were acquired with a confocal microscope. They correspond to two different
regions of a 18 days old rat cerebellum. The neuron cell bodies are seen to be
roughly spherical (see Figure 6.4). Part of the first image volume shows dense
labeling which could not be discriminated into single cells (see right-hand side
of the left image in Figure 6.4). As a consequence we could not investigate the
whole volume.

Neurons have been retrieved as local minima with the proposed algorithm using
scale 9 voxels, after enhancing the blobs in the image volume using a scale-
normalized Laplacian operator. Our method retrieved 250 cells in stack 1 and
376 cells in stack 2 (Figure 6.4). A careful visual counting has been carried out
on the first 8 slices of stack 1 by an expert neurobiologist, who could recognize
102 neuronal cells. Every slice was carefully inspected in order not to count
the same cell twice and not miss smaller cells closer to the bigger ones. This
investigation took between 20 and 30 minutes. Although our method has not
been optimized for speed purposes it needed roughly 10-15 minutes to detect
112 neurons on the same data subset.

Additionally, we compared the algorithm outcomes with the performance of a
simple and fast technique based on the extraction of maxima and minima taking
into account the local image intensity [151]. In this method the intensity of
each voxel is compared with the intensity of the respective 26 neighbors. Both
approaches provided similar results: 250 cells and 376 cells for stack 1 and 2
using the 3D winding number and 271 cells and 361 for stack 1 and 2 using the
critical point detector based on intensities.

6.3.3 3D cardiac motion estimation

Cardiac disease may strongly influence the dynamic behavior of the cardiac
muscle. Estimation and visualization of the cardiac motion may become an
important tool for diagnosis, providing indications of progress of the disease
and/or therapy. Optic flow methods measure the apparent velocity of mov-
ing patterns in an image sequence. At the beginning of the 1980’s Horn and
Schunck [76] introduced an optic flow approach based on brightness constancy,
estimating the motion by solving the so-called Optic Flow Constraint Equa-
tion (OFCE). This technique, however, may not be the preferable choice for
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Figure 6.4: Cerebellum cell counting. Left image: A slice of stack 1. Right image: A
slice of stack 2. Red dots indicate neurons retrieved by the algorithm.

extracting motion from tagged3 MR images (see Figure 6.5 row 1). For these
images the constant intensity assumption does not hold due to tag fading under
spin-lattice relaxation time (indicated with T1).

Over the years cardiac motion estimation has become a well-established research
field. In the literature, however, there are few optic flow algorithms for 3D
cardiac images [19, 127] due to the lack of data sets and sufficient available
computational power in the past years.

A 3D motion field exhibits expansions, contractions and twistings of the cardiac
tissue, making the results more realistic with respect to the ones provided by
a 2D velocity field, where the through-plane motion component is missing. In
the experiments we investigate a 3D tagged MR image sequence of a human
heart. Cardiac motion is estimated by calculating the velocity of critical points,
maxima in this case, which are located at the tag crossings. This optic flow
technique is not based on brightness conservation, therefore it can be robustly
applied directly on tagged MRI. In chapter 7 a similar 3D motion estimation
procedure has been presented. In this case, the critical points have been ex-
tracted by a methodology based on zerocrossings.

6.3.3.1 Cardiac image data set

The cardiac data used in the experiments consists of 23 frames with a temporal
resolution of 30 ms, acquired by a 3D CSPAMM sequence [137]. Each frame

3 The term tags refers to the sinusoidal pattern on the MR images, introduced with the
goal to enhance the visualization of the tissue movement [179]
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presents 14 slices in the short axis and two different long axis views (Figure 6.5
row 1); the images display a size of 112 × 112 pixels, with 1 × 1 mm2 of pixel
resolution. The recorded slices are perpendicular with respect to each other
and in the experiments we combine them to obtain a grid (Figure 6.5 row 2, 3
and 4 respectively). Due to sparseness in the slices, we interpolate the 14 slices
in each frame in order to obtain image voxels of 112× 112× 112 pixels.

6.3.3.2 Calculation of velocity at critical points position and appli-
cation to cardiac MRI sequence

As already mentioned, we are interested in tracking the critical points (max-
ima) that occur at the tag crossings of the chessboard-like pattern displayed in
row 4 of Figure 6.5. In this case we have a sequence of images and there-
fore the image intensity is also a function of time, i.e., L(x(t), s, t) where
x(t) = (x(t), y(t), z(t)). The feature points move along with the cardiac tis-
sue, since they are part of the tags. We also mentioned that MR tags fade due
to relaxation time T1. This property does not influence the vanishing image
gradient as long as the tags are visible, and therefore it does not affect the
maxima detection at the tag crossings.

By definition, the gradient of an image sequence L(x(t), s, t) vanishes at critical
point positions

∇L(x(t), s, t) = 0 (6.20)

where ∇ denotes the spatial gradient and s and t represent the scale and time
respectively. In order to calculate the velocity at points with local maximum
intensity (tag crossings) over time, we differentiate equation (6.20) with respect
to time t and apply the chain rule for implicit functions. Hence,

V(t) =



u(t)
v(t)
w(t)


 = −HL(x(t), s, t)−1∂(∇L(x(t), s, t)T )

∂t
(6.21)

where H represents the spatial Hessian matrix of image L, T indicates trans-
pose, v(t) = dy/dt and w(t) = dz/dt represent the velocity components in
horizontal, vertical and through-plane directions. In the experiment described
in this section we use a fixed scale s for all frames, for each experiment. In the
literature similar optic flow approaches that calculate velocity estimation at fea-
ture point location using the Hessian matrix are discussed in [21, 22, 84, 165].

The optic flow algorithm has been applied on a real sequence of 23 tagged
volume MR images representing a human beating heart. The images exhibit
a resolution of 112 × 112 × 112 voxels and contained tags of 8 voxels wide.
The velocity estimation is carried out at the tag crossings, the locations where
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Figure 6.5: Cardiac tagged MR images, frame 3. Row 1 and 2 from left to right: Short
axis view with horizontal tags, 2 long axis views with vertical and horizontal tags
respectively. Row 3: Combination of the image planes. Row 4 displays the outcome of
the combination of image planes. The images exhibit a chessboard pattern.
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critical points (maxima) are detected. The computation is carried out at a fixed
scale of s = 3 voxels and also took roughly 5 to 10 minutes per frame. In Figure
6.6 we show the retrieved motion field for the cardiac data set investigated in
the experiments. The images display the left ventricle in phase of contraction.
After a qualitative inspection, we notice that the algorithm retrieves a critical
point velocity in all three directions, providing valuable information for the
quantitative analysis of the patient heart’s dynamic behavior.

6.4 Discussion and Conclusion

The work described in this chapter investigates the 3D winding number as an
efficient tool to retrieve and classify critical points in volume images. We pro-
vide a new formulation of the 3D winding number, simplifying the mathematics
and implementation involved with respect to previous work [150]. We discuss
the advantages of the proposed technique such as its ability to both locate
and classify critical points. We carry out tests on three different real applica-
tions (ovarian follicle and neuron counting, and cardiac motion estimation from
tagged MRI). We finally discuss the experimental results and we show their
qualitative and quantitative reliability.

