
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2006

Meta-raps: Parameter Setting And New Applications Meta-raps: Parameter Setting And New Applications

Seyhun Hepdogan
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Hepdogan, Seyhun, "Meta-raps: Parameter Setting And New Applications" (2006). Electronic Theses and
Dissertations, 2004-2019. 914.
https://stars.library.ucf.edu/etd/914

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F914&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/914?utm_source=stars.library.ucf.edu%2Fetd%2F914&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

Meta-RaPS: PARAMETER SETTING AND NEW APPLICATIONS

by

SEYHUN HEPDOGAN

B.S. Middle East Technical University, 2000
M.S. Middle East Technical University, 2001

M.S. University of Central Florida, 2004

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the Department of Industrial Engineering and Management Systems
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Summer Term
2006

Major Professors: Gary E. Whitehouse
 Gail W. DePuy

© 2006 Seyhun Hepdogan

 ii

ABSTRACT

Recently meta-heuristics have become a popular solution methodology, in terms

of both research and application, for solving combinatorial optimization problems. Meta-

heuristic methods guide simple heuristics or priority rules designed to solve a particular

problem. Meta-heuristics enhance these simple heuristics by using a higher level strategy.

The advantage of using meta-heuristics over conventional optimization methods is meta-

heuristics are able to find good (near optimal) solutions within a reasonable computation

time. Investigating this line of research is justified because in most practical cases with

medium to large scale problems, the use of meta-heuristics is necessary to be able to find

a solution in a reasonable time.

The specific meta-heuristic studied in this research is, Meta-RaPS; Meta-heuristic

for Randomized Priority Search which is developed by DePuy and Whitehouse in 2001.

Meta-RaPS is a generic, high level strategy used to modify greedy algorithms based on

the insertion of a random element (Moraga, 2002). To date, Meta-RaPS had been applied

to different types of combinatorial optimization problems and achieved comparable

solution performance to other meta-heuristic techniques.

The specific problem studied in this dissertation is parameter setting of Meta-

RaPS. The topic of parameter setting for meta-heuristics has not been extensively studied

in the literature. Although the parameter setting method devised in this dissertation is

used primarily on Meta-RaPS, it is applicable to any meta-heuristic’s parameter setting

problem. This dissertation not only enhances the power of Meta-RaPS by parameter

tuning but also it introduces a robust parameter selection technique with wide-spread

utility for many meta-heuristics.

 iii

 Because the distribution of solution values generated by meta-heuristics for

combinatorial optimization problems is not normal, the current parameter setting

techniques which employ a parametric approach based on the assumption of normality

may not be appropriate. The proposed method is Non-parametric Based Genetic

Algorithms. Based on statistical tests, the Non-parametric Based Genetic Algorithms

(NPGA) is able to enhance the solution quality of Meta-RaPS more than any other

parameter setting procedures benchmarked in this research. NPGA sets the best

parameter settings, of all the methods studied, for 38 of the 41 Early/Tardy Single

Machine Scheduling with Common Due Date and Sequence-Dependent Setup Time

(ETP) problems and 50 of the 54 0-1 Multidimensional Knapsack Problems (0-1 MKP).

In addition to the parameter setting procedure discussed, this dissertation provides

two Meta-RaPS combinatorial optimization problem applications, the 0-1 MKP, and the

ETP. For the ETP problem, the Meta-RaPS application in this dissertation currently gives

the best meta-heuristic solution performance so far in the literature for common ETP test

sets. For the large ETP test set, Meta-RaPS provided better solution performance than

Simulated Annealing (SA) for 55 of the 60 problems. For the small test set, in all four

different small problem sets, the Meta-RaPS solution performance outperformed exiting

algorithms in terms of average percent deviation from the optimal solution value. For the

0-1 MKP, the present Meta-RaPS application performs better than the earlier Meta-RaPS

applications by other researchers on this problem. The Meta-RaPS 0-1 MKP application

presented here has better solution quality than the existing Meta-RaPS application

(Moraga, 2005) found in the literature. Meta-RaPS gives 0.75% average percent

deviation, from the best known solutions, for the 270 0-1 MKP test problems.

 iv

This dissertation is dedicated to my family.

 v

ACKNOWLEDGMENTS

I would like to use the opportunity to thank the people whom helped me

throughout my PhD. Study. Despite my efforts to thank these people, I know that I will

always feel indebted to them.

I would like to thank God, for his blessings throughout my life. Without the

strength he provided at times when I felt lonely, out-of-place and deserted, I know I

wouldn’t be able to carry on.

Without the support of my family I would have never accomplished this wish of

mine. Apart from me and frankly more than me the burden of this dissertation is carried

on their shoulders.

I would like to thank my main advisors Dr. Gary E. Whitehouse and Dr. Gail

DePuy for continuously supporting me without any complaints throughout my

dissertation. I feel blessed to have Dr. Reinaldo Moraga on my dissertation committee for

the help and support he provided. I feel extremely lucky to have these three people

around me not only for the sake of my dissertation but for being the model individuals

whom I may wish to be in future. I also would like to thank my remaining committee

members; Dr. Jose Sepúlveda, Dr. Charles Reilly III and Dr. Christopher D. Geiger for

enriching my research experience and supporting me.

I also would like to thank all my friends for their extensive help during my

studies.

Finally I wish that I would be worthy of all these people who supported me and be

able to give back, serve with my work in future.

 vi

TABLE OF CONTENTS

LIST OF FIGURES .. x

LIST OF TABLES... xi

LIST OF ACRONYMS ... xiii

CHAPTER 1: INTRODUCTION TO COMBINATORIAL OPTIMIZATION

PROBLEMS ... 1

1.1 Combinatorial Optimization Problems ... 1

1.2 Why Heuristics Are Needed ... 2

1.3 Meta-Heuristics... 4

CHAPTER 2: COMMON META-HEURISTICS AND INTRODUCTION TO

Meta-RaPS .. 7

2.1 Common Features of Meta-Heuristics.. 7

2.2 Different Types of Meta-heuristics... 9

2.2.1 Genetic Algorithms.. 9

2.2.2 Simulated Annealing.. 11

2.2.3 Tabu Search ... 13

2.2.4 Greedy Randomized Adaptive Search Procedure (GRASP) 15

2.3 Meta-heuristic for Randomized Priority Search (Meta-RaPS) 17

2.4 Research Objectives.. 22

CHAPTER 3: Meta-RaPS APPLICATIONS ... 25

3.1 Application to 0-1 Multidimensional Knapsack Problem (0-1 MKP).................... 25

3.1.1 Description of 0-1 MKP... 25

3.1.2 Meta-RaPS 0-1 MKP Application ... 26

 vii

3.2 Application to Early/Tardy Single Machine Scheduling Problem with Common

Due Date and Sequence-Dependent Setup Times (ETP).. 34

3.2.1 Description of ETP .. 34

3.2.2 Meta-RaPS ETP Application ... 38

CHAPTER 4: PARAMETER SETTING PROBLEM OF META-HEURISTICS........... 46

4.1 Effect of Parameter Settings and Parameter Setting Techniques 46

4.2 Problem Statement: Robust Parameter Settings in Meta-RaPS.............................. 52

CHAPTER 5: PARAMETER SETTING PROCEDURES APPLICABLE

TO Meta-RaPS.. 54

5.1 Simple Parameter Setting Technique.. 55

5.2 Analytic Parameter Setting Techniques.. 57

5.2.1 Response Surface Methodology .. 57

5.2.1.1 Description of Response Surface Methodology 57

5.2.1.2 RSM Application to Meta-Raps.. 59

5.2.2 Genetic Algorithms.. 62

5.2.2.1 Description of Genetic Algorithms... 62

5.2.2.2 Genetic Algorithms application to Meta-RaPS... 63

5.2.3 Reactive Search.. 65

5.2.3.1 Description of Reactive Search... 66

5.2.3.2 Application to Meta-RaPS .. 68

5.2.4 Ranking and Selection Techniques .. 71

5.2.4.1 Description of Ranking and Selection Technique 71

5.2.4.2 Application to Meta-RaPS .. 73

5.2.5 Summary of Techniques for 0-1 MKP and ETP.. 77

 viii

5.3 Setting Robust Parameters For a Set of Problems .. 78

CHAPTER 6: PARAMETER SETTING WITH NON-PARAMETERIC BASED

GENETIC ALGORITMS ... 81

6.1 Analysis of the best solution behavior.. 81

6.2 Non-Parametric Tests ... 84

6.3 Non-Parametric Based Genetic Algorithm... 87

6.4 NPGA Results... 89

CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH 93

LIST OF REFERENCES.. 97

 ix

LIST OF FIGURES

Figure 1: General GRASP Algorithm... 16

Figure 2: 0-1 MKP Pseudocode for Meta-RaPS... 29

Figure 3: Optimal sequence for E/T Problem without setup times................................... 36

Figure 4: ETP Pseudocode for Meta-RaPS... 41

Figure 5: Surface Plot of Knapsack Problem Solution Value... 61

Figure 6: GA Convergence ... 64

Figure 7: Meta-RaPS ETP 25-7-high Problem Solution Distribution 82

Figure 8: Meta-RaPS 0-1 MKP 5-100-1 Problem Solution Distribution 83

Figure 9: Flowchart of NPGA... 88

 x

LIST OF TABLES

Table 1: Comparison of meta-heuristics for 5 TSP test problems (Moraga, 2002).......... 20

Table 2: Comparison of Meta-RaPS versus other heuristics for 30 node PSPLIB test

problems.. 21

Table 3: Meta-RaPS pros and cons (Moraga, 2002)... 22

Table 4: Comparison of meta-heuristics ... 22

Table 5: Improved vs. Nonimproved Meta-RaPS for Small Problem Set........................ 30

Table 6: Comparison of Meta-RaPS to other techniques for small sized test problems... 30

Table 7: Meta-RaPS Parameter Settings for Large Problems... 31

Table 8: Average % Deviation of Meta-RaPS vs. Other Methods 32

Table 9: Meta-RaPS Parameter Settings for ETP Problems... 40

Table 10: Meta-RaPS & SAPT % Deviation from Optimal ... 42

Table 11: Meta-RaPS vs. SA and SAPT-SA for Small Problems 44

Table 12: Meta-RaPS vs. SA for Larger Problems... 45

Table 13: Summary of the meta-heuristic parameter setting methods & parameter effect

studies in literature.. 51

Table 14: HP2 Test Problem Results (Best value for 1000 trials each)............................ 56

Table 15: Estimated Regression Coefficients and Significance of Terms........................ 60

Table 16: ANOVA for the Model... 60

Table 17: The %Priority and the %Restriction values of the 30th Generation.................. 65

Table 18: Reactive Search Results.. 70

Table 19: Selection of best %restriction value for a given %priority (Stage 1) 74

Table 20: Selection of the best parameter setting (Stage 2).. 76

 xi

Table 21: Final Parameter Setting Suggestions for 0-1 MKP and ETP............................ 77

Table 22: Summary of Normal Distribution Fit to ETP Solution Distribution 83

Table 23: Summary of Normal Distribution Fit to 0-1 MKP Solution Distribution 84

Table 24: Comparison of Parameter Setting Methods for 0-1 MKP 91

Table 25: Comparison of Parameter Setting Methods for ETP .. 92

 xii

LIST OF ACRONYMS

0-1 MKP 0-1 Multi-dimensional Knapsack Problem

COMSOAL Computer Method of Sequencing Operations for Assembly

Lines

ETP Early/ Tardy Single Machine Scheduling Problem with a

Common Due Date and Sequence Dependent Setup Times

GA Genetic Algorithms

GAP Generalized Assignment Problem

GPI Generalized Pairwise Interchange

GRASP Greedy Randomized Adaptive Search Procedure

K-W Kruskal-Wallis Test

LPT Longest Processing Time

Meta-RaPS Meta-heuristic for Randomized Priority Search

NN Neural Networks

NPGA Non-Parametric Based Genetic Algorithm

RCPSP Resource Constrained Project Scheduling Problem

RS Reactive Search

R&S Ranking and Selection Method

RSM Response Surface Methodology

SA Simulated Annealing

SE Simulated Evolution

SPT Shortest Processing Time

TS Tabu Search

 xiii

TE Simple Trial-and-error Method

TSP Traveling Salesman Problem

VRP Vehicle Routing Problem

 xiv

CHAPTER 1: INTRODUCTION TO COMBINATORIAL
OPTIMIZATION PROBLEMS

1.1 Combinatorial Optimization Problems

Many practical and theoretical problems involve a search of the best

configuration, or set of variables, to achieve a goal. Many of these problems can be

structured to optimize some decision variables within a set of constraints (Papadimitriou,

and Steiglitz, 1982). The formulations of one end of the hierarchy of such problems are

given as a general nonlinear programming problem; for example:

where f, gi and hj are general functions of the variable The goal of the problem is

to optimize the function f by setting the independent variables, x to a level within the

allowable ranges of constraints gi and hj. The optimization of f(x) can be a minimization,

as shown above, or a maximization problem, depending on the nature and objective of the

problem. The principal goal of optimization models is to mathematically express the

problem to facilitate a solution method. Solution techniques for many optimization

problems are almost always iterative in nature, and their convergence is studied using the

mathematics of real analysis.

