659 research outputs found

    Algorithms for Scheduling Problems

    Get PDF
    This edited book presents new results in the area of algorithm development for different types of scheduling problems. In eleven chapters, algorithms for single machine problems, flow-shop and job-shop scheduling problems (including their hybrid (flexible) variants), the resource-constrained project scheduling problem, scheduling problems in complex manufacturing systems and supply chains, and workflow scheduling problems are given. The chapters address such subjects as insertion heuristics for energy-efficient scheduling, the re-scheduling of train traffic in real time, control algorithms for short-term scheduling in manufacturing systems, bi-objective optimization of tortilla production, scheduling problems with uncertain (interval) processing times, workflow scheduling for digital signal processor (DSP) clusters, and many more

    Exact and Heuristic Algorithms for Energy-Efficient Scheduling

    Get PDF
    The combined increase of energy demand and environmental pollution at a global scale is entailing a rethinking of the production models in sustainable terms. As a consequence, energy suppliers are starting to adopt strategies that flatten demand peaks in power plants by means of pricing policies that stimulate a change in the consumption practices of customers. A representative example is the Time-of-Use (TOU)-based tariffs policy, which encourages electricity usage at off-peak hours by means of low prices, while penalizing peak hours with higher prices. To avoid a sharp increment of the energy supply costs, manufacturing industry must carefully reschedule the production process, by shifting it towards less expensive periods. The TOU-based tariffs policy induces an implicit partitioning of the time horizon of the production into a set of time slots, each associated with a non-negative cost that becomes a part of the optimization objective. This thesis focuses on a representative bi-objective energy-efficient job scheduling problem on parallel identical machines under TOU-based tariffs by delving into the description of its inherent properties, mathematical formulations, and solution approaches. Specifically, the thesis starts by reviewing the flourishing literature on the subject, and providing a useful framework for theoreticians and practitioners. Subsequently, it describes the considered problem and investigates its theoretical properties. In the same chapter, it presents a first mathematical model for the problem, as well as a possible reformulation that exploits the structure of the solution space so as to achieve a considerable increase in compactness. Afterwards, the thesis introduces a sophisticated heuristic scheme to tackle the inherent hardness of the problem, and an exact algorithm that exploits the mathematical models. Then, it shows the computational efficiency of the presented solution approaches on a wide test benchmark. Finally, it presents a perspective on future research directions for the class of energy-efficient scheduling problems under TOU-based tariffs as a whole

    Symmetry-Adapted Machine Learning for Information Security

    Get PDF
    Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis

    Applications of biased-randomized algorithms and simheuristics in integrated logistics

    Get PDF
    Transportation and logistics (T&L) activities play a vital role in the development of many businesses from different industries. With the increasing number of people living in urban areas, the expansion of on-demand economy and e-commerce activities, the number of services from transportation and delivery has considerably increased. Consequently, several urban problems have been potentialized, such as traffic congestion and pollution. Several related problems can be formulated as a combinatorial optimization problem (COP). Since most of them are NP-Hard, the finding of optimal solutions through exact solution methods is often impractical in a reasonable amount of time. In realistic settings, the increasing need for 'instant' decision-making further refutes their use in real life. Under these circumstances, this thesis aims at: (i) identifying realistic COPs from different industries; (ii) developing different classes of approximate solution approaches to solve the identified T&L problems; (iii) conducting a series of computational experiments to validate and measure the performance of the developed approaches. The novel concept of 'agile optimization' is introduced, which refers to the combination of biased-randomized heuristics with parallel computing to deal with real-time decision-making.Las actividades de transporte y logística (T&L) juegan un papel vital en el desarrollo de muchas empresas de diferentes industrias. Con el creciente número de personas que viven en áreas urbanas, la expansión de la economía a lacarta y las actividades de comercio electrónico, el número de servicios de transporte y entrega ha aumentado considerablemente. En consecuencia, se han potencializado varios problemas urbanos, como la congestión del tráfico y la contaminación. Varios problemas relacionados pueden formularse como un problema de optimización combinatoria (COP). Dado que la mayoría de ellos son NP-Hard, la búsqueda de soluciones óptimas a través de métodos de solución exactos a menudo no es práctico en un período de tiempo razonable. En entornos realistas, la creciente necesidad de una toma de decisiones "instantánea" refuta aún más su uso en la vida real. En estas circunstancias, esta tesis tiene como objetivo: (i) identificar COP realistas de diferentes industrias; (ii) desarrollar diferentes clases de enfoques de solución aproximada para resolver los problemas de T&L identificados; (iii) realizar una serie de experimentos computacionales para validar y medir el desempeño de los enfoques desarrollados. Se introduce el nuevo concepto de optimización ágil, que se refiere a la combinación de heurísticas aleatorias sesgadas con computación paralela para hacer frente a la toma de decisiones en tiempo real.Les activitats de transport i logística (T&L) tenen un paper vital en el desenvolupament de moltes empreses de diferents indústries. Amb l'augment del nombre de persones que viuen a les zones urbanes, l'expansió de l'economia a la carta i les activitats de comerç electrònic, el nombre de serveis del transport i el lliurament ha augmentat considerablement. En conseqüència, s'han potencialitzat diversos problemes urbans, com ara la congestió del trànsit i la contaminació. Es poden formular diversos problemes relacionats com a problema d'optimització combinatòria (COP). Com que la majoria són NP-Hard, la recerca de solucions òptimes mitjançant mètodes de solució exactes sovint no és pràctica en un temps raonable. En entorns realistes, la creixent necessitat de prendre decisions "instantànies" refuta encara més el seu ús a la vida real. En aquestes circumstàncies, aquesta tesi té com a objectiu: (i) identificar COP realistes de diferents indústries; (ii) desenvolupar diferents classes d'aproximacions aproximades a la solució per resoldre els problemes identificats de T&L; (iii) la realització d'una sèrie d'experiments computacionals per validar i mesurar el rendiment dels enfocaments desenvolupats. S'introdueix el nou concepte d'optimització àgil, que fa referència a la combinació d'heurístiques esbiaixades i aleatòries amb informàtica paral·lela per fer front a la presa de decisions en temps real.Tecnologies de la informació i de xarxe