In our applications we highlight the usefulness of our algorithm in tedious and
repetitive operations such as particle counting. The algorithm is able to find
blobs and distinguish different cells located next to each other in all data sets.
In order to carry out manual counting, the user may either count cells slice by
slice or, to speed up the procedure, may perform a 3D projection of the slices
and carry out manual counting. In this latest case he may miss certain cells
that are close but behind the ones located on the top. On the neuronal data set,
for instance, our method detected 4 cells with roughly similar in-plane location
(distance less than 3.6 µm with respect to each other), but different height.

In the experiment with the follicles and neurons we highlight that our algorithm
detects a similar amount of follicles and neurons as a trained echographer and
neurobiologist, which is already a strong advantage of the proposed method.
However, critical point detection has been carried out with a scale chosen glob-
ally. A critical point extraction performed at small scale might detect noisy
grains (false positives). On the other hand a critical point search carried out
at too high scales may miss locations of follicles/neurons that present a smaller
structure with respect to the other follicles/neurons in the data set. These
problems might be avoided by choosing different scales for follicles/neurons
with different sizes. In the future we will carry out experiments in this direc-
tion.

In the experiments we assume that the cells have a roughly spherical shape.
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Figure 6.6: Three-dimensional velocity flow field of one frame of the left ventricle in
phase of contraction (column 1) under 3 different views and the correspondent cross-
sections of the cardiac image volume (column 2). In column 2 the left ventricle is
highlighted by white arrows (column 2). Row 1 displays the short axis view, whereas
row 2 and 3 show the 2 long axis views. The retrieved 3-dimensional vectors illustrate
with accuracy the cardiac motion behavior and overcome shortcomings typical of the
2-dimensional optic flow methods, such as through-plane motion detection.

The neurons, however, have a roughly spherical head (the soma), connected to
a tail (the axon). In this case, extremal points were sometimes found in the
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axons. The algorithm may therefore count twice the same cell, increasing the
error of the final estimation (see Figure 6.4). A way to overcome this problem
would be to take into account the geometry of the neuron and remove outcomes
coming from the axon. In future research we will tune the algorithm to this
specific application.

So far, we have considered the winding number in the context of scalar images.
However, other applications of the 3D winding number might be investigated
such as detection of singularities in 3D vector fields [112]. These have been
proved to be helpful in the visualization of 3D flow fields [101]. In the biomedical
context, this could be applied to improve the visualization of blood flow.

In the literature, as we already discussed, other critical point retrieval method-
ologies are known. Critical points estimation can be carried out by taking into
account the local intensity [151], where the intensity of each voxel is compared
with that of the respective 26 neighbors. In section 6.3.2 we compare the perfor-
mance of the 3D winding number algorithm with respect to that of the critical
point detection method based on local intensity estimation. Both methods pro-
vided similar counting estimation. However, the intensity based method is able
to locate only maxima and minima, while the 3D winding number provides also
information for saddle points. The 3D winding number algorithm is therefore
preferable since it is able to characterize all types of critical points. In the
future we will carry out experiments on 3D saddle points detection, which have
interesting applications in flow visualization [153, 138]. Finally we will also
compare the 3D winding number algorithm with other feature points detectors
such as SIFT for 3D applications.
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Nothing is more revealing than movement.

Martha Graham, dancer choreographer
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3D cardiac motion estimation
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Abstract
The dynamic behavior of the cardiac muscle is strongly dependent on heart
diseases. Optic flow techniques are essential tools to assess and quantify the
contraction of the cardiac walls. Most of the current methods however are re-
stricted to the analysis of 2D MR-tagging image sequences: due to the complex
twisting motion combined with longitudinal shortening, a 2D approach will al-
ways miss the through-plane motion. In this chapter we investigate a new 3D
aperture problem free optic flow method to study the cardiac motion by tracking
stable multi-scale features such as maxima and minima on 3D tagged MR and
sine-phase image volumes. We apply harmonic filtering in the Fourier domain
to measure the phase. This removes the dependency of intensity changes of the
tagging pattern over time due to T1 relaxation. The regular geometry, the size-
changing patterns of the MR-tags stretching and compressing along with the
tissue, and the phase- and sine-phase plots represent a suitable framework to
extract robustly multi-scale landmark features. Experiments were performed
on real and phantom data and the results revealed the reliability of the ex-
tracted vector field. Our new 3D multi-scale optic flow method is a promising
technique for analyzing true 3D cardiac motion at voxel precision, and free of
through-plane artifacts present in multiple-2D data sets.

7.1 Introduction

Cardiac diseases represent one of the major causes of death and disability in
the western countries [136]. Symptoms of cardiac illness can be sometimes
traced back from the adolescence [6, 115], making a prevention in the childhood
a necessity. Cardiac illnesses may influence the deformation and motion of
the cardiac walls. A visualization and quantification of cardiac motion may
therefore become an important step in the diagnosis, giving indications of the
progress of the disease and/or therapy and perhaps even as precursors of cardiac
symptoms.

The promise of stem cell injection in the myocardium to instigate cardiac infarct
repair, needs quantitative and highly accurate 3D motion and local deformation
analysis.

Optic flow is one of the traditional techniques in carrying out motion analysis.
It measures the apparent velocity pattern of moving structures in an image
sequence. One of the first applications of optic flow methods to tagged MRI
was introduced by Dougherty et al. [46]. Florack et al. [57] developed a robust
differential technique in a multi-scale framework, whose application to cardiac
MR images was presented by Niessen et al. [123, 122] and Suinesiaputra et al.
[147]. Van Assen et al. and Florack and Van Assen [163, 59] developed a method
based on multiple independent MR tagging acquisitions, removing altogether
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the aperture problem, by generating as many equations as unknowns.

In recent years there has been a high increase of computational power and
it is becoming more feasible to compute 3-dimensional optic flow fields from
MRI data. However, most of the current methods for flow estimation are re-
stricted to the analysis of 2-dimensional MR images, even if the extension to
a 3-dimensional approach would be straightforward. In case of cardiac mo-
tion estimation, 2-dimensional optic flow techniques capture only expansions,
contractions and rotations of the cardiac tissue, missing, however, the twisting
motion. A 3-dimensional optic flow technique takes into account all the com-
ponents of the cardiac motion, providing therefore a more realistic estimation
of the heart behaviour. The 3-dimensional version of the so-called optic flow
constraint equation already examined in chapter 1, 2, and 3 is:

Lxu+ Lyv + Lzw + Lt = 0 (7.1)

where u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) : R4 → R are now the unknown
velocity vectors. An example of 3-dimensional gradient based optic flow estima-
tion has been proposed in 2004 by Barron [19]. He explored the 3-dimensional
motion from gated MRI cardiac datasets extending the Horn and Schunck [76]
and Lucas and Kanade [111] approaches to three dimensions. This method,
however, imposes a constant intensity assumption, which in MRI tagging im-
ages does not hold due to the T1 relaxation. Pan et al. [127] instead tracked a
cardiac mesh, consisting of a collection of material points extracted from HARP
images. A similar approach which makes use of the so-called "slice-following"
was performed by Sampath and Prince [140].