 1

There are different classes of optimization problems to consider. By placing

restrictions on the type of functions under consideration (f, gi and hj), and restricting the

values that decision variables can take, different classes of optimization problems are

formed (Reeves, 1993). If f is convex, gi concave and hj is linear, then the optimization

problem is called a convex programming problem. This type of problem is convenient in

the sense that local optimality implies global optimality. In a more general setting, when

all f, gi and hj are linear the problem is called a linear programming problem.

Optimization problems are typically divided into two categories: those with

continuous variables and those with discrete variables, which are also called

combinatorial problems. In combinatorial problems, one is looking for a set of decision

variables from a finite or possibly near-infinite set that satisfies constraints and optimizes

one or more objective functions (Papadimitriou, and Steiglitz, 1982).

A wide variety of combinatorial optimization problems are studied in the

literature as they have numerous practical applications. The combinatorial optimization

problems most often addressed in the literature include Traveling Salesperson Problem

(TSP), Quadratic Assignment Problem (QAP), Multiple Knapsack Problem (MKP), Bin

Packing Problem, and the Vehicle Routing Problem (VRP).

1.2 Why Heuristics Are Needed

A well-known combinatorial optimization problem that is often cited in literature

is the Traveling Salesperson Problem (TSP). In TSP, one is given an integer number n>1

number of cities and the distance between every pair of n cities. The objective of the

problem is to find a tour or a closed path that visits each city exactly once and minimizes

 2

total tour length. If the goal is to find the minimal tour by enumeration, one begins by

computing the length of all the possible tours and picking the one with the smallest tour

length. Since each city can be visited only once, the number of possible tours will be (n-

1)! The number of possible routes can be enumerated when n is relatively small.

However as the number of cities increases, the possible combinations of tours become

impossible to enumerate even with the most advanced computers today. A TSP with 25

cities has 1.55E+25 possible tours which is not a reasonable number for an enumeration

approach. TSP is considered a NP-Complete problem for the reason that there is no

algorithm that can solve the problem in polynomial time (Reeves, 1993).

Since the enumeration technique seemed impractical for most combinatorial

optimization problems, researchers propose simpler procedures for finding optimal

solution. The techniques which guarantee optimal solutions, like complete enumeration,

are called exact methods. Exact methods try to find a solution more efficiently than

complete enumeration. Simplex algorithm (used for linear optimization problems),

branch-and-bound and dynamic programming are some examples of exact methods.

However, researchers determined that for large problems, most exact methods were not

able to find optimal solutions in a reasonable amount of computing time. Although exact

methods are usually more efficient than complete enumeration, they are still impractical

in terms of computation time for large problems Reeves, 1993).

To be able to solve large problems, researchers began to investigate how the

solution time for a problem varies with the size (i.e., number of cities in a TSP instance)

of the problem (Reeves, 1993). Exact methods for some problems require a computation

effort with polynomial time complexity. Unfortunately, for some other harder problem

computational effort required is at a greater magnitude than the polynomial function of

 3

the size of the problem, such as exponential function of the problem size (Reeves, 1993).

However, in many practical cases the goal of achieving the optimal solution is not only

unrealistic but also unnecessary; finding a “good enough” solution is often considered a

success considering that the true optimal solution may never be reached and the optimal

solution may not be necessary in practice. To find the “best” solution subject to the time

restrictions, researchers devise simple rules of thumbs (i.e., heuristics). The term heuristic

can be defined as “a technique which seeks good (i.e., near optimal) solutions at a

reasonable computational cost without being able to guarantee either feasibility or

optimality, or even in many cases to state how close to optimality a particular feasible

solution is” (Reeves, 1993). It is this need to generate a fast, good enough solution that

justifies why heuristics are merited.

1.3 Meta-Heuristics

Heuristics are classified into several broad categories with respect to the approach

used to find a solution. Some of these categories are: greedy construction methods,

neighborhood search (improvement heuristics), relaxation techniques, partial

enumerations, decomposition and partition.

Many heuristics are problem specific. However, there are several general

techniques that give high quality solutions over a wide array of problem types. The local

neighborhood search strategy is considered to be an important technique for its

performance flexibility on various types of problems. Some examples of the local search

techniques are λ-optimal heuristics, in which a feasible solution is improved by

exchanges (decomposition and reconstruction of a solution), uphill moves in which a

 4

solution is allowed to get worse to for the intention that a local optimal solution to be

“climbed out” in order to ultimately reach a better solution.

Despite the utility of these general search strategies, researchers have proposed

meta-heuristics to further enhance the solution quality of heuristics. Meta-heuristics are

defined as a top-level general strategy that guides other heuristics to search for feasible

solutions in domains where the task is particularly hard. In such cases, meta-heuristics

have been applied to problems classified as NP-Hard and achieved considerable success

(Reeves, 1993). Some examples of modern meta-heuristics are: Meta-RaPS, tabu search,

simulated annealing, genetic algorithms, neural networks and greedy randomized

adaptive search procedure (GRASP). This research focuses on Meta-RaPS, a meta-

heuristic developed by DePuy and Whitehouse (2001). However many of the insights

gained in this work can be applied to other meta-heuristics.

Almost all meta-heuristics have decision parameters to be set, and the

performance of a meta-heuristic is dependent on the choice of these parameters. There are

many techniques available for meta-heuristic parameter selection, but there is no clear

consensus on when and why to use a particular parameter selection technique. The main

objective of this research is to design a robust parameter setting technique for the meta-

heuristic studied in this research, Meta-RaPS. Other objectives of this research are to

implement Meta-RaPS for 0-1 MKP and ETP combinatorial optimization problems and

achieve comparable or better solution performance against the other existing meta-

heuristic applications in the literature for these two combinatorial optimization problems.

This dissertation is organized as follows. In Chapter 2, several common meta-

heuristics including the meta-heuristic used in this research, are described. The research

objectives are also presented in Chapter 2. In order to best demonstrate the parameter

 5

setting techniques developed in this research, two combinatorial optimization problems

are studied in Chapter 3. Chapter 3 also includes the description and results of several

modifications made to previous Meta-RaPS 0-1 MKP and Meta-RaPS ETP efforts. The

enhanced performance of Meta-RaPS for these two application problems constitutes a

contribution of this research in addition to the main focus of this work of parameter

selection techniques for meta-heuristics. Parameter setting literature is discussed in

Chapter 4 and the problem statement is identified based on the research gap found in the

literature search. Chapter 5 provides the description and Meta-RaPS applications of

several parameter setting techniques found in literature. Chapter 6 presents the analysis of

statistical parameter setting comparisons and shows that this comparison should be done

using distribution-free procedures. In Chapter 6, a new parameter setting method, Non-

parametric Based Genetic Algorithms, is introduced and compared to the parameter

setting methods in Chapter 5. Chapter 7 briefly summarizes the findings and

contributions of this research as well as discusses future research directions.

 6

CHAPTER 2: COMMON META-HEURISTICS AND
INTRODUCTION TO Meta-RaPS

 This chapter provides a discussion of several common meta-heuristics, their

specific features, advantages and disadvantages. In addition, a detailed description of

Meta-RaPS is presented.

2.1 Common Features of Meta-Heuristics

Meta-heuristics use different strategies to find solutions. However, almost all of

the meta-heuristics use some combination of these common strategies to find a solution.

Some examples of the common meta-heuristics strategies are described below.

A common characteristic in modern search heuristics is being able to accept

moves that temporarily degrade the objective function value in an attempt to avoid being

trapped at local optima and ultimately yield a better solution. This strategy is also called

an “uphill move”. For a minimization problem after finding a local minimum, the search

is restarted or modified to move to a point with an inferior (higher) solution value than

the local minimum at which heuristic has been trapped. It is expected that this uphill

move will be able to move far enough away from the local minimum so that the search

will not converge to this point and the global minimum may eventually be reached.

Modern meta-heuristics mostly use sampling and local search to improve solution

quality. Sampling allows meta-heuristics to explore different regions of the solution space

so that it is more probable that the final solution is the global optimum. By using

randomness, sampling allows meta-heuristics to create a variety of solutions.

 7

Local search is used to further improve an already constructed solution. An

important issue in local search is search confinement. Confinement means, if the heuristic

converges to a local minimum; the heuristic should avoid further searching in this area in

order to save valuable computation time. To overcome this problem, some meta-

heuristics use a strategy called diversification. Diversification strategy allows the

heuristics to move away from the local optima. As previously mentioned, the uphill move

described above is considered to be a typical diversification strategy. On the other hand,

some search effort around the local minimum should be conducted under the assumption

that neighborhoods may have correlated evaluation/objective function values, and a

global optimum may be found in close proximity to this local optimum point. This search

around a neighborhood is called intensification. Diversification and intensification are

conflicting search strategy procedures. Yet, a good meta-heuristic should be able to

balance the intensification and diversification, both of which are vital in finding a good or

possibly optimal solution.

Some meta-heuristics, such as evolutionary algorithms, use a set or population of

solutions. Instead of moving from one solution to another, these types of meta-heuristics

try to characterize the solution space by determining the regions of the solution space that

contain the best solutions. By way of comparison, most other meta-heuristics construct

one solution within each iteration. In general, constructing a solution is done by adding

feasible elements to the solution one by one until no other elements can be added to the

solution without the violation of feasibility.

Some meta-heuristics also may use adaptive memory in the way that the

information obtained in one solution can be carried to the next, or in other words the

good solution traits and characteristics can be identified and used in successive iterations.

 8

To detail these specifics, some of the most common modern meta-heuristics are briefly

described in the following section.

2.2 Different Types of Meta-heuristics

 This section describes the genetic algorithms, simulated annealing and tabu

search, which are most frequently used meta-heuristics in literature and in practice. Apart

from these aforementioned meta-heuristics, greedy randomized adaptive search procesure

(GRASP) is also described due to its similarity to Meta-RaPS.