    Incorporating Memory and Learning Mechanisms Into Meta-RaPS

    Get PDF
    Due to the rapid increase of dimensions and complexity of real life problems, it has become more difficult to find optimal solutions using only exact mathematical methods. The need to find near-optimal solutions in an acceptable amount of time is a challenge when developing more sophisticated approaches. A proper answer to this challenge can be through the implementation of metaheuristic approaches. However, a more powerful answer might be reached by incorporating intelligence into metaheuristics. Meta-RaPS (Metaheuristic for Randomized Priority Search) is a metaheuristic that creates high quality solutions for discrete optimization problems. It is proposed that incorporating memory and learning mechanisms into Meta-RaPS, which is currently classified as a memoryless metaheuristic, can help the algorithm produce higher quality results. The proposed Meta-RaPS versions were created by taking different perspectives of learning. The first approach taken is Estimation of Distribution Algorithms (EDA), a stochastic learning technique that creates a probability distribution for each decision variable to generate new solutions. The second Meta-RaPS version was developed by utilizing a machine learning algorithm, Q Learning, which has been successfully applied to optimization problems whose output is a sequence of actions. In the third Meta-RaPS version, Path Relinking (PR) was implemented as a post-optimization method in which the new algorithm learns the good attributes by memorizing best solutions, and follows them to reach better solutions. The fourth proposed version of Meta-RaPS presented another form of learning with its ability to adaptively tune parameters. The efficiency of these approaches motivated us to redesign Meta-RaPS by removing the improvement phase and adding a more sophisticated Path Relinking method. The new Meta-RaPS could solve even the largest problems in much less time while keeping up the quality of its solutions. To evaluate their performance, all introduced versions were tested using the 0-1 Multidimensional Knapsack Problem (MKP). After comparing the proposed algorithms, Meta-RaPS PR and Meta-RaPS Q Learning appeared to be the algorithms with the best and worst performance, respectively. On the other hand, they could all show superior performance than other approaches to the 0-1 MKP in the literature

    Meta-raps: Parameter Setting And New Applications

    Get PDF
    Recently meta-heuristics have become a popular solution methodology, in terms of both research and application, for solving combinatorial optimization problems. Meta-heuristic methods guide simple heuristics or priority rules designed to solve a particular problem. Meta-heuristics enhance these simple heuristics by using a higher level strategy. The advantage of using meta-heuristics over conventional optimization methods is meta-heuristics are able to find good (near optimal) solutions within a reasonable computation time. Investigating this line of research is justified because in most practical cases with medium to large scale problems, the use of meta-heuristics is necessary to be able to find a solution in a reasonable time. The specific meta-heuristic studied in this research is, Meta-RaPS; Meta-heuristic for Randomized Priority Search which is developed by DePuy and Whitehouse in 2001. Meta-RaPS is a generic, high level strategy used to modify greedy algorithms based on the insertion of a random element (Moraga, 2002). To date, Meta-RaPS had been applied to different types of combinatorial optimization problems and achieved comparable solution performance to other meta-heuristic techniques. The specific problem studied in this dissertation is parameter setting of Meta-RaPS. The topic of parameter setting for meta-heuristics has not been extensively studied in the literature. Although the parameter setting method devised in this dissertation is used primarily on Meta-RaPS, it is applicable to any meta-heuristic\u27s parameter setting problem. This dissertation not only enhances the power of Meta-RaPS by parameter tuning but also it introduces a robust parameter selection technique with wide-spread utility for many meta-heuristics. Because the distribution of solution values generated by meta-heuristics for combinatorial optimization problems is not normal, the current parameter setting techniques which employ a parametric approach based on the assumption of normality may not be appropriate. The proposed method is Non-parametric Based Genetic Algorithms. Based on statistical tests, the Non-parametric Based Genetic Algorithms (NPGA) is able to enhance the solution quality of Meta-RaPS more than any other parameter setting procedures benchmarked in this research. NPGA sets the best parameter settings, of all the methods studied, for 38 of the 41 Early/Tardy Single Machine Scheduling with Common Due Date and Sequence-Dependent Setup Time (ETP) problems and 50 of the 54 0-1 Multidimensional Knapsack Problems (0-1 MKP). In addition to the parameter setting procedure discussed, this dissertation provides two Meta-RaPS combinatorial optimization problem applications, the 0-1 MKP, and the ETP. For the ETP problem, the Meta-RaPS application in this dissertation currently gives the best meta-heuristic solution performance so far in the literature for common ETP test sets. For the large ETP test set, Meta-RaPS provided better solution performance than Simulated Annealing (SA) for 55 of the 60 problems. For the small test set, in all four different small problem sets, the Meta-RaPS solution performance outperformed exiting algorithms in terms of average percent deviation from the optimal solution value. For the 0-1 MKP, the present Meta-RaPS application performs better than the earlier Meta-RaPS applications by other researchers on this problem. The Meta-RaPS 0-1 MKP application presented here has better solution quality than the existing Meta-RaPS application (Moraga, 2005) found in the literature. Meta-RaPS gives 0.75% average percent deviation, from the best known solutions, for the 270 0-1 MKP test problems

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering

    The 1st Conference of PhD Students in Computer Science

    Get PDF
    corecore