In this chapter we investigate cardiac motion from image volumes by exploiting
point features in Gaussian scale-space. These features are interesting candidates
for motion analysis: for those points the aperture problem does not arise and
they are detected in a robust framework, which is inspired by findings of the
multi-scale structure of the visual system. In the experiments maxima and
minima are chosen as feature points and the approach has been tested on an
artificial and real image sequence. Outcomes of the proposed technique reveal
the reliability of the vector field. In section 7.2 a preprocessing approach is
presented. In 7.2.1 and 7.2.2 the image structure of the data and the dataset are
discussed. The multi-scale framework used in the experiments and a convenient
technique for extracting multi-scale features is explored in section 7.3. There
we also present the calculation of a sparse velocity vector field, the dense flow
field extension and the angular error measure. Finally in sections 7.4 and 7.5
we describe the experiment, the results, and discuss future directions.
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7.2 Materials

7.2.1 Image Structure

In 1988 Zerhouni et al. [179] introduced a tagging method for noninvasive as-
sessment of myocardial motion. The method introduces structure, represented
as dark stripes (Figure 7.1 top) on the image aiming to improve the visualiza-
tion of the intramyocardial motion. The approach was later improved by Axel
and Dougherty and Fischer et al. [14, 53], who explored magnetic resonance
imaging using spatial modulation of magnetization (SPAMM) and (CSPAMM)
respectively. The images, however, suffer from tag fading, making the frames
not suitable for optic flow methods based on conservation of brightness. In
the harmonic phase (HARP) method [126, 139], MR images are filtered in the
spectral domain and this technique overcomes the fading problem by taking
into account the spatial phase information from the inverse transform of the
filtered images. In our experiments a similar technique was employed using
Gabor filters [64]. Three tagged image series with mutually perpendicular tag
lines were acquired (Figure 7.1 top) and all but the first harmonic peak was
suppressed using a band-pass filter in the Fourier domain (Figure 7.1, row 3).
After applying the inverse Fourier Transform, in the filtered images the phase
varies periodically from 0 to 2π creating a saw tooth pattern (Figure 7.1 row
four, columns 1 to 3). A sine function was applied to the phase images so as to
avoid spatial discontinuities in the input due to the saw tooth pattern. A com-
bination of sine phase frames was later employed to produce a grid, from which
the feature points (maxima and minima) were retrieved (Figure 7.1 bottom).

7.2.2 Dataset

The experiments were carried out on a 3-dimensional tagged MR image volume
sequence of a patient heart. The data were acquired using a 3D CSPAMM
sequence [137] developed at ETH Zurich, Switzerland and consisted of 23 frames
with a temporal resolution of 30 ms. In each frame, 14 image slices were present
for each of three different views (one short axis and two long axis views). The
different views were perpendicular with respect to each other (Figure 7.2, row
2) and by combining them, a grid is obtained from which the critical points
were retrieved (Figure 7.2, row 3). The images present a resolution of 112×112
pixels and in order to obtain an image volume of 112× 112× 112 voxels, linear
interpolation through the 14 slices was applied. Here we display again the
Figure already shown in 6.3.3.
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Figure 7.1: Top: cross sections of the cardiac MR tagged images volumes of a patient.
From left to right: short axis view (frames present horizontal tags), 2 long axis views
(frames present vertical and horizontal tags). Second row: Fourier spectrum of the
MR tagged images. Middle: Fourier spectrum with the band-pass filter. Fourth row:
phase plots, the phase varies periodically from 0 to 2π creating a saw tooth pattern.
Bottom: sine phase images and a slice view of the volume grid obtained by combining
three sine phase volumes.

7.3 Method

7.3.1 Scale Space

Scale is one of the most important concepts in human vision. When we look at
a scene, we instantaneously view its contents at multiple scale levels. The Gaus-
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Figure 7.2: Ninth cardiac MR tagged frame. Row 1 and 2 from left to right: short axis
view (frames present horizontal tags), 2 long axis views (frames present vertical and
horizontal tags). Row 3 illustrates a combination of the image planes.

sian scale-space representation L(x, y, z, s) ∈ R3 × R+ of a raw 3-dimensional
image f(x, y, z) ∈ R3 is defined by the convolution of f(x, y, z) with a Gaussian
kernel φ(x, y, z, s) ∈ R3 × R+.

L(x, y, z, s) = (f ∗ φ)(x, y, z, s) (7.2)

where φ(x, y, z, s) = 1
(
√

2πs)3 exp(−x2+y2+z2

2s2 ). In equation (7.2) x, y and z are
the spatial coordinates, whereas s ∈ R+ denotes the variance of the Gaussian
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kernel (scale). Equation (7.2) provides a blurred version of the image, where
the strength of blurring depends on the choice of scale. For an extensive review
on scale space see [94, 151, 54, 107].

7.3.2 Critical point detection

Singularities (critical points) induced by the MR tagging pattern are interesting
candidates for structural descriptions. In this chapter computation of critical
points in scale space is performed with by detecting locations where the gradient
of the input image vanishes. Classification of the detected points can be then
carried out by determining the sign of the eigenvalues of the Hessian matrix.
Locations where the signs of all eigenvalues are positive correspond to locations
of local minima; locations where the eigenvalues are all negative, match with
locations of local maxima and, finally, eigenvalues with mixed signs provide
information about saddle points.

7.3.3 Sparse Velocities of Feature Points and Dense Flow Field

In our experiments given a sequence of frames, we assume that the singularity
(feature) points move along with the moving tissue (this is true by construction
of the tagging pattern, provided the feature points correctly correspond to the
tag crossings). In general, given a point in a sequence of frames defined as
L(x(t), y(t), z(t), t) , where t indicates the time, the critical points are defined
implicitly by a vanishing spatial gradient:

∇L(x(t), y(t), z(t), t) = 0 (7.3)

In order to track the feature points, we derive equation (7.3) with respect to
time and apply the chain rule for implicit functions, yielding:

d

dt
[∇L(x(t), y(t), z(t), t)] =



Lxxu+ Lxyv + Lxzw + Lxt
Lyxu+ Lyyv + Lyzw + Lyt
Lzxu+ Lzyv + Lzzw + Lzt


 = 0 (7.4)

where d
dt is the total time derivative, and where we have dropped space-time

arguments on the right hand side (r.h.s.) for simplicity. Equation (7.4) holds
only on the location of critical points and can be also written as:



u
v
w


 = −HL−1∂∇LT

∂t
(7.5)

where H denotes the Hessian matrix of L(x(t), y(t), z(t), t) and T indicates
transpose.
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The velocities computed by equation (7.5) represent the flow field at a sparse
set of positions. In order to retrieve a dense velocity field, the sparse velocities
have been interpolated using homogeneous diffusion interpolation. Given a
spatial domain Ω→ R3, the scalar functions u(x, y, z), v(x, y, z) and w(x, y, z)
are the horizontal and vertical components of a velocity vector V : Ω → R3.
We know the velocity vectors just at certain positions and we call these vectors
Ṽ = {ũ, ṽ, w̃} such that Ṽ : Ωs → R3, where Ωs is a finite subset of Ω. We are
interested in retrieving a dense set of vectors V ∀x, y, z ∈ Ω. In order to do so,
we minimize the energy function

E(u, v) =
∫

Ω

(‖∇u(x, y, z)‖2 + ‖∇v(x, y, z)‖2 + ‖∇w(x, y, z)‖2)dxdydz (7.6)

under the constraint V = Ṽ ∀x, y, z ∈ Ωs. The minimization of equation (7.6) is
carried out by employing Euler-Lagrange equations and the resulting expression
can be solved with numerical schemes.