2.2.1 Genetic Algorithms

Genetic algorithms are approaches to solve combinatorial optimization problems

based on natural selection and evolution mechanics. Genetic algorithms (GA) were

originally developed by John Holland at University of Michigan to mimic natural

selection and evolution. The seminal work in this area was published in 1975 as

Holland’s book called “Adaptation in Natural and Artificial Systems”. The main theme of

the GA is robustness. Nature laws and evolution are thought to be the key elements of

robustness where survival of the fittest rule is of primary priority.

The information about the GA applied problem is carried from one population to

another population by individuals composed of chromosomes representing decision

parameters of the problem. A GA works in the way that individuals having favorable

characteristics are more likely to pass their chromosomes, or their traits, compared to

those individuals who have less favorable characteristics. The random selection processes

 9

and mutation enable GAs to incorporate randomness in their procedure so that sometimes

the types of individuals introduced into the population are not the fittest. As a result, the

search is not limited to the previously best performing chromosomes.

Different from most other optimization methods, genetic algorithms use a

population of solutions to evaluate the performance of a system based on a fitness

function value and screen the population for fit individuals that are more likely to

survive. The underlying idea is mating of fit individuals will result in a yield of better fit

offspring. The local optimum is avoided by a genetic operation called mutation where at

a very low probability the solution may move to a completely different region. If this trial

for exploring different region is not fit enough with respect to the fitness value then this

solution (or population of solutions) will be eliminated (Goldberg, 1989).

 While many variations exist, the main steps used by most of the GA-based

heuristics are:

• Representation of individuals: Individuals are represented by chromosomes of

gene strings of fixed length. Depending on the application, the genes are

represented by binary numbers (0 and 1), or by real and/or integer numbers.

• Fitness evaluation function: Based on a function, the individuals are evaluated.

The fitness function depends on the application. For TSP, the fitness of an

individual (i.e. solution) will be the resulting length of a candidate tour.

Therefore, the smaller the fitness value, the more fit the individual.

• Starting population: A suitable number of individuals are selected as a starting

population from which the GA will explore many different generations. A good

representative starting population that has good fitness values may be an

important starting point for some GA applications.

 10

• Selection: Parents are selected by a rule, which is related to their fitness functions,

or fitness rank in the population. Then, they will produce the next generation after

a series of genetic operations.

• Genetic operations: Crossover and mutation are the most common genetic

operations used to modify the genetic information from parents to their offspring.

In mutation, a gene string that is not found in any of the parents may be

introduced to offspring. In crossover, where a parent’s chromosome pieces are

exchanged to form the offspring (Pham, and Karaboga 2000).

Genetic algorithms have proven their value of being robust in many diverse

applications. In the literature, GA is applied to various kinds of combinatorial

optimization problems. Some examples include the Traveling Salesperson Problem by

Wang et al. (2006), the Knapsack Problem by Yuan (2005), and the Set Covering

Problem by Vasko (1991).

Schaffer and Eshelman (1996) point out that, combinatorial optimization

problems are difficult to solve with GA because representations that induce good schema

are hard to find. Typically, GAs needs to be modified for each problem it is applied to

(i.e., chromosome representation, elitism, crossover and mutation types etc.), and this

lack of universality can be a limitation in optimization problems.

2.2.2 Simulated Annealing

Another popular meta-heuristic is simulated annealing (SA), which is based on

the analogy of the annealing of solids. The principles of simulated annealing are

discussed in Metropolis et al. (1953) in an algorithm to simulate the cooling of a material

 11

in a heat bath (Rayward-Smith et al., 1996). The idea of using this thermodynamic

process as an analogy to solve the combinatorial optimization problems is proposed by

Kirkpatrick (1983).

The underlying philosophy of SA is as follows: in thermodynamics if the

temperature is high, then the atoms will have higher energy and they are more mobile.

The local search is able to move to many different solutions and the chance of moving to

inferior solutions is high so that the feasible region is explored in detail. When the

temperature decreases the atoms tend to have more rigid bonds between each other and

mobility decreases and they become crystallized, for the SA close to the end of procedure

the probability of moving to inferior solutions decreases. In other words the moves are

accepted only if they enhance the solution.

The final goal is to have a perfectly crystallized material which has the perfect

structure. Similarly for the SA the perfect structure is regarded as the optimal solution. If

a material is annealed starting from a high temperature and let to cool slowly, the material

crystallizes because by starting from high temperature all the atoms are mobile enough to

move the desired locations and by cooling slowly the solidification happens gradually

without distorting the structure of the crystal structure. In other words, the pieces will

have time to move into their desired locations to be crystallized. In contrast, if a low

starting temperature is selected and/or material is cooled fast, the resulting end material

will not have the perfect crystalline structure, meaning a global optimal point may not be

found for optimization purposes.

Simulated annealing is one of the simplest heuristic procedures to apply, yet it is

very flexible to modifications which produce further decisions to make and parameters to

be set in the application. A drawback of SA is the disappointingly long running times that

 12

may be needed for good quality solutions or convergence to optimality. In the literature

SA had been applied to many combinatorial optimization problems (Reeves, 1993)

including Traveling Salesperson Problem (Lee, 2005), Quadratic Assignment Problem

(Connoly, 1990 and Baykasoglu, 2004), Multi-level Lot Sizing (Kuik, and Salomon,

1990 and Tang, 2004) and Vehicle Routing Problem (Sohrabi, and Bassiri, 2004 and

Osman, 1993).

2.2.3 Tabu Search

Tabu search (TS) was originally developed by Fred Glover (Glover and Laguna,

1997). TS is based on procedures designed to cross the boundaries of feasibility or local

optimally which are treated as barriers for finding the global optimal solution. The

method systematically removes the barriers mentioned which limit the exploration of

otherwise forbidden regions. The feasibility barrier is removed by imposing and releasing

the constraints. This idea was also developed by Pierre Hansen in the steepest/mildest

descent method (Hansen, 1986).

The advantage of tabu search lies in this local search which uses adaptive

memory. The local search method tabu search uses is based on an evaluation function

that chooses the highest evaluation solution move, subject to tabu list restrictions at each

iteration. From the available moves, the move with the best objective improvement, or if

this is not a possible move, then the one with the least objective deterioration is made.

The concept of the tabu list and its restriction is simple. A tabu list keeps track of

the recently accepted moves made so that these moves should be avoided so as to reduce

 13

the probability of local optimality. The tabu list decides which moves are to be permitted

for the next iteration(s).

 Tabu search features a list of different strategies to overcome local optimality

(Pham, and Karaboga 2000):

• Forbidding strategy is used to avoid cycling by forbidding certain moves. This

strategy keeps track of the moves made so far in the local search and prohibits

making the same moves again. The drawback of this strategy is it requires

extensive computer memory. To overcome this effect instead of keeping all the

moves in the list, some number of recent moves is kept. This number is also the

size of the tabu list, the smaller the number, the greater the chance of cycling.

• Aspiration criteria make a tabu solution a candidate move if this solution is of

sufficient quality and this criterion may prevent cycling. In tabu search, the move

attributes are recorded, and if a move is found to yield good quality solutions even

if this move is in the tabu list, the aspiration criteria may set this move free and re-

use the move since move history shows the value of that move.

• Freeing Strategy deletes the restrictions on the solution so these moves can be

made again.

In general tabu search evolved from ideas of the founders Glover and Laguna

(1997) and various applications reviewed show that tabu search is an effective method in

navigating through large and complex solution spaces. tabu search has been applied to

many different kinds of problems: Flow Shop (Grabowski, and Wodecki, 2004; Taillard,

1990), Single Machine Scheduling (Hino et al., 2005; Laguna 1991), Traveling

Salesperson Problem (Yang et al., 2006; Glover, 1992), Quadratic Assignment Problem

(Misevicius, 2005; Skoring-Kapov, 1990).

 14

2.2.4 Greedy Randomized Adaptive Search Procedure (GRASP)

GRASP is a meta-heuristic founded by Feo and Resende(1995). GRASP has two

main stages: a solution constructor, that generates randomized solutions, and a local

search heuristic, that improves the solutions generated by the constructor (Gomes, 2001).

Stage 1: Construction

In the construction stage a feasible solution is constructed in an iterative fashion

using an adaptive greedy heuristic. A greedy heuristic is an algorithm that always takes

the best immediate, or local, solution while finding an answer (Black, 1998). The greedy

heuristic by itself is deterministic and it does not allow variation of solutions. The greedy

heuristic ranks the feasible moves to be made and selects the best possible move. The

probabilistic component, or randomization, of GRASP is done by randomly choosing one

of the best candidates in the list, but not necessarily the top candidate. The list of best

candidates is called the restricted candidate list (RCL). This RCL choice technique allows

GRASP to have different solutions at each iteration and still does not compromise the

power of adaptive greedy heuristic (Feo, and Resende 1995).

The greedy heuristic used in GRASP is adaptive because the benefits associated

with every element are updated at each iteration of the construction phase to reflect the

changes brought on by the selection of the previous element (Feo, and Resende, 1995).

 15

Stage 2: Improvement

After the construction stage is completed a local search is done to further improve

the constructed solution. Like the construction stage heuristic, a local search algorithm

also works in an iterative fashion but in a different way. Local search replaces the current

solution with a better solution in the neighborhood of the current solution (Feo, Resende

1995).

At each iteration, GRASP samples the solution space by a randomized greedy

function and then applies the local search to improve the constructed solution. The

GRASP procedure is repeated for a large number of iterations and the best solution found

is reported when all iterations are completed. An outline of the GRASP algorithm is

shown in Figure 1:

GRASP has been used for several problems, such as scheduling problems,

routing, facility planning, maximum independent set (Gomez, 2001). Resende and Festa

(2001) lists many other applications of GRASP in their annotated bibliography of

GRASP.

begin
for a fixed number of iterations do
Construct a Greedy Randomized Solution
Apply Local Search Update best solution
end

Figure 1: General GRASP Algorithm

 16

2.3 Meta-heuristic for Randomized Priority Search (Meta-RaPS)

Meta-RaPS is a generic, high-level strategy used to modify greedy algorithms

based on the insertion of a random element. Meta-RaPS integrates priority rules,

randomness, and sampling in each iteration, As with other meta-heuristics, the

randomness represents a device to avoid getting stuck in local optima (Moraga, 2002).

Meta-RaPS constructs and improves feasible solutions through the utilization of a

greedy algorithm in a randomized fashion. After a number of iterations, Meta-RaPS

reports the best solution found. Meta-RaPS is the result of research conducted on the

application of a modified COMSOAL approach. COMSOAL (Computer Method of

Sequencing Operations for Assembly Lines), which was developed by Arcus (1966), is a

computer heuristic originally reported as a solution approach to the assembly line

balancing problem. Whitehouse and Tidwell (1980) modify COMSOAL for the resource

allocation problem. Although Meta-RaPS conserves Arcus’s original idea, it differs

considerably from the original COMSOAL. This significant difference led DePuy and

Whitehouse (2001) to present their approach as Meta-RaPS.

Meta-RaPS, as well as COMSOAL, constructs solutions by generating a list of

feasible elements that may be added to the partially constructed solution. The next

element to be added to the solution is randomly chosen from the list referred to as the

candidate or available list. This iterative process of building the solution is continued

until all the feasible elements are included in the solution and no more feasible elements

can be added to the solution (i.e., until the available list is empty). Many iterations are run

and best solution is reported. One should note that because randomness is involved in the

selection of the elements that are to be included in the solution, different iterations will

 17

give different solutions most of the time. The difference between Meta-RaPS and

COMSOAL comes from the way that the procedure chooses the next element to enter the

solution. Meta-RaPS chooses the next feasible element from the available list either

strictly by a priority rule or by a relaxed priority rule.

Meta-RaPS has two stages, construction and improvement. In the construction

stage a feasible solution is built by adding elements to a solution based on a priority rule.

Meta-RaPS modifies the construction algorithm such that the next element to be added to

the solution does not always have to have the best priority value. The construction stage

ends after no possible elements can be added to solution. In the improvement phase, a

local search is applied. The local search may use a similar priority rule as the construction

stage or a completely different procedure.

The Meta-RaPS technique involves the use of four parameters: number of

iterations, I, the priority percentage, %p, the restriction percentage, %r, and the

improvement percentage, %I. For a number of iterations I, Meta-RaPS constructs feasible

solutions and Meta-RaPS will pick the best solution from I iterations. During each

iteration, the parameter %p is used to determine the percentage of time the next activity

will be scheduled using the base or unmodified priority rule. The remaining (100%-%p)

of the time, the priority rule is modified by %restriction, %r parameter. In (100%-%p) of

the time the next element added is randomly chosen from the feasible elements whose

priority values are within %restriction of the best priority value. Improvement %I decides

if the solution created at the construction stage is worthy to be improved. The

improvement heuristic is used if the solution value at the end of construction stage is

within %I of the best unimproved solution value found so far from the preceding

iterations (Moraga, 2002).The solution quality of the Meta-RaPS depends on the number

 18

of iterations I, %priority %p, %restriction %r and %improvement %I parameters. Meta-

RaPS integrates priority rules, randomness by %p, %r and %I parameters and uses

sampling by I parameter.

The general steps in applying the Meta-RaPS methodology to any combinatorial

problem are as follows (Moraga, 2002):

1. Study the structure of the problem to be solved.

2. Find priority rules that construct feasible solutions.

3. Modify priority rules to incorporate randomness by adjustment of %p and %r

parameters.

4. Construct feasible solutions using priority rule and randomness.

5. Improve selected solutions, keep the best solution found by Meta-RAPS for

both construction and improvement stages.

6. Report the best solution found at the end of I iterations.

Apart from COMSOAL, the Meta-RaPS procedure is also similar to GRASP.

However, there are two main differences between Meta-RaPS and GRASP. In the

construction stage, Meta-RaPS either uses the pure greedy heuristic or uses randomness

inserted (relaxed) into the greedy heuristic whereas GRASP always uses randomness

inserted into the greedy function during the construction phase. The second difference is:

in the improvement stage Meta-RaPS improves the solutions that are %I (improvement

percentage) close to the best solution found so far. On the other hand, GRASP improves

every solution produced by it’s construction stage. In some GRASP applications (Feo et

al.,1994; Prais and Ribeiro, 2000), which are referred as GRASP with filtering strategies,

the similar idea of applying local search is applied only to some promising solutions. In

conclusion, Meta-RaPS may be seen as a generalization of both COMSOAL and GRASP.

 19

Meta-RaPS has been applied to the Traveling Salesperson Problem (Moraga et

al.,2001; DePuty et al., 2005), the Set Covering Problem (Lan et. al, forthcoming), the

Resource Constrained Project Scheduling Problem (DePuy. and Whitehouse 2001),

Vehicle Routing (Moraga, 2002), and the Knapsack Problem (Moraga et al., 2005). Meta-

RaPS has demonstrated good performance in terms of both solution quality and

computation time with respect to other meta-heuristics (genetic algorithms, neural

networks, simulated annealing etc.) Table 1 (from Moraga, 2001) shows a comparison of

Meta-RaPS and other meta-heuristics in terms of computation time and percent deviation

from the best known solution value for five 100-city TSP test problems taken from

TSPLIB (Reinelt and Bixby, 1995).

Table 1: Comparison of meta-heuristics for 5 TSP test problems (Moraga, 2002).
Problem Solution Method

KroA KroB KroC KroD KroE
Run Time
for KroA

Meta-RaPS
TSP(Moraga, 2002)

0.00% 0.25% 0.00% 0.00% 0.17% 50 sec

Cheapest Insertion &
Node Insertion

0.50% 2.46% 0.82% 1.43% 1.10% -

GA (Chatterjee et al.,
1996)

0.70% - 1.78% 1.45% - 1 hour

Neural Networks
(Modares et al., 1999)

0.31% 1.43% - - - 55 sec

SA(Voudouris &
Tsang, 1999)

0.42% - 0.80% - - 37 sec

TS (Voudouris &
Tsang, 1999)

0.00% - 0.25% - - 21 sec

Table 2 (from Moraga, 2002) compares the solution quality of Meta-RaPS to

other heuristics for the Resource Constrained Project Scheduling Problem (RCPSP).

Table 2 shows the %difference from the optimal solution for 480 RCPSP test problems.

 20

These 480 problems are 30 node RCPSP test problems taken from PSPLIB (Kolisch and

Sprecher, 1996). Meta-RaPS produces statistically significantly smaller average percent

differences from the results of all the articles in Table 2 except Brucker (1998) in which

branch and bound method is used. It is important to note that branch and bound has a

much longer average run time than Meta-RaPS.

Table 2: Comparison of Meta-RaPS versus other heuristics for 30 node PSPLIB test
problems

Solution Method

Average
%Deviation

from
Optimal

Standard
Deviation

from
Optimal

Maximum
%Deviation

from
Optimal

%Optimal
Solutions

Meta-RaPS (Moraga, 2002) 0.598% 1.22% 6.25% 76.00%
Khattab and Choobinch
(1991)

3.29% 4.24% 23.68% 47.30%

Brown (1995) 2.05% 2.82% 15.79% 52.10%
Kolisch and Drexl (1996) 0.910% 1.83% 8.62% 75.00%
Brucker et al. (1998) 0.138% - 4.00% 88.50%

As seen in Tables 1 and 2, Meta-RaPS achieves better or comparable results to

other meta-heuristics. Moraga (2002) summarizes the pros and cons of Meta-RaPS in

Table 3.

 Table 4 compares many of the common meta-heuristics to Meta-RaPS. A

meta-heuristic has adaptive memory if it uses the information from the previously found

solution to produce a new solution. All meta-heuristics shown in Table 4, except GA, use

priority rules to produce solutions, GA instead uses sample solutions (input and output

pairs) to function. Although Table 4 summarizes the general attributes, each meta-

heuristic procedure is flexible and can be designed in a way to implement different

attributes of meta-heuristics depending on the specific implementation. Thus Table 4

 21

shows the general properties of different meta-heuristic procedures when they are

implemented in their conventional way.

Table 3: Meta-RaPS pros and cons (Moraga, 2002)
Pros Cons

1. Global Search Method
2. Not problem dependent
3. High capability of avoiding local

optima
4. Keep best solution after a number

of iterations
5. Can incorporate intelligence as

stopping rule
6. Reasonable runtimes
7. Good results for less-restricted

problems, such as TSP
8. Easy to implement

1. Might duplicate solutions
2. Priority rule dependent
3. Not adaptive
4. Does not exploit parallelism
5. Parameter dependent

Table 4: Comparison of meta-heuristics
Meta-

heuristic
Adaptive
Memory

Use of
Randomness

Solutions
per Iteration

Priority
Rule

Dependent

Need of
sample

solutions
Meta-RaPS No Yes 1 Yes No

SA No Yes 1 Yes No
GA Yes Yes Many No Yes
TS Yes Yes 1 Yes No

GRASP No Yes 1 Yes No

2.4 Research Objectives

Meta-RaPS has been applied to Traveling Salesperson (Moraga et al., 2001), Set

Covering Problem (Lan et. al, forthcoming), Resource Constrained Project Scheduling

Problem (DePuy and Whitehouse 2001), Vehicle Routing (Moraga, 2002) and 0-1

Multidimensional Knapsack (Moraga et al. 2005) problems and yielded competitive

 22

results with respect to other meta-heuristics. Although the Meta-RaPS procedure is

straightforward and easy to implement, its performance is dependent on the parameters (I,

%p, %r, %I) that it uses. So far numerous techniques have been used for Meta-RaPS

parameter selection (Moraga, 2002) but there is no clear consensus on when and why to

use a particular parameter selection technique.

Similar to the differences in meta-heuristics explained in Section 2.1, the

parameter setting procedures have different strengths and weaknesses. An ideal

parameter setting method is not only needed to effectively find the effective parameters

settings, but it should also have the following properties:

• Use as few points in the parameter domain as possible and have simple

procedure steps. These two points help the procedure to be fast in terms of the

computation time.

• Robust for different types of combinatorial optimization problems; be able to

suggest effective parameters when used for different type of problems

• Easy to use and ease of repeatability of the procedure. The procedure of

application is desired to be straightforward. The amount of human effort

required during the application should be minimal and the procedure should

be repeatable without complication.

 Having a combination of these properties enables a meta-heuristic to be effective

and a user friendly procedure. The different attributes of parameter setting procedures

will be discussed in detail in Chapter 5.

 In order to best demonstrate the parameter setting techniques developed in

Chapter 5, two combinatorial optimization problems are used: 0-1 Multidimensional

Knapsack Problem (0-1 MKP) and Early/Tardy Single Machine Scheduling Problem with

 23

Common Due Date and Sequence Dependent Setup Times (ETP). These two

applications, 0-1 MKP and ETP, are first described in Chapter 3. Chapter 3 also includes

the description and results of several modifications made to previous Meta-RaPS 0-1

MKP and Meta-RaPS ETP efforts. The enhanced performance of Meta-RaPS for these

two application problems constitutes a contribution of this research in addition to the

main focus of this work presented in Chapters 5 and 6 of parameter selection techniques

for meta-heuristics.

 The research objectives are as follows:

1. Design a robust parameter setting technique for Meta-RaPS, that can also be

applied to other meta-heuristics.

2. Implementation of Meta-RaPS to 0-1 MKP and ETP combinatorial

optimization problems. Achieve comparable or better solution performance

against the other existing meta-heuristic applications in literature for these two

combinatorial optimization problems.

 24

CHAPTER 3: Meta-RaPS APPLICATIONS

 To compare the different parameter setting methods presented in Chapters 5 and 6

and to demonstrate the parameter sensitivity of Meta-RaPS, two applications of Meta-

RaPS are introduced and developed in this chapter. In this research, the 0-1

Multidimensional Knapsack Problem and the Early Tardy Single Machine Scheduling

with a Common Due Date and Sequence Dependent Setup Times Problem are chosen as

Meta-RaPS application areas.

3.1 Application to 0-1 Multidimensional Knapsack Problem (0-1 MKP)

 The 0-1 Multidimensional Knapsack Problem (0-1 MKP) is one of the most

studied combinatorial optimization problems. It had been extensively studied in literature

and therefore it is a very good benchmark problem. Moreover, there are many simple

greedy heuristics which makes the problem an easy application for Meta-RaPS.

3.1.1 Description of 0-1 MKP

The idea of the 0-1 MKP is to fill a knapsack with different types of objects to

maximize the profit or the total worth of the objects in the knapsack. The knapsack has a

set of m capacity constraints bounded by bj where j=1...m. The knapsack constraints are

often described as weight constraints which cannot exceed some upper limit. To fill the

knapsack, n different types of objects of ci worth and of aij weight is available i=1...n.