7.3.4 Angular Error

The flow vector at certain positions in the image can deviate from the true
flow vector at that position in direction and in length. In our assessment we
are interested in the movement from one frame to the next. Therefore, we
set the time component of the flow vector to 1, yielding a 4-dimensional vec-
tor V = {u, v, w, 1}. The computed vector field has been compared with the
ground truth extracted by two artificial sequences described in section 7.4. The
assessment has been performed using the so-called average angular error (AAE)
introduced by Barron et al. [20]

Angular Error = arccos( Vt√
u2
t + v2

t + w2
t + 1

· Ve√
u2
e + v2

e + w2
e + 1

) (7.7)

where Vt is the true vector with spatial component ut, vt, wt and time compo-
nent 1, whereas Ve is the estimated velocity vector and ue, ve, we and 1 are its
spatial and time components respectively.

7.4 Results

The proposed optic flow method was applied on a real sequence of 23 MR
image volumes (Figure 7.1), representing the beating heart of a patient. The
images presented a resolution of 112 × 112 × 112 voxels and contained tags of
8 voxels wide. The spatial scale is defined as σ =

√
2s and the experiments
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were performed from spatial scale σ = 1 until scale σ = 3 at time scale 1. In
order to assess the quality of the extracted vector field, one artificial translating
sequence of 19 frames was built using the first frame of the sine phase grid image
(Figure 7.1, row 5 and column 4). The algorithm was also tested on a more
realistic sine phase grid phantom with the same number of frames and with non
rigid motion, such as contraction and expansion. Computed vector fields of the
translating sequence and the expanding and contracting phantom are depicted
in Figure 7.3. The computation of the flow field was performed from frame 8
to frame 11 in order to avoid outliers due to temporal boundary conditions.

Figure 7.3: Vector fields in the artificial sequence. Vector field of the translating
sequence (left) and two frames of the contracting and expanding phantom’s vector
field( middle and right).

In Table 7.1 the performance of the proposed method, employing scale-space
maxima and minima, is displayed. The error measurement was carried out only
on locations of retrieved features, in order to assess the reliability of the cor-
responding velocity. In both sequences, evaluation revealed a high accuracy of
the extracted vector fields for both maxima and minima, suggesting to employ
a combination of the two retrieved velocities during the interpolation process.
The error measure is expressed in degrees. Accuracy of the dense vector field
is dependent on the reconstruction method used. As a preliminary study, the
homogeneous diffusion interpolation method was applied in this optic flow al-
gorithm.

Translating Sequence Nonrigid Motion
Feature Maxima Minima Maxima Minima
AAE 5.4× 10−5 2.4× 10−5 1.0 0.2
Std 2.1× 10−5 1.3× 10−5 1.4 0.1

Table 7.1: Performance of the proposed optic flow method with different multi-scale
feature points. In the experiments the Average Angular Error (AAE) and its standard
deviation have been employed as error measurement. The error measure is expressed in
degrees. The scales used in the experiment were: spatial scale σ = {1, 1.3, 1.7, 2.3, 3},
time scale 1.
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Figure 7.4 depicts plots of average angular error for both phantoms with respect
to the scale σ. The graphs reveal that the smallest average angular error was
obtained at different scales for different features, highlighting the importance of
using a multi-scale approach. In particular for the translating sequence, maxima
and minima (Figure 7.4 row 1) obtained best performance at scale σ = 1 and
scale σ = 1.3 respectively, in case of the contracting and expanding phantom,
maxima and minima registered best performance at scale σ = 2.3 and scale
σ = 1.7 respectively (Figure 7.4 row 2). Figure 7.5 displays the 3-dimensional
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Figure 7.4: Average Angular Errors plots in function of scale. Plots in row 1 display
the average angular error for the vector field extracted from the translating sequence.
Case maxima, column 1; case minima, column 2. Plots in row 2 depict the average
angular error for motion field computed from the contracting and expanding phantom.
Case maxima, column 1; case minima, column 2.

sparse vector fields on the 2-dimensional cross-section of the tenth frame of the
real cardiac image volume. The heart is in phase of contraction. On the short
axis view in row 1 and column 1, the velocity vectors in yellow point not only to
the center of the ventricle, but point also down. To the right, the same image
is displayed from another perspective showing how the method is able to find
through-plane components of the velocity vectors. This is confirmed also by
the velocity vectors of the long axis view images in row 2, which point down as
well.

7.5 Discussion

In this chapter we investigate a new method to track cardiac motion from 3-
dimensional volume images by following the movement of multi-scale singularity
points. The computed 3-dimensional vector field exhibits expansions, contrac-
tions and twistings of the cardiac tissue (Figure 7.5), and provides more infor-
mation on motion than velocity fields obtained by a 2-dimensional approach.
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Figure 7.5: 3-dimensional velocity flow field on 2-dimensional cross sections of the
cardiac image volume. Short axis (row 1) and two long axis (row 2). The 3-dimensional
vectors describe with accuracy the cardiac motion and overcome problems typical of
the 2-dimensional optic flow methods, such as through-plane motion detection.

In the latter case, results would only highlight contractions, expansions and
rotations of the cardiac muscle, and through-plane motion would not be de-
tected. The method has been assessed using two phantoms, one translating
sequence and one expanding and contracting phantom, for which the ground
truth was known. In both cases qualitative and quantitative analysis of the
results emphasize the reliability of the vector field. The experiments have been
carried out using only multi-scale maxima and multi-scale minima. In future
tests the algorithm will be assessed also with other multi-scale features points
and combinations of those. In the tests the velocity field of our approach has
been extracted at fixed scales. The most suitable scale has been chosen taking
into account the performance of the method with respect to the ground truth.
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In real data, due to continuous deformation of the cardiac walls, the structure
changes scale over time, thus, the final results obtained in the assessment may
not be optimal. Therefore, it may be interesting to repeat the same experi-
ments by using a more sophisticated scale selection method. Furthermore, the
behavior of the cardiac muscle is characterized by twistings and contractions,
therefore, interpolation with a term, that takes into account the rotation and
the expansion of the vector field may improve the results.

Finally, the retrieved motion field may find also an application in validating
mathematical models describing heart deformation. Ubbink et al. [156], for
instance, compared three simulations of the cardiac muscle, illustrating how the
orientation of modeled myofibers plays an important role in the computation
of the final strain. A validation of these methods might be carried out by
comparing the simulated strain with a ground truth strain calculated from the
extracted optic flow field using real data.



So eine Arbeit wird eigentlich nie fertig, man
muss sie für fertig erklären, wenn man nach Zeit
und Umständen das Mögliche getan hat.

J. W. von Goethe, Italienische Reise, 1787

8Conclusions and future research
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8.1 Feature based estimation of myocardial motion
from tagged MR images (Summary)

In the past few years we witnessed an increase in mortality due to cancer relative
to mortality due to cardiovascular diseases. In 2008, the Netherlands Statistics
Agency reports that 33.900 people died of cancer against 33.100 deaths due
to cardiovascular diseases, making cancer the number one cause of death in
the Netherlands [33]. Even if the rate of people affected by heart diseases
is continually rising, they "simply don’t die of it", according to the research
director Prof. Mat Daemen of research institute CARIM of the University of
Maastricht [50]. The reason for this is the early diagnosis, and the treatment
of people with identified risk factors for diseases like ischemic heart disease,
hypertrophic cardiomyopathy, thoracic aortic disease, pericardial (sac around
the heart) disease, cardiac tumors, pulmonary artery disease, valvular disease,
and congenital heart disease before and after surgical repair.