The formulation of 0-1 MKP is as follows:

 25

Where xi is a binary variable; 1 if item i is selected, 0 if item i is not selected

The objective of the 0-1 MKP is to maximize the total worth or profit subject to

the constraints. The solution of a 0-1 MKP is a vector x of size n which is composed of

binary numbers. The real world applications of 0-1 MKP include: cargo loading (Shih,

1979), cutting stock (Gilmore and Gomory, 1966) and capital budgeting (Weingartner,

1967). Cargo loading aims to fill the designated area with the most valuable load. Cutting

stock tries to partition an area into different sizes in the most profitable way. The capital

budgeting problem tries to maximize the total payoff by selecting options from a list of

possible investment options.

3.1.2 Meta-RaPS 0-1 MKP Application

Performance of the Meta-RaPS 0-1 MKP application relies on the priority rule

selected. In this application the priority rule selected is found by Moraga (2003) and

named as Dynamic Greedy Rule. Most priority rules for 0-1 MKP are based on a profit-

weight ratio calculation for each item to be added to knapsack. This ratio is called

pseudo-utility ratio. The pseudo-utility ratio is αi= ci/wi; where wi is the penalty factor for

item i. After pseudo-utility ratios are calculated for each item, the items are ordered in

decreasing pseudo-utility order and the ordered items are added to the solution one by

 26

one as long as they do not violate any constraints. There are different variations on the

calculation of the penalty factor, wi, in the literature (i.e. primal effective gradient method

by Toyoda (1975); dual-effective gradient method by Senyu and Toyoda (1968) and

lognormal point function using wi by Cho et al. (2004a and 2004b).

In this application the Meta-RaPS priority rule selected uses the normalization of

weights idea introduced by Cho et al. (2004a and 2004b). This heuristic uses a lognormal

point function for the weight vector. This transformation gives more weight to the

constraint with the least resource remaining. By this way the priority rule selects items

that use the scarce constraints (resources) effectively, allowing the priority rule to include

more items in the knapsack. This idea from Cho et al. (2004a and 2004b) is combined

with a new weight ratio devised in this research, to yield the following weight formula:

In equation 3, Φ-1 is the inverse of standard normal cumulative density function

and σ takes the value 3. σ is the shape parameter and is set empirically. The term inside

the Φ-1 function (CWj/ bj) is normalization by dividing the amount of resources remaining

with the initial capacity of the knapsack constraints. In other words, CWj is the amount of

the jth resource consumed by the items assigned so far and aij is the weight of item i for

the constraint j. The idea of using lognormal point function is that this transformation

assigns a higher priority to the constraints with less resources remaining, so that scarce

resources (constraints with less capacity remaining) will be more effectively used.

For the Meta-RaPS improvement stage, the exchange neighborhood search is

employed which tries to exchange the items in the solution with the items that are not in

solution for all possible combinations. The improvement stage in Meta-RaPS 0-1 MKP

 27

application has two different exchange improvement procedures; 2-way and 1-way

exchange improvement. Initially any possible 2 items which are already included in the

solution are exchanged with any 2 items that are not in the solution. If the solution value

improves, the exchange is accepted, otherwise, the exchange is rejected. After 2-way

exchange, 1-way exchange is done, any item in the solution is exchanged with an item

not in the solution. Same as in the 2-way exchange, if the exchange improves the solution

value it is accepted, else the exchange is rejected. The 0-1 MKP Meta-RaPS approach is

detailed in Figure 2.

The Meta-RaPS 0-1 MKP application is coded in C++ and tested on a P4 2.2 GHz

PC. The application is tested on 55 small-sized test problems from MP-TESTDATA

(Skorobohathyj, 2002) and 270 large-sized test problems from OR-Library (Beasley,

1990). Both of the problem sets are commonly used benchmark problems used by many

researchers.

Meta-RaPS is run for 1,000 iterations for each problem in the small problem set.

The small set includes problems from various researchers. The problem sizes range from

2 to 30 constraints and 10 to 105 items. All the problems in this set have known optimal

values. For each different problem set generated by different researcher, the Meta-RaPS

parameters are selected using trial-and-error.

Table 5 shows the number of optimal solutions obtained, the average and the

maximum percentage deviation from the optimal solution. Table 5 compares the solution

quality of Meta-RaPS with the improvement phase versus the non-improved Meta-RaPS.

The results show the enhancement gained by the improvement stage. For the entire 55

small problems, %I is set as 20. Meta-RaPS is able to solve all the 55 problems in the

 28

small problem set optimally with improvement. The entire data set is optimally solved by

most well designed heuristics.

Input Parameters (I, %p,%r,%I) and Load Test Problem
Best Solution=0, Best Nonimproved Solution=0, S={x1,x2,…,xn}
While NofIterations ≤ I

Xselected={Ø}, Xnonfeasible={Ø}
DO

p= Random(1,100)
 IF p≤%p
 Select element k such that αk= max (ct / wt)
 t ε S

 IF xk feasible THEN xk Xselected

 ELSE xk Xnonfeasible

 END_IF
 ELSE
 Select element k randomly from
 { t ε S | such that αt≥ max α [1-(%r/100)]}

IF xk feasible THEN xk Xselected

 ELSE xk Xnonfeasible

 END_IF
 END_IF
 While Xselected + Xnonfeasible ≠ S
 IF currentsolutionvalue> Best Nonimproved Solution
 Best Nonimproved Solution= currentsolutionvalue
 END_IF
 IF currentsolutionvalue> Best Nonimproved Solution[1-(%I/100)]

 FOR every pair of items of Xselected

 IF they can be switched with a pair in Xnonfeasible
 without violating feasibility THEN Exchange
 ELSE No Exchange
END_FOR

FOR every item of Xselected

 IF they can be switched with an item in Xnonfeasible
 without violating feasibility THEN Exchange
 ELSE No Exchange
END_FOR

IF currentsolutionvalue>Best Solution
 Best Solution = currentsolutionvalue
END_IF

END_WHILE
Report Best Solution

Figure 2: 0-1 MKP Pseudocode for Meta-RaPS

 29

Table 5: Improved vs. Nonimproved Meta-RaPS for Small Problem Set

Meta-RaPS without

improvement
Meta-RaPS with

improvement
of Optimal 46/55 55/55
Avg. % Dev. 0.007 0
Max. % Dev. 0.99 0

Table 6 compares the new heuristic with the older version of Meta-RaPS 0-1

MKP applications as well as other meta-heuristics in literature.

Table 6: Comparison of Meta-RaPS to other techniques for small sized test problems
Solution Method Optimal Solutions Average %Deviation

from optimal
Meta-RaPS New Heuristic 55/55 0.000%
Meta-RaPS with Oscillation
Improvement (Moraga, 2003)

56/56 0.000%

Meta-RaPS with Insertion &
Exchange (Moraga, 2002)

55/56 0.003%

SA PROEXC (Dammeyer, 1993) 31/57 0.328%
TS (Glover, 1995) 57/57 0.000%
GA (Chu, 1998) 55/55 0.000%

The large problem suite has nine different problem sets, each with different

problem sizes. The number of constraints (m) in these problems is either 5, 10 or 30 and

the number of items (n) is either 100, 250 or 500. For each n-m combination, 30 problems

are generated by Chu and Beasley (1998) adding up to a total of 270 problems. For each

set of problems, the same n-m combinations of 30 problems are generated. The first ten

problems have a tightness ratio of 0.25, the second ten problems have a tightness (or

constraint tightness) ratio of 0.50 and the last ten problems have a tightness ratio of 0.75.

The objective function coefficients are correlated with the constraint coefficients, because

 30

the correlated problems are more difficult to solve than uncorrelated problems (Pirkul,

1987). For each m-n combination, the Meta-RaPS parameters are set by non-parametric

based genetic algorithms as described in Chapter 6. Table 7 shows the Meta-RaPS

parameters used to solve large problems. In Table 7, m represents the number of

constraints and n represents the number of items available for each 30 problem data set.

Notice in Table 7 that as the problem size increases (i.e., as number of items increases) a

smaller %I and I is used in order to have reasonable computation time.

Table 7: Meta-RaPS Parameter Settings for Large Problems
m n No. of instances I %p %r %I

5 100 30 1000 20 10 2
5 250 30 500 10 5 1
5 500 30 250 80 5 0.5
10 100 30 1000 80 5 2
10 250 30 500 80 3 1
10 500 30 250 90 20 0.5
30 100 30 1000 95 70 2
30 250 30 500 80 5 1
30 500 30 250 80 3 0.5

Table 8 shows the Meta-RaPS solution performance for the large problems. The

optimal solutions for these large problems are not available. The table shows the results

as the percentage gap from the LP optimal values. LP optimal values serve as the

theoretical lower bounds for the Knapsack Problem.

 31

Table 8: Average % Deviation of Meta-RaPS vs. Other Methods
m n Meta-RaPS Moraga

(2005)
GA
(1998)

ADP
(2002)

Haul &
Voss (1997)

5 100 0.63 0.6 0.59 - 0.72
5 250 0.22 0.17 0.14 - 0.36
5 500 0.1 0.09 0.05 - 0.34
10 100 1.16 1.17 0.94 - 1.26
10 250 0.45 0.45 0.30 - 0.74
10 500 0.21 0.20 0.14 - 0.64
30 100 2.04 2.23 1.69 - 2.14
30 250 0.99 1.38 0.68 0.97 1.36
30 500 0.99 0.82 0.35 0.52 1.20
Overall 0.75 0.77 0.53 0.74 0.93

The average CPU time for Meta-RaPS 0-1 MKP is mainly dependent on the

number of items (n) of an instance. For the 100, 250 and 500 item problems, the average

CPU times are 18.2, 53.7 and 184.6 seconds, respectively. Genetic algorithms (GAs) by

Chu and Beasley (1998) have one of the best solution performances so far on these

problems, however, their computation time ranges between 6 and 65 minutes on a Silicon

Graphics Indigo workstation. Moraga (2005) use a Pentium 4 1.6GHz PC with run times

of 7 to 35 minutes per problem. The approximate dynamic programming solution

(Bertimas and Demir, 2002) is denoted by ADP on Table 8. The ADP has an average

computation time of 87.06 seconds on a Dell Precision 410 machine. Haul and Voss

(1997) who used GAs for their solution approach, report their algorithm takes a long time

to solve instances, in some cases more than four hours. Since the 0-1 MKP applications

are tested on different platforms and machines, the direct comparison of computation

time is not deemed particularly relevant.

The Meta-RaPS application implemented in this research provides better

performance than the other existing Meta-RaPS application in the literature by Moraga

(2005) in terms of both computation time and solution performance for the overall

 32

percentage gap from the LP optimal values across all test problems. However a direct

comparison of computation may not be appropriate because computers with different

configurations are used for testing. In Table 5, for five test problem sets (5-100, 5-250, 5-

500, 10-500 and 30-500) the Meta-RaPS application by Moraga (2005) gives better

solution quality than findings of the Meta-RaPS used in this research. When Meta-RaPS

is run for as many iterations as Moraga’s application (for 5, 100, 500 item problems

10000, 5000 and 1000 iterations respectively), Meta-RaPS outperformed Moraga’s

results in all cases except the 5-100 problem set which yielded the same percent deviation

from optimal. When compared with the other techniques, Meta-RaPS provide better

solution performance than the others except for GA (Chu and Beasley, 1998) and ADP

(Bertsimas and Demir, 2002). It should be noted that Meta-RaPS is a general solution

approach that is applied to various combinatorial optimization problems, and its

performance is dependent on the construction and the improvement stage algorithms used

(Moraga, 2005).