Cardiac imaging plays a crucial role in the early diagnosis, since it allows the
accurate investigation of a large amount of imaging data in a small amount of
time. Moreover, cardiac imaging reduces costs of inpatient care, as has been
shown in recent studies [77]. With this in mind, in this work we have provided
several tools with the aim to help the investigation of the cardiac motion.

In chapters 2 and 3 we have explored a novel variational optic flow methodology
based on multi-scale feature points to extract cardiac motion from tagged MR
images. Compared to constant brightness methods, this new approach exhibits
several advantages. Although the intensity of critical points is also influenced
by fading, critical points do retain their characteristic even in the presence of
intensity changes, such as in MR imaging. In an experiment in section 5.4 we
have applied this optic flow approach directly on tagged MR images. A visual
inspection confirmed that the extracted motion fields realistically depicted the
cardiac wall motion. The method exploits also the advantages from the multi-
scale framework. Because sparse velocity formulas 2.9, 3.7, 6.21, and 7.5 provide
a number of equations equal to the number of unknowns, the method does not
suffer from the aperture problem in retrieving velocities associated to the critical
points.

In chapters 2 and 3 we have moreover introduced a smoothness component of
the optic flow equation described by means of covariant derivatives. This is a
novelty in the optic flow literature. Many variational optic flow methods present
a smoothness component that penalizes for changes from global assumptions
such as isotropic or anisotropic smoothness. In the smoothness term proposed
deviations from a predefined motion model are penalized.

Moreover, the proposed optic flow equation has been decomposed in rotation-



8.1. Summary 127

free and divergence-free components. This decomposition allows independent
tuning of the two components during the vector field reconstruction. The ex-
periments and the Table of errors provided in 3.8 showed that the combination
of the smoothness term, influenced by a predefined motion model, and the
Helmholtz decomposition in the optic flow equation reduces the average an-
gular error substantially (20%-25%) with respect to a similar technique that
employs only standard derivatives in the smoothness term.

In section 5.3 we extracted the motion field of a phantom of which we know the
ground truth of and compared the performance of this optic flow method with
the performance of other optic flow methods well known in the literature, such
as the Horn and Schunck [76] approach, the Lucas and Kanade [111] technique
and the tuple image multi-scale optic flow constraint equation of Van Assen et
al. [163]. Tests showed that the proposed optic flow methodology provides the
smallest average angular error (AAE = 3.84 degrees) and L2 norm = 0.1.

In this work we employed the Helmholtz decomposition also to study the car-
diac behavior, since the vector field decomposition allows to investigate cardiac
contraction and cardiac rotation independently. In chapter 4 we carried out an
analysis of cardiac motion of ten volunteers and one patient where we estimated
the kinetic energy for the different components. This decomposition is useful
since it allows to visualize and quantify the contributions of each single vector
field component to the heart beat. Local measurements of the kinetic energy
have also been used to detect areas of the cardiac walls with little movement.
Experiments on a patient and a comparison between a late enhancement car-
diac image and an illustration of the cardiac kinetic energy on a bull’s eye plot
illustrated that a correspondence between an infarcted area and an area with
very small kinetic energy exists.

With the aim to extend in the future the proposed optic flow equation to a 3D
approach, in chapter 6 we investigated the 3D winding number approach as a
tool to locate critical points in volume images. We simplified the mathematics
involved with respect to a previous work [150] and we provided several examples
and applications such as cardiac motion estimation from 3-dimensional tagged
images, follicle and neuronal cell counting.

Finally in chapter 7 we continued our investigation on volume tagged MR im-
ages, by retrieving the cardiac motion field using a 3-dimensional and simple
version of the proposed optic flow equation based on standard derivatives. We
showed that the retrieved motion fields display the contracting and rotating
behavior of the cardiac muscle. We moreover extracted the through-plane com-
ponent, which provides a realistic illustration of the vector field and is missed
by 2-dimensional approaches.
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8.2 Remarks and future research

In this section we present a non exhaustive list of future directions opened by
this work.

Spatio-temporal smoothing term. The optic flow algorithm proposed in
chapter 2 and 3 exhibits a smoothness component consisting of spatial deriva-
tives only. Spatio-temporal smoothness constraints have been already investi-
gated in the literature [27, 169], and provide better performance with respect
to techniques with a spatial smoothness constraint only. In the future we will
tackle also this issue. However, if we extend the smoothness term in the tem-
poral direction, we regularize with respect to a third direction (time), therefore
increasing the computational time. To avoid high computational costs, in the
future the algorithm should be re-implemented in programmable hardware like
field-programmable gate arrays (FPGA).

Extension of the new optic flow technique to 3-dimensional tagged
cardiac MR image sequences. As already mentioned in chapter 7, recently
we witnessed an increase in computational power and it is already possible (even
if it is not common) to obtain 3-dimensional tagged MR images. In the future
we will extend the technique proposed in chapter 3 also for these images.

Application to echo-cardiography images (speckle tracking). In our
motion estimation algorithm we extract velocity features from a sparse set of
critical points, then we reconstruct a dense motion field minimizing an energy
functional. We believe that the feature point tracking procedure may also be
suitable for speckle tracking in echo-cardiography. In the future we will carry
out experiments in this direction.

Application to general image sequences. Besides having shown that our
optic flow method is suitable for cardiac tagged MR images, this technique can
be applied also to more generic image sequences. In the future we will tackle
this issue including the assessment of performance with image sequences like
the well known Yosemite sequence. A comparison with the results of the state
of the art optic flow algorithms will be also carried out.

Quantification of cardiac motion parameters. Calculation of the local
kinetic energy in chapter 4 shows promising results and encourages to pursue
the future studies in this direction. However, we tested our method only on one
patient and we can not establish whether the technique provides reliable results
for different cases. In order to overcome this, we need to investigate the cardiac
behavior of a large population of patients with several types of heart diseases
and compare the outcomes with the results obtained from different parameters,
such as strain, and from different protocols such as late-enhancement MRI, or
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modalities like Tissue Doppler Imaging with Ultrasound.

Saddles computation. In chapter 6 we extensively discussed the benefits
of the 3D winding number, as a tool that characterizes all critical points.
However, in the chapter we restricted our investigation only to the extrac-
tion of 3-dimensional maxima and minima. In the future we will investigate
3-dimensional saddles, which play an important role in the flow field visualiza-
tion [138, 153].

Possible new applications. Finally, the methodologies explored in this the-
sis find application in several areas of cardiac medicine. An example is the
regenerative medicine. One may for example quantify the motion and study
the cardiac behavior of subjects that suffered from myocardial infarction and
have been treated with stem cell therapy [25, 44, 159] in a longitudinal study.
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A.1 Covariant derivatives

Consider the vector1 bundle

E := (Ω× R2, π,Ω)

where Ω ⊂ Rd, d = 2, 3, is the image domain, where the fundamental projection
π : Ω× R2 → Ω is given by

π(x, y, v1, v2) = (x, y) , (x, y, v1, v2) ∈ Ω× R. (A.1)

where respectively v1 and v2 denote the velocity in x and y direction.

A fiber in this vector bundle is the two dimensional vector space π−1(x, y) =
{(x, y, v1, v2) | v1, v2 ∈ R} 2. A section σ in the vector bundle is the surface
which basically represents the graph of some vector-valued function v : Ω→ R2:

σv(x, y) =
{(x, y, v1, v2) ∈ Ω× R2 | v1 = v1(x, y), v2 = v2(x, y)} ,

v = (v1, v2)T ,

note that π ◦ σv = idΩ, i.e. (π ◦ σv)(x, y) = (x, y) for all (x, y) ∈ Ω, (i.e. σv is a
section in a vector bundle).

Now that we have set the very basic ingredients for the vector bundle (E, π,Ω).
We stress that we do not work in the much more common tangent bundle setting
(Ω × T (Ω), π̃,Ω) where sections are vector fields and where π̃(x, y,v(x, y)) =
(x, y). Consequently, we have to rely on the more general concept of covariant
derivatives in vector bundle rather than the covariant derivative in the tangent
bundle, which we explain next.

A.1.1 A Tool from Differential Geometry: Connections on the
Vector Bundle E

A connection on a vector bundle is by definition a mapping D : Γ(E) →
L(Γ(T (Ω)),Γ(E)) from the space of sections in the vector bundle Γ(E) to the
space of linear mappings L(Γ(T (Ω)),Γ(E)) from the space of vector fields on
Ω denoted by Γ(T (Ω)) into the space of sections Γ(E) in the vector bundle E

1In previous work we called (R2 ×R+, π,Ω) a vector bundle, but formally speaking this is
not right R+ is not a vector space.

2Here we stress that we do not assume that this two dimensional vector space is the tangent
space T(x,y)(Ω), since our vector bundle is not a tangent bundle
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such that
Dv+wσ = Dvσ +Dwσ ,
Dfvσ = fDvσ ,
Dv(σ + τ) = Dvσ +Dvσ ,
Dv(fσ) = v(f)σ + fDvσ

(A.2)

for all vector fields v = ∑2
i=1 v

i∂xi ,w = ∑2
i=1w

i∂xi ∈ Γ(T (Ω)) (i.e. sections
in tangent bundle T (Ω)) and all f ∈ C∞(Ω,R) and all sections σ ∈ Γ(E) in
the vector bundle E. Note that we used the common short notation Dvσ =
(Dσ)(v). One can verify that (A.2) implies that

((Dσv)(X))(c(t)) =
D(v1σ1 + v2σ2)(X)(c(t)) =

2∑
j=1

X|c(t) (vj) σj+
2∑
j=1

2∑
i=1

vj(c(t)) ċi(t) (D∂xi
σj)(c(t)) ∈ Γ(E),

(A.3)

where σ1(x, y) = (x, y, 1, 0) and σ2(x, y) = (x, y, 0, 1) denote the unit sections in
x and y-direction and where X|c(t) = ∑2

i=1 ċi(t) ∂xi |c(t) denotes a vector field
on Ω tangent to a curve c : (0, 1)→ Ω is a smooth curve in the image domain
Ω ⊂ R2, with ċ(t) = d

dtc(t) and components ci(t) = 〈dxi, ċ(t)〉 obtained by the
dual basis vector fields dx1, dx2 in the co-tangent bundle T ∗(Ω).

Formula (A.3) tells us that the connection is entirely determined by its output
on the (constant) basis sections σj and the basis vector fields ∂xi , i.e. D is
uniquely determined by {D∂xi

σj}i,j=1,2. Now for each i, j = 1, 2 this output
D∂xi

σj is a section and consequently there exist unique functions Γkij : Ω → R
(Christoffel-symbols) such that

(D∂ix
σj)(c(t)) = Γkij(c(t))σk .

A.1.2 Covariant derivatives on the Vector Bundle E induced
by gauge fields.

In this article we restrict ourselves to the diagonal case (no interaction between
the components)

Γkij = Aki δ
k
j , with Aki := Γkik, (A.4)

We impose this restriction for pragmatic reasons: It keeps the implementation
relatively simple. Moreover, this choice is a straightforward generalization of
our previous work on reconstruction of scalar valued functions using covariant
derivatives [83]. Although this choice does not affect the rules for covariant
derivatives on a vector bundle (A.2), this restriction may not be a necessary.
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Consequently, we have

(Dv1σ1)(∂xi) = (∂xiv1 +A1
i v

1)σ1 , for i = 1, 2.
D∂xiσv = (Dσv)(∂xi) =
(∂xiv1 +A1

i v
1)σ1 + (∂xiv2 +A2

i v
2)σ2

with v =
2∑
i=1

viσi ∈ Γ(E)

(A.5)

Now the next step is to choose {Aji} such that an a priori given section σh (a
so-called gauge-field, [83])

(x, y) 7→ σh(x, y) with σh(x, y) =
(x, y, h1(x, y), h2(x, y)) ,h = (h1, h2)T ,

is “invisible” with respect to the covariant derivative, i.e. we must solve for

(Dσh)(∂xi) = 0 for all i = 1, 2 ⇔
(∂xih1 +A1

ih
1)σ1 + (∂xih2 +A2

ih
2)σ2 =

0σ1 + 0σ2 for all i = 1, 2 ⇔

Aji = −∂xih
j

hj
for all i, j = 1, 2,

(A.6)

so that the covariant derivative Dh induced by gauge-field σh ∈ Γ(E) is given
by

(Dh
∂xiσv)(x) =

(∂xiv1(x)− ∂xih
1(x)

h1(x) v1(x))σ1+

(∂xiv2(x)− ∂xih
2(x)

h2(x) v2(x))σ2 =

((∂xi)h1)(x)σ1 + ((∂xi)h2)(x)σ2 .

Now that we introduced everything in a formal differential geometry setting we
will simplify our notations. In the remainder of this article, we will identify
sections σv in E with the corresponding vector-functions v : Ω → R2, and
for allx ∈ R2,

σv=v1,v2(x) = (x, v1(x), v2(x)) ↔ v(x) = (v1(x), v2(x))T
σ1 = (0, 0, 1, 0) ↔ e1 := (1, 0)T ,
σ2 = (0, 0, 0, 1) ↔ e2 := (0, 1)T .

(A.7)

and briefly write ∂h
xiv : Ω → R2 for the vector function corresponding to the

section Dh
∂xiσv : Ω→ E, i.e. :

(x, y, ∂h
xiv(x, y)) = (Dh

∂xiσv)(x, y) .
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where we applied short notation ∂h
xiv := Dh

∂xiσv.

Note that covariant derivatives are invariant under sign-transitions.