The reason Meta-RaPS did not perform as well as the other two existing methods

can be attributed to either the underlying construction heuristic, or the local search which

may not be effective enough to carry the promising constructed solution to optima. It

should also be noted meta-heuristics work in different ways and a meta-heuristic’s

solution and time performance are dependent on many factors such as type of problem,

type of test problem and the specific features of the application (i.e., for Meta-RaPS the

construction heuristic used and for GA the type of genetic operations used).

 33

3.2 Application to Early/Tardy Single Machine Scheduling Problem with Common Due

Date and Sequence-Dependent Setup Times (ETP)

 The Early/Tardy Problem with Common Due Date and Sequence-Dependent

Setup Times (ETP) variation of Single Machine Scheduling problem is selected as the

second combinatorial optimization for the experimentation of different parameter setting

techniques discussed later in Chapters 5 and 6. The single machine scheduling problem is

studied with many different variations in the literature. In this version of the problem, the

objective is to minimize the total amount of earliness and tardiness.

3.2.1 Description of ETP

The objective of the ETP is to complete a set of n jobs {j1,j2...jn} on a single

machine as close as their due dates as possible (Rabadi et al., 2004). All jobs are

available at time zero and each job has a processing time pj,and has a sequence-dependent

setup time sij, which depends on the predecessor job jj. All jobs have a common due date

d. The machine is able to work on one job at a time without preemption. After a job j is

completed at completion time Cj, it will have an earliness (Ej=max(0,d-Cj)) and tardiness

(Tj=max(0,Cj-d)). The objective function of ETP is to minimize the sum of the earliness

and tardiness for all jobs (Rabadi, 1999):

 In the objective function, earliness can be thought of as a holding or deterioration

cost and the tardiness can be thought of as a penalty or loss of goodwill for missing the

deadline.

 34

 Exact methods, like mixed integer programming, branch and bound, can solve the

ETP optimally; however, the computation time becomes impractical as problem size

increases. The reason for the extensive computation time is the sequence dependent setup

property of ETP makes the problem NP-Complete. As a result, the ETP problem is

commonly solved by meta-heuristic methods rather than exact methods. The ETP

problem has numerous variations studied in the literature. Each different variation of the

problem focuses on a special case of the problem. The problem studied in this study, ETP

with common due date and sequence-dependent setup times, has not been addressed by

many researchers in literature. In many real life applications, the setup time for a job is

dependent on the type of job previously completed. Although sequence dependent setup

times have not been extensively studied, this variation of the ETP is important as it often

is the case for just-in-time or low batch size production schemes.

 According to Rabadi (1999), ETP is addressed by Coleman (1992) with 0/1 mixed

integer programming and by Chen (1997) using polynomial dynamic programming. Both

of these methods are exact methods. Some meta-heuristic applications to single machine

early tardy problem are: Koksalan and Ahmet (2003) who use GA and Song et al. (2005)

who use ant colony optimization. Although these problems are not exactly the same

problem studied in this research from the meta-heuristic procedure point of view, the

closest application to Meta-RaPS had been done by Feo et al. (1996). Feo et al. uses

GRASP to solve the sequence dependent single machine scheduling problem but the

problem is different than ETP used in this study because it does not involve earliness

penalties; their objective function minimizes only tardiness.

Rabadi (1999) proposes a heuristic called shortest adjusted processing time

(SAPT). Instead of using processing time, which is constant for each job, and setup time,

 35

which is dependent on sequence of the jobs, SAPT uses the advantage of constant

processing time for each job and merges setup and processing time by adding each setup

time, and the constant processing time. This new value is called adjusted processing time

(APT). The idea behind SAPT comes from a property of Early/Tardy Problem without

setup times (or Early/Tardy Problem with sequence independent constant setup times). It

is known for the Early/Tardy Problem without setup times, that in the optimal schedule

the early jobs should follow longest processing time (LPT) order and tardy jobs should

follow shortest processing time (SPT) order (see Figure 3). This scheduling is called V-

shaped scheduling because the job processing times increase as a job is scheduled far

from the due date regardless if it is an early job or tardy job and vice versa (Rabadi,

1999).

Figure 3: Optimal sequence for E/T Problem without setup times

due date

Before Due date: LPT After Due date: SPT

J1 …. Jm-1 Jm+1 JnJm+2 …. Jm

For the sequence dependent setup time case considered in this work, the V-shaped

scheduling does not guarantee optimality because the dynamics of the sequence

dependence may force scheduling a job that does not follow LPT rule before the due date

 36

or SPT rule after the due date for the optimal job schedule. In other words, in some cases

a job with longer APT time can be scheduled close to the middle (or due date) so that the

setup times for other jobs may be minimized. The discussion above concludes that the

dynamics of the sequence dependent setup times may not allow a perfect V-shaped

sequence to have the optimal schedule configuration. However, even though a perfect V-

shaped sequence may not be the optimal configuration, a V-shaped like or distorted V-

shaped sequence will likely result in a better objective function value (Rabadi, 1999).

Rabadi (1999) bases his heuristic on this idea and develops with SAPT which builds

distorted V-shaped solutions.

 SAPT builds three different schedules: early schedule first (E), tardy schedule

first (T) and early and tardy schedules simultaneously (ET). In the case of E schedule,

initially an early schedule, (jobs scheduled before the due date) is built by selecting jobs

with the smallest APT combination for the due date and then adding remaining jobs by

choosing the smallest remaining APT values. After the early schedule is built, the tardy

schedule, (jobs schedules after the due date) is built by the same rule. In the T schedule

initially the tardy schedule is built and the early schedule is constructed after that. T

schedule uses just the opposite sequence of scheduling of the E schedule. Different from

the E and T schedules, the ET schedule starts building solutions from the due date, and

then both early and tardy jobs are added to the solution simultaneously depending on

which APT in the list is smallest. In other words ET schedule simultaneously builds both

early and tardy schedule.

SAPT is carried out for the number of jobs of an instance (n) times, each time

starting with a smaller AP in the AP matrix. SAPT is executed n times for n entries in the

AP matrix and each time comes up with 3 schedules. In the end, SAPT evaluates three

 37

schedules (E,T and ET) by starting with n different initial AP value, which is equal to 3n

schedules in total.

3.2.2 Meta-RaPS ETP Application

The SAPT algorihm is used as the priority rule for the Meta-RaPS ETP

application. In order to have a variation of different answers within a type of schedule,

SAPT starts with a different job pair for the first assignment, and then the rest of the

algorithm is carried out in a greedy fashion. Instead of using 3 different types of schedule

forming strategies (E, T and ET schedules), only ET scheduling is randomized for Meta-

RaPS application. The reason why only the ET schedule is coded is because it is expected

that the randomness introduced by Meta-RaPS can actually be able to construct the E and

T schedule solutions as well as the ET schedule solutions.

In Meta-RaPS ETP at any point in the solution construction, %priority of the time

the greedy SAPT ET rule is used. In the remaining (100%-%priority) of the time the job

to be assigned is randomly selected from the list of candidate jobs which are %restriction

close to the job with the smallest AP time. Incorporating randomness in SAPT in this

manner does not further necessitate running the heuristic n different times starting with a

job combination that has different AP. Instead if Meta-RaPS is to be run for n times, the

randomness will produce a variety of results.

Rabadi (1999) uses generalized pairwise interchange (GPI) for the local search as

part of the SAPT heuristic to enhance the solution quality further more. GPI considers all

the possible 2-job swap combinations and checks if the objective function improves, if

this is the case, jobs are swapped. This type of local search heuristic searches n(n-1)/2

 38

different neighborhoods for a problem size of n jobs. Meta-RaPS ETP application also

uses GPI after the SAPT heuristic. Using the same local search provides a basis for a fair

comparison of SAPT and Meta-RaPS if both heuristics are run for same number of

iterations.

Meta-RaPS ETP application is coded in C++ and the application is tested on P4

2.2GHz PC. The ETP test problems are generated by Rabadi in two sets; smaller (Rabadi,

1999) and larger instances (Rabadi et al., forthcoming). The small ETP test problems

have 10, 15, 20 and 25 number of jobs and they have three different settings of APT: low,

medium and high setting. For each setting and number of job combination, 15 problems

are generated by Rabadi (1999). For the smaller test set generation, the APT values (only

set of values that is needed to be generated to create an ETP test problems) are

independently drawn from uniform distribution as: unif(10, 10+R). R adjusts the three

level of settings: low, medium and high. R is set as 50 for low, 100 for medium and 150

for high settings. The larger ETP test problems have 40 and 50 number of jobs and two

different settings, low/high. The larger set is generated in the same way as the smaller

problems. Similar to the small problem set, for the larger problem sets for each job-

setting combination 15 test problems are generated. The low, medium and high settings

refer to the range of random numbers from which the AP values are sampled.

The optimal values for the small problems are known; however, for the larger

problems the simulated annealing solution (Rabadi et al., forthcoming) is taken as the

best known solution for the Meta-RaPS. A trial-and-error of priority% and %restriction

parameters of Meta-RaPS had been done for each job size and for each APT value range

of problems.

 The Meta-RaPS ETP approach is shown in Figure 4.

 39

The parameter tuning of Meta-RaPS is done by trial-and-error for each problem

set of 15 problems. Table 9 shows the parameters used for Tables 10, 11 and 12.

Table 9: Meta-RaPS Parameter Settings for ETP Problems
Number of Jobs Setting No. of instances %p %r

10 low 15 30 30
10 medium 15 50 50
10 high 15 60 60
15 low 15 20 20
15 medium 15 50 50
15 high 15 20 20
20 low 15 40 20
20 medium 15 40 40
20 high 15 50 50
25 low 15 40 10
25 medium 15 40 40
25 high 15 40 40
40 low 15 70 5
40 high 15 70 7
50 low 15 70 3
50 high 15 70 4

The Meta-RaPS ETP application is initially compared with its underlying priority

rule, SAPT, in Table 10. This comparison shows how much Meta-RaPS can enhance the

priority rule it uses. In this study Meta-RaPS is initially run to produce the same number

of schedules as the greedy SAPT heuristic to establish fairness between comparisons. The

number of iterations for the 10, 15, 20 and 25 job problems are 30, 45, 60 and 75,

respectively.

 40

Input Parameters (I,%p,%r,%I) and Load Test Problem
Best Solution=0, Best Nonimproved Solution=0, J={J1,J2,…,Jn}
While NofIterations ≤ I

Escheduled={Ø}, Tscheduled={Ø}, APnonfeasible={Ø}
DO

p= Random(1,100)
 IF p≤%p
 Select pair of jobs with smallest APij
 Assign Ji as the last job in E schedule Escheduled
 Assign Jj as the first job in T schedule Tscheduled
 Update APnonfeasible as a job cannot follow Ji &
 a job cannot precede Jj
 and any possible combination for
 jobs that are assigned
 ELSE
 Select APkl randomly from

 Assign Ji as the last open position job in E schedule Escheduled
 Assign Jj as the first open position job in T schedule Tscheduled
 Update APnonfeasible as a job cannot follow Ji &
 a job cannot precede Jj
 and any possible combination for
 jobs that are assigned
 END_IF
 While all positions in Escheduled and Tscheduled are filled
Update current solution value
IF currentsolutionvalue< Best Nonimproved Solution
 Best Nonimproved Solution= currentsolutionvalue
END_IF
IF currentsolutionvalue< Best Nonimproved Solution[1+(%I/100)]

do GPI
FOR i=1 to n
 FOR j=i+1 to n
 Swap schedule of Ji and Jj if objective function improves
 END FOR
END FOR

END_IF
Update currentsolution with current schdule
IF currentsolutionvalue<Best Solution

Best Solution = currentsolutionvalue
END_IF
END_WHILE
Report Best Solution

Figure 4: ETP Pseudocode for Meta-RaPS

 41

In general Meta-RaPS applications, only a percentage of solutions from the

construction stage are improved. However since one of the main objectives here is to

compare the SAPT heuristic with Meta-RaPS under the same conditions, all the solutions

from the constructions are improved by the GPI local search.