Aji = −∂xih
j

hj
= −∂xi |h

j |
|hj | for all i, j = 1, 2. (A.8)

The covariant Laplacian can be explicitly expressed in components

(Dh)∗Dhv =
2∑
j=1

2∑
i=1

((
∂h

j

xi

)∗
∂h

j

xi v
j
)

ej ,

=
2∑
j=1

(
−∆vj + ∆hj

hj
vj
)

ej
(A.9)

where we recall our identifications (A.7). With respect to this covariant Lapla-
cian we recall that

(∂xi)h
j
vj = ∂xiv

j −
∂hj

∂xi

hj
vj (A.10)

so that its L2-adjoint defined by
(
(∂xi)h

j
vj , φ

)
L2(Ω)

=
(
φ,
(
(∂xi)h

j
)∗
vj
)
L2(Ω)

,

for all φ ∈ L2(Ω) is given by
(
(∂xi)h

j
)∗
vj = −∂xivj −

∂xih
j

hj
vj . (A.11)

If we compare the adjoint covariant derivative to the covariant derivative we see
that the multiplicator part is maintained whereas the derivative-part contains
an extra minus sign. So that indeed one finds the fundamental formula:

2∑
i=1

(
∂h

j

xi

)∗
∂h

j

xi v
j =

2∑
i=1
− ∂
∂xi

(
∂
∂xi

)hj
vj −

∂hj

∂xi

(
∂

∂xi

)hj
vj

hj
=

2∑
i=1
− ∂
∂xi

(
∂vj

∂xi
− ∂hj

∂xi
vj

hj

)
−

∂vj

∂xi

(
∂vj

∂xi
− ∂hj
∂xi

vj

hj

)

hj
=

−∆vj + ∆hj
hj
vj .

(A.12)

Now, that we have introduced the covariant Laplacian we mention two prelim-
inary issues that directly arise from (A.12) and which will be addressed in the
remainder of this article.

Remark 1. At first sight the covariant derivatives and their associated (in-
verse) Laplacian, seem to be numerically ill-posed as the gauge-field compo-
nents should not vanish, likewise in the previous works [66, 83, 21]. However,
the crucial scaling property of covariant derivatives, Eq. (3.33) allows us to
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scale away from 0 and numerical singular behavior is avoided by adding a tiny
0 < δ � 1 in the computation of

∆hj(x, y)
hj(x, y) ≈

∆hj(x, y) + δ

hj(x, y) + δ
=

−∆(− log |hj(x, y) + δ|) + ‖∇ log |hj(x, y) + δ|‖2.

In [47], we investigate the fundamental properties of the self-adjoint covariant
laplacian, we show how the manifest stability of our algorithms, depends on the
choice of gauge field, and we explain, how the Dirichlet kernel of the coercive
covariant Laplacian behaves similar to the Dirchlet kernel of the regular Lapla-
cian (with the advantage that it locally adapts to concave and convex behavior
of the gauge function).

Remark 2. Covariant derivatives of sections (vectorvalued functions) in the
vector bundle E given by (A.5) in general do not coincide with covariant deriva-
tives of sections (vector fields) in ((Ω, T (Ω)), π̃,Ω). The components in (A.10)
are coordinate dependent and not compatible with respect to orthogonal coor-
dinate transformations (such as rotations). This incompatibility is due to our
restriction (A.4) is investigated in [47].

A.2 The Euler-Lagrange equations for Tikhonov reg-
ularized optic flow reconstruction in covariant
derivatives

The Euler-Lagrange equations for the unique minimizer of (3.44) are derived
by

lim
ε→0

Eλ,hk,dk(vk + εδ)− Eλ,hk,dk(vk)
ε

= 0

which is supposed to hold for all infinitely smooth perturbations that are com-
pactly within the interior of Ω, i.e. δ ∈ D(Ω). Now computations in the general
continuous Tikhonov regularization framework yield ∀δ∈D(Ω)

2 ((−λ (Dhk)∗Dhk)vk + S∗kΛkSkvk − S∗kdk, δ) = 0
⇔

(−λ (Dhk)∗Dhk + S∗kΛkSk)vk = S∗kΛkdk
(A.13)

where Sk : L2(Ω)→ R2×NB is given by

(Skvk)(q) = (φqk,v
k) :=

(φqk, v
k,1)L2(Ω)e1 + (φqk, v

k,2)L2(Ω)e2.
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and where Λk ∈ RNB×NB is the diagonal matrix consisting of the corresponding
feature weights:

Λk = diag{(wkq )NBq=1}.
Recall thatNB denotes the number of features (the number of extremal branches
in our scale space representation, recall (3.4.1)). Note that the adjoint S∗k :
R2×NB → L2(Ω) operator for each fixed discrete time k ∈ N is defined by

(S∗kΦ,vk)L2(Ω) = (Φ,Skvk)R2×NB ,

or more explicitly by
∫

Ω

((S∗kΦ)(x))1vk,1(x) + ((S∗kΦ)(x))2vk,2(x) dx =

2∑

j=1

NB∑

q=1
(Φ(q))j (Skvk(q))j =

2∑

j=1

NB∑

q=1
(φqk, v

k,j)(Φ(q))j =

∫

Ω



NB∑

j=1
ej



NB∑

q=1
(Φ(q))jφqk(x)




 · vk(x)dx

so that the adjoint is simply given by

(S∗kΦ)(x) =
2∑

j=1
ej



NB∑

q=1
(Φ(q))jφqk(x)




This allows to write down the Euler-Lagrange equations (A.13) in more explicit
form:

NB∑
q=1

wkq

(
(φqk, vk,j)L2(Ω) − (dkq )j

)
φqk(x)

+λ
(
−∆|vk,j |(x) + η∆|hk,j |(x)

|hk,j |(x) v
k,j(x)

)
= 0

(A.14)

for j = 1, 2, x ∈ R2. Recall from section 3.6.1.3 that we can interpolate
between regular and covariant derivatives with the parameter η. We will use
(A.14) as a starting point for our implementations where all field components
are expanded in a B-spline basis. Nevertheless, the more structured abstract
form (A.13) clearly reveals the relevance of a negative (semi)-definite covariant
derivative and the addition of a L2-norm in the energy minimization. To this
end we note that S∗kΛkSk is bounded from below (see [47], subsection 7.3) so
that

((−λ (Dhk)∗Dhk + S∗kΛkSk)v,v)L2(Ω) > c(Ω)λ(v,v)L2(Ω)

and thereby the operator −λ (Dhk)∗Dhk + α I + S∗kΛkSk is invertible and we
can write the unique stable solution of (3.44) as

vk = (−λ (Dhk)∗Dhk + S∗kΛkSk)−1S∗kΛk dk . (A.15)
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A.2.1 Algorithm: Solving the Euler-Lagrange Equations by Ex-
pansion in B-splines

Next we express the Euler-Lagrange equations entirely in B-spline coefficients.
The computational advantages of using B-splines for variational approaches are
well-known in signal in image processing, [160, 81, 62]. We will first provide a
few basic properties on B-splines that we will need for our algorithm and the
analysis of its stability later on.

The n-th order B-spline is given by n− 1-fold convolution with B0

Bn(x) =
(
B0 ∗n−1 B0

)
(x) with B0(x) = 1[− 1

2 ,
1
2 ](x). (A.16)

where f ∗ g(x) =
∫∞
−∞ f(y)g(x − y)dy. Thereby the n-th order B-spline is

compactly supported on 1[−n2− 1
2 ,
n
2 + 1

2 ]. In the discrete setting we sample on a
uniform integer grid, so for example if n is odd we find n non-zero-samples.
Next we provide a list of Z-transforms of B-splines sampled on a uniform grid
with stepsize 1:

ZB2(z) = 1
2!22 (z−1 + 3 + z) ,

ZB3(z) = 1
3!(z−1 + 4 + z) ,

ZB4(z) = 1
3!23 (z−2 + 76z−1 + 230 + 76z + z2) ,

ZB5(z) = 1
5!(z−2 + 26z−1 + 66 + 26z + z2) ,

ZB6(z) = 1
6!26 (z−3 + 722z−2 + 10543z−1+

23548 + 10543z + 722z2 + z3).

(A.17)

The regular derivative of a B-spline of order n is expressed in B-splines of order
n− 1

d

dx
Bn(x) = Bn−1(x+ 1/2)−Bn−1(x− 1/2)

and nicely matches the well-known a finite difference stencil. Consequently, for
even order derivatives of B-splines we have

(Bn)(2k)(x) =
k∑

l=−k
(−1)l

(
k

|l|

)
Bn−2k(x− l) .

so for example for 2k = 2 we see (Bn)(2)(x) = Bn−2(x + 1) − 2Bn−2(x) +
Bn−2(x − 1), which nicely matches the finite difference [1,−2, 1]-stencil for a
second order derivative.

Next we express the unknown velocities vk,j : Ω → R, j = 1, 2, at time-frame
t = k∆t, in periodic B-splines

vk,j(x, y) =
L−1∑

l=0

M−1∑

m=0
ckjlm Bn

(
x

a
−m ModM

a

)
Bn

(
y

b
− l ModL

b

)
(A.18)
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for all (x, y) ∈ Ω = [0,M ] × [0, L]. In our algorithms we set the resolution
parameters a = b = 1. One can choose them differently, like in [81], as long as
the n-th B-spline is properly sampled on [0,M ] and [0, L], i.e.

M

a
> n+ 1 and L

b
> n+ 1 . (A.19)

Recall that we always ensure our velocity fields to vanish at the boundaries,
since we first extract the Harmonic infilling:

vk 7→ vk −
(

vk
∣∣∣
∂Ω

)
H

Recall (3.24), which allows us to use periodic B-splines. By property (A.16) and
assuming (A.19) we have the following formula for the components of rank-2
tensor on RP :

T pp
′

P,k :=

1
a

P∫

0

(Bn)(k)(x
a
− p Mod P

a
) Bn(x

a
− p′ Mod P

a
) dx =

1
a

P
2∫

−P2

(Bn)(k)(x
a
− p Mod P

a
) Bn(x

a
− p′ Mod P

a
) dx =

(B2n)(k)(p− p′ Mod P ) .

with P ∈ {M,L}. Now after intense computations one can rewrite the energy
(3.44) as

Eλ,α,hk,dk(vk,vk−1,dk) = Eλ,hk,dk(ck,dk) :=
2∑
j=1

(ckj , Rλk,jckj)`2({1,...,LM})+

‖Λ1/2
k (Sck,j − dk,j)‖2`2({1,...,NB})

(A.20)

with

ck = ((ck,1)T , (ck,2)T )T =
(
ck,111 , c

k,1
12 , . . . , c

k,1
1M , c

k,1
21 , c

k,1
22 , . . . , c

k,1
2M , . . . , . . . ,

ck,1L1 , c
k,1
L2 , . . . , c

k,1
LM ; ck,211 , c

k,2
12 , . . . , c

k,2
1M , c

k,2
21 , c

k,2
22 , . . . , c

k,2
2M ,

. . . , . . . , ck,2L1 , c
k,2
L2 , . . . , c

k,2
LM

)T ∈ R2M∗L

(A.21)

and where the matrix representation of the covariant Laplacian expressed in
the B-spline basis is given by

Rλk,j = λ(−TL,0(y
b

)⊗ TM,2(x
a

)− TL,2(y
b

)⊗ TM,0(x
a

)+

λ
M−1∑

x=0

L−1∑

y=0
γjk(x, y)(T̃L,0(y

b
)⊗ T̃M,0(x

a
))

(A.22)
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where
(ck,j , RL,0 ⊗RM,0ck,j) =

L−1∑

l,l′=0

M−1∑

m,m′
ck,jlmc

k,j
l′m′(RL,0)ll′(RM,0)mm′

and A ⊗ B denotes the Kronecker product of matrices (related to the tensor
product of the corresponding tensors) and where

T̃P,k(u) = [(T̃P,k(u)]pp′ = (Bn)(k)(u− p)Bn(u− p′)
with p, p′ ∈ {1, . . . , P} (note that we either set P = M and p = m, p = m′ or
P = L and p = l, p = l′ in (A.22)) and where the

γk,j(x, y) = ∆hk,j(x, y)
hk,j(x, y) =

−∆(− log |hk,j + δ|)(x, y) + ‖∇ log |hk,j + δ|(x, y)‖2 ,
is dimensionless and where 1 �>> δ > 0 is added to the gauge field to avoid
singularities.

The mapping S in (A.13) expressed in B-spline coefficients ck is given by

Sck(q) =
2∑

j=1
ej
(L−1∑

l=0

M−1∑

m=0
ck,jlm

(
φqk , B

n( ·
a
−m+ Mod(M)

)

Bn( ·
b
− l + Mod(L)

)))

If we expand the feature vectors {φqk}NBq=1 as well

φqk =
M−1∑
m′=1

L−1∑
l′=0

c̃k,ql′m′B
n
( ·
a −m′ Mod(M)

)
Bn

( ·
b − l′ Mod(L)

)
,

then we may rewrite the mapping S : R2LM → Rq as

Sck(q) =
L−1∑

l,l′=0

M−1∑

m,m′=0
c̃kqlm′T

mm′
M,0 T

ll′
L,0c

kj
lm = (c̃kq)T (TL,0 ⊗ TM,0) ckj

In order to derive the minimizer of the discrete functional (A.20) which coincides
with the minimizer of the continuous functional (A.13), (A.15) if we restrict
ourselves to velocities vk which are within the (closed) subspace

spanm=0,...,M−1,l=0,...,L−1

{Bn
( ·
a
−m Mod(M)

)
Bn

( ·
b
− l Mod(L)

)
},
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we simply set
∇ckEλ,hk,dk(ck) = 0 ,

which yields (expressed in the natural matrix-representation S ∈ RNB×LM of
the isomorphic mappings ck1 7→ S(ck1,0) and ck2 7→ S(0, ck2))

(Rλk + STΛkS)ck,j = STΛkdk,j for j = 1, 2,

with dk,j given by

dk := (dk,1,dk,2)T
dk,j := (dk,j1 , dk,j2 , . . . , dk,jNB )T ∈ RNB . (A.23)

Now for n ≤ 3 we find (akin to (A.15)) the unique solution by inversion

ck,j = (Rλk,j + STΛkS)−1STΛkdk,j , (A.24)

which we solved by a BiCSTAB algorithm (Conjugate gradient is not suitable
since the matrix Rλk is not symmetric due to the fact that the adjoint of a
covariant derivative is not equal to minus the covariant derivative, recall (A.11)).
Here we have exploited the direct product structure of the terms in the matrix
Rλk (A.22): For numerical efficiency one only needs to store the productM×M
or L×Lmatrices such as TM,0 and TL,0 using the computation scheme explained
in [73] in the BiCSTAB algorithm whenever a matrix product occurs.

Remark 3. The new defined algorithm is always stable, as the real part of the
smallest eigenvalues of matrix Rλk,j is strictly positive [47, p.26]. Moreover, the
algorithm commutes with translations and rotations of nπ/2. In the other cases
rotation invariance depends on the fluctuations of the ratio of slope and hight
of the graph. However, effects of not commutativity with rotation are hardly
visible in practice, as shown in [47, p.28]
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