In Table 10 the Meta-RaPS results are compared with SAPT at same number of

iterations. SAPT results are taken from Rabadi (1999). The values on the table are the

minimum, average and maximum percentage deviation from the optimal solution for all

three types of problems (low, medium, high settings for each 15 problems) and the

standard deviation of the deviation from optimal. The results show that Meta-RaPS not

only gives better average percentage deviation from optimal but also decreases the

variation of solution around the average solution value which makes it more efficient and

robust with respect to SAPT heuristic.

Table 10: Meta-RaPS & SAPT % Deviation from Optimal
 Meta-RaPS SAPT

Size

AP
Range

Min
%

Dev.

Av.
%

Dev.

Max
%

 Dev.

St. Dev
%

Dev

Min
%

Dev.

Av.
%

Dev.

Max
%

Dev.

St. Dev
%

Dev
10 low 0 0.9 5.39 1.7 0 2.55 11.66 3.6
 med 0 0.6 2.82 1.0 0 2.8 12.38 3.9
 high 0 1.54 7.98 2.4 0 2.8 17.52 5.1

15 low 0 2.23 3.85 1.7 0 3.59 8.06 2.2
 med 0 1.6 5.5 2.3 0 5.33 12.91 4.2
 high 0 2.04 6.76 2.1 0 8.22 18.67 5.5

20 low 0 1.78 4.41 1.5 0 3.13 5.3 1.4
 med 0 3.76 8.36 2.4 0 3.93 12.74 3.4
 high 0 2.43 6.88 1.7 0 5.95 13.7 3.9

25 low 0 1.92 3.06 0.5 1.01 3.21 6.56 1.3
 med 1.93 4.42 6.94 1.8 2.55 5.96 9.37 2.1
 high 2.87 5.1 8.49 1.9 1.39 6.83 11.42 2.7
Average 0.4 2.36 5.87 1.75 0.41 4.52 11.69 3.3

 42

For each size and AP range combination, 15 test problems are experimented. The

results in Table 10 are significant because it is rare for a meta-heuristic to have better

quality solutions than the guided greedy heuristic rule when both meta-heuristic and the

greedy heuristic are run for same number of iterations. When a greedy heuristic is

randomized by a meta-heuristic like Meta-RaPS, the benefits of randomization come with

further sampling of solutions. In a nutshell, although Meta-RaPS is expected to produce

lower quality results than SAPT when same number of iterations are run, it is shown in

Table 10 that Meta-RaPS is able to give better solution values. In SAPT heuristic, the

solution variation, to form different schedules, is introduced either by building E or T

schedule first or made by building n schedules starting with a different due date assigned

job pair. SAPT searches only extreme case solutions as in the case of E or T schedules

and also the variation of solutions is introduced by running the heuristic n times starting

with a different starting job pair for n sized problem. Both of these strategies are not as

effective as the randomization from Meta-RaPS and therefore Meta-RaPS outperforms

SAPT.

Rabadi et al. (forthcoming) ran simulated annealing (SA) starting from the final

SAPT solution to decrease the SA computation time and called this method SAPT-SA.

Table 11 compares SA, SAPT-SA and Meta-RAPS for the 15 and 25 job problems. To

save computation %I is set as 20, meaning 20% of the solutions from the construction

stage will be improved. Meta-RaPS in Table 11 is run for 3,000 iterations.

Meta-RaPS is tested on 2.2 GHz Pentium IV PC and benchmarked methods used

1.7 GHz Pentium IV PC for testing and all methods are coded in C++. In Table 11 Meta-

RaPS outperforms SA and SA-SAPT in terms of solution quality. Plain SA requires the

most amount of time and is close to Meta-RaPS solution quality. Although SAPT-SA

 43

speeds up the SA computation time, the solution quality is inferior to both Meta-RaPS

and SA.

Table 11: Meta-RaPS vs. SA and SAPT-SA for Small Problems
 15job low 15job high 25job low 25job high

Avg.
Dev Time

Avg.
Dev Time

Avg.
Dev Time

Avg.
Dev Time

Meta-RaPS 0.04 0.33 0 0.33 0.61 3 1.07 2
SAPT - SA 1.95 0 1.87 0 1.11 1 2.53 1
SA 0.21 6.08 0.27 3.73 0.81 20.65 1.34 18.52

Meta-RaPS is also compared to the simulated annealing (Rabadi et al.,

forthcoming) for larger problems. Since no optimal solutions are available for these sizes

of problems, Table 12 compares the solution based on relative percentage difference

between the objective functions relative to SA which is labeled as % GAP. In Table 12,

positive values indicate that the SA solution is better, meaning Meta-RaPS has a larger

sum of earliness and tardiness, and negative values indicate that the Meta-RaPS has better

objective function value. Since the SA does not have a clear number of iterations

definition, Meta-RaPS was set to be run at the similar computation time at a similar PC

configuration for comparison purposes. For 40 size problems Meta-RaPS is run for 5,000

iterations which yielded 22 seconds average per problem where SA took 24 seconds and

for the 50 size problem Meta-RaPS is run for 3,000 iterations which took 19.5 seconds

where SA took about 20.5 seconds. Each problem set is replicated for 30 times and the

average value is reported on Table 12. As shown in Table 12, Meta-RaPS found better

solution in 55 problems out of 60 problems. The Table 12 results are replicated 30 times

and average of these 30 solutions is reported. When Meta-RaPS number of iterations is

 44

increased (7000 iterations for 40 and 5000 iterations for 50 size problems) Meta-RaPS is

able to outperform SA for all problems in large set.

Table 12: Meta-RaPS vs. SA for Larger Problems
Problem
set

Avg. % GAP
Relative to SA

Max % GAP
Relative to SA

Min % GAP
Relative to SA

No. of problems
Meta-RaPS better

40 low -0.68 0.07 -1.12 12 out of 15
40 high -1.07 0.09 -2.54 13 out of 15
50 low -0.62 -0.13 -1.34 15 out of 15
50 high -1.45 -0.31 -2.98 15 out of 15

The results from this experimentation conclude that Meta-RaPS is able to

introduce randomness and enhance the solution quality of the greedy SAPT. The

comparison made with SA and SAPT-SA techniques show that even though the Meta-

RaPS local search procedure is simple, it provides effective results for the Meta-RaPS

construction stage solutions and it is able to find a good variation of promising solutions.

The advantage of Meta-RaPS procedure is it is a simple and effective procedure with

only two main parameters to be set. The simple nature of Meta-RaPS coupled with its

ability to generate high quality solutions, makes Meta-RaPS a good meta-heuristic

method for ETP.

 45

CHAPTER 4: PARAMETER SETTING PROBLEM OF META-
HEURISTICS

 The parameter setting of meta-heuristics is an important topic because almost all

the meta-heuristics have a number of parameters that need to be set. This chapter

provides a review of parameter setting efforts of other researchers and motivates the

development of the parameter setting procedures discussed in Chapter 5.

4.1 Effect of Parameter Settings and Parameter Setting Techniques

Almost all known meta-heuristics available have a number of parameters that

need to be set. As an example meta-heuristics that have been used to solve the Vehicle

Routing Problem (VRP) contain anywhere from 4 parameters to 25 parameters depending

on the type of meta-heuristic (Coy, 2000). The performance of general purpose meta-

heuristics performance like SA, GA, Tabu Search and also Meta-RaPS are dependent on

the choice of these parameters.

In his heuristic parameter setting literature review, Coy(2000) states that there are

many different procedures to find effective parameter settings. Also the complexity of

parameter selection procedures are various, from simple trial-and-error procedures to

more sophisticated sensitivity analysis and the use of other meta-models. While some

researchers (Van Breedam, 1995) have tried to set all the technical parameters using trial-

and–error experiments, there are other researchers who have developed systematic ways

to tackle the parameter setting problem. The research efforts for the systematic parameter

setting procedures are motivated by the investigation of the effects different parameter

settings have on meta-heuristic applications.

 46

Xu and Kelly (1996) tried to identify the relative contributions of five different

components of their tabu search heuristic (network flow moves, swap moves, tabu short

term memory, restart/recovery strategy and a simple tabu search procedure, TSTSP) for

VRP by disabling each component one at a time and comparing the solutions of the five

different strategies. They conclude that “… the Tabu Search memory and start/recovery

strategy effectively help to locate extremely good solutions and TSTSP provides an

effective enhancement over 3-opt…”

Van Breedam (1996) tried to determine the significant effects of parameters for

GA and SA for the VRP using a technique called Automatic Interaction Detection

Technique (AID) originally developed by Morgan and Sonquist(1963). “.. AID is a tree-

based classification method that uses analysis of variance to summarize the relationship

between predictor and response variables…”. (Morgan, and Sonquist, 1963) AID uses

binary splits of parameter setting combinations and at each split an analysis of variance is

performed to see the significance of a certain parameter. The result of this research yields

the conclusion that certain types of meta-heuristic parameters have “consistent significant

effect for all problems.” In other words some meta-heuristic (GA and SA) parameters can

be set independent of the problem and some parameters are problem dependent.

Schaffer et al. (1989) study the effect of the control parameters affecting online

performance of GA for function optimization. The findings of this research show that, for

function approximation applications of GA, there are function-independent settings that

result in significantly better performance. Like Schaffer et al. (1989), Maier and Whiting

(1998) study the variation of parameter settings and their effects on performance for the

SA. The study’s findings are limited to two different problems, Harverly’s Pooling

Problems and the Benzene Alkylation Problem. Their results shows that “… the best

 47

values for most of the parameters are largely problem independent…”. The only

parameter that makes difference in this study is λ, maximum length of a move attempt at

the beginning of the algorithm. The study suggests the optimal value for λ is a function of

the type of the problem. For the other parameter investigated they did not find a problem

independent characteristic. Similar to Maier and Whiting (1998), Van Breedam (2002)

study the parametric analysis of 10 different heuristics for VRP. The results of the Van

Breedam’s study conclude that there are three groups of parameters: problem

independent parameters, parameters dependent on the problem characteristics and

parameters that have limited or no significant effect on the solution value.

The research on the effects different parameter settings showed that although

there are parameter settings for some heuristics that give good solution performance in

general, most of the parameters required settings that are dependent on the size and the

type of problem studied. The findings of the parameter setting effect studies show that

there is a need for development of systematic ways to determine the appropriate

parameters values. Moraga (2002) addresses the meta-heuristic parameter setting problem

by associating it with the problem of simulation optimization. In both systems, a number

of parameters are input to a stochastic system and a response is created. Simulation and

Meta-RaPS can be thought of as a black box that takes in inputs (input parameters in

Meta-RaPS and decision variables in simulation) and give out stochastic outputs due to

variability caused by randomness. This similarity enables the techniques used for

simulation optimization to be used in Meta-RaPS parameter selection. The parameter

setting techniques considered by Moraga (2002) are: gradient based techniques

(stochastic approximation and sample path methods), meta-models (response surface

methodology and neural networks), statistical techniques (ranking and selection

 48

techniques and multiple comparisons) and use of other meta-heuristic techniques. One

meta-heuristic may set parameters of another meta-heuristic. For example; GA may set

the parameters of another GA as done by Grefenstette (1986). Moraga’s conclusion based

on a comparison of different parameter setting methods is a GA search is less vulnerable

to the selection of the initial parameter setting because GA starts with a reasonable

sample size. Moraga found that RSM is extremely dependent on the initial design base

chosen.

Similar to Moraga’s (2002) research, other literature also suggests various

statistical methods such as response surface methodology and GA as common techniques

for optimization of the heuristic/meta-heuristic performances. Reeves and Steele (1994)

use GA to optimize the performance of neural networks (NN) for sensor performance

improvement application. The GA optimization of single layer NN structure yielded

improvement of 10% over the previous findings for the same NN architectures. Gomes et

al. (2001) and Delmaire et al. (1999) use reactive search (RS) to find the parameter

settings for GRASP. Reactive methods set the parameters and use the set parameter

values to come up with the final result simultaneously. Reactive methods eliminate the

parameter setting phase for meta-heuristics. Batiti (1996) study the RS procedure for TS

and also provide a bibliography on RS-based TS procedures. A reactive search Meta-

RaPS is presented in Chapter 5.

Li and Kwan (2002) use simulated evolution (SE) for the Set Covering Problem.

SE is an evolutionary algorithm like GA but they have very different mechanisms.

Similar to GA, SE has a number of parameters that influence the overall performance

greatly. Li and Kwan use Taguchi’s orthogonal experimental design (OED) to tune seven

parameters. Full experimentation at different value levels would have required 31,250 (21

 49

x 56) possible evaluations, but with an OED design 50 experimental trials are used to find

close to optimal settings. After the trials are made, analysis of variance (ANOVA) is used

to analyze the results to determine how much variation each factor has contributed.

Grefenstette (1986) uses GA to optimize the performance of another GA that is

used for a set of numerical optimization problems. Rosen and Harmonosky (2003) set the

parameters of a simulation model by using a heuristic that uses techniques from response

surface methodology and the SA. Coy (2000) addresses the Vehicle Routing Problem

(VRP) and enhances the heuristic’s performance by experimental design. The technique

used for VRP is gradient descent, which is an iterative and cumbersome process but gives

good results for simple search spaces (Van Breedam, 2002). The technique relies on

taking sample points with a defined parameter settings experimental design then plotting

the regression equation and moving away from the design center in the direction of

increasing performance. Golden (1998) also addresses the VRP problem using by

lagrangian relaxation (LR) heuristic and enhances it with a GA that is unique in the way

that two layers of GA’s are used for parameter setting. In the first stage a GA is used to

determine good parameter settings for each of several problem instances. The second

layer, which is another GA, tries to find robust parameter settings over the whole set of

problem. The information from the first GA is systematically aggregated for finding good

problem type independent parameter settings with another GA. The results of the study is

compared to the experimental design type of approach and found comparable outcome.

The meta-heuristic parameter setting procedures found in the literature, as

reviewed in this section, are mostly GA or a variation of RSM. The majority of the

parameter search techniques in literature try to set parameters for a specific system or

type of problem. It is expected that good parameter settings differ from problem to

 50

problem and even settings may vary for the same type or size of another instance of a

problem. For that reason, the parameter selection model has to have a procedure to

suggest robust parameter settings that gives good performance for different types of

problems.

Table 13: Summary of the meta-heuristic parameter setting methods & parameter effect
studies in literature

Parameter Setting Method Used
Statistical Methods

Anova Gradient
Descent
& RSM

RS
GA Based
Methods

Parameter
Effect

Studies

GA Van
Breedam
(1996)

 Grefenstette
(1986)

Schaffer
(1989)

SA Van
Breedam
(1996)

 Mainer
(1998)

NN Reeves &
Steele (1994)

SE Li & Kwan
(2002)

Meta-RaPS Moraga
(2002)

 Moraga
(2002)

GRASP Gomes
(2001)

Delmaire
(1999)

TS Batiti
(1996)

 Xu &
Kelly
(1996)

Parameter
Tuned
Meta-

Heuristics

Problem
Specific

Heuristics

 Coy
(2000)

 Golden
(2001)

Van
Breedam
(2002)

 51

4.2 Problem Statement: Robust Parameter Settings in Meta-RaPS

One of the goals of this dissertation is to find an efficient approach to the

parameter setting problem of Meta-RaPS. Ideally the parameter selection method should

be fast, efficient and should be capable of improving the performance of the heuristic

method with respect to using a simpler parameter search.

The amount of human effort, expertise (know-how) and experience required for

the parameter setting procedure and the computational time used to set parameters is

critical and better to be minimal in the parameter setting problem. If a complicated

parameter setting procedure that requires extensive computation time and human effort is

to be used for an application, the solution quality should outperform the solution quality

that could be achieved by simpler trial-and-error parameter tests and/or random

parameter settings.

Ideally the parameter setting procedure suggested for Meta-RaPS in this

dissertation should be applicable to other meta-heuristics. Another issue to be considered

in parameter setting is a variety of different parameter setting methods may be required

for both the degree of parameter sensitivity of different meta-heuristics’ solution

performance and the degree of parameter sensitivity of a meta-heuristic for different

applications may not be the same. In other words for some applications, the parameters

may be set by some trial error samples but for others, the parameter search may need

more complicated methods for complex interactions between different parameters may

exist.

An advantage of Meta-RaPS over many other meta-heuristics is that it relies on

only four parameters. For further simplification of the parameter setting these four

 52

parameters can be effectively reduced down to only two parameters that need to be set. It

is clear that high values of the parameter I (number of iterations) will enable Meta-RaPS

to use more sampling and make it have a higher probability of finding better solutions at

the expense of computation time. Similar to I parameter, high settings of the parameter

%I (Improvement percentage) will only enhance the solution quality of Meta-RaPS again

at the expense of computation time. The values of I and %I are strongly dependent on the

problem type considered, problem size and the embedded heuristic rule (complexity of

the priority rule and number of steps in the algorithm). The values of I and %I should be

determined in terms of the time available for solution for specific application. The

preceding discussion reduces the parameter set to %p (%priority) and %r (%restriction).

%p and %r affect the construction stage of the Meta-RaPS by adjusting the randomness

introduced into the priority rule. The parameter setting techniques developed in the next

chapters will therefore be tested using the %p and %r parameters.

 53

CHAPTER 5: PARAMETER SETTING PROCEDURES
APPLICABLE TO Meta-RaPS

 There are many parameter setting techniques available to meta-heuristics. A

parameter setting procedure can be dynamic or static which is also called online or

offline, and adaptive or non-adaptive. A dynamic parameter setting procedure merges the

parameter setting and solution building phases for a meta-heuristic. Dynamic parameter

setting methods sample different parameter setting levels and then they converge on the

“best found” parameter setting level and ultimately report the best solution found by the

meta-heuristic. Meta-heuristics using static, offline, or non-adaptive methods initially

require a parameter setting phase in which the best parameter level is found and then the

meta-heuristic is run again for the solution building phase using the best found parameter

setting level. The flexibility and ease of use of dynamic parameter settings provides an

advantage over the non-dynamic parameter setting techniques. Although it is application

dependent, dynamic parameter setting techniques in literature provide more effective

performance over non-dynamic methods (Agogino et al., 2000).

This section provides a benchmark of parameter setting techniques set for the

proposed method presented in Chapter 6. Both dynamic and static techniques are used in

this chapter; starting from simple fast procedures to more complicated procedures. In

total, five techniques are discussed and at the end of this chapter the methods are

compared against each other. A comprehensive comparison of parameter setting

techniques such as this was not found in the literature. The development of a new

parameter setting technique in Chapter 6 builds on the findings of this chapter.

 54

5.1 Simple Parameter Setting Technique

From the discussion in Section 4.2, it is concluded that Meta-RaPS has mainly

two parameters that need to be set. Parameter setting procedures do not guarantee that the

optimal parameter settings will be found. In fact an optimal setting may not exist, but

rather a range of good settings may be found. Therefore, a simple and straightforward

parameter setting method will be adequate for some applications that are not extremely

parameter sensitive.

The procedure of this method is as follows: for a specific problem, a number of

%priority and %restriction combinations are searched by making replicated trials

covering the parameter domain at a specified number of iterations. The number of

iterations should be large enough so that the randomness effect is reduced and the true

effect of a parameter setting can be identified. Then, the %priority and %restriction

combination that gives the best result is selected as the best setting found.

Table 14 shows HP2 0-1 MKP test problem parameter settings. Each parameter

combination is run for 1,000 iterations replicated 20 times. In Table 14 the average of 20

replications, in which the best solution value out of the 1,000 trials is selected, is shown.

As seen in Table 14, the best combination that maximizes the objective function is 10%

priority and 20% restriction combination. However it is possible that there may be more

than one parameter combinations or a wide region of parameter domain that maximize

the 0-1 MKP problem.

If robust parameters for a set of problems are needed then the parameter setting

procedure needs to be able to choose the best parameter combination that give good

performance in general rather than optimizing the performance of one specific problem.

 55

To achieve this goal a mechanism to aggregate the solution quality of individual is

necessary.

Table 14: HP2 Test Problem Results (Best value for 1000 trials each)
 % Restriction
 10 20 30 40 50 60 70 80 90
 10 3153.4 3163.4 3155.2 3154.4 3159.4 3155.2 3154.2 3122 3113
 20 3151 3159.4 3157.8 3160.6 3148 3153 3148.2 3130 3137.2
%Priority 30 3152.4 3157.4 3155.2 3157.6 3156 3157.6 3141.8 3140.4 3136.4
 40 3150.8 3153.2 3154 3153.6 3153.2 3150.8 3156.2 3142.2 3142.4
 50 3148.8 3152.4 3152.6 3153.2 3154.2 3148.4 3147.2 3155.4 3157.4
 60 3149.2 3151.8 3150.2 3150 3150.2 3151.6 3150.4 3153 3152.8
 70 3148.8 3152.8 3150 3150.8 3150.8 3151.6 3150.6 3153.2 3150
 80 3148 3148 3150.2 3149.8 3150.4 3148.8 3151.4 3150 3152.4
 90 3148 3148 3149 3149 3148 3150 3149 3149 3149.4

Moraga (2002) uses the following procedure to tune parameters for a set of

problems:

1. Select a representative set of problems, preferably problem with known solution

values, or lower/upper bounds known, from all of the problems that Meta-RaPS is

going to be used on. It is important that the test sample chosen should have

different sizes.

2. Select parameter domain and increment over which the parameters are to be

varied. %p and %r range over 0 to 100, this range may be divided into different

increment sizes of, 10, 20, 30 or any user specified increments.

3. For each problem in the sample problems, run Meta-RaPS over the entire

parameter domain selected by increasing or decreasing the increments.

 56

4. Find the best parameter setting by looking at an aggregate performance measure.

The aggregate performance measure, for a specific setting, is best calculated as

the solution deviation from optimal averaged over all test problems tested.

5.2 Analytic Parameter Setting Techniques

 Apart from simpler procedures, some techniques approach the parameter setting

problem in a more systematic way. These procedures are explained and compared in this

section.

5.2.1 Response Surface Methodology

5.2.1.1 Description of Response Surface Methodology

Response surface methodology (RSM), or experimental design (ED) procedures,

are the most frequently used parameter setting techniques because of their simplicity.

RSM tries to find ways to collect as few data points as possible and get most information

out of the data points using a statistical model. In RSM parameter setting application

literature, Coy (2000) used gradient descent technique to find effective parameters for the

Vehicle Routing Problem. His procedure which is applicable for any given type of

combinatorial problem is as follows:

A subset of problems from the entire problem set is selected and high-quality

parameter settings for each type of problem are found. The parameters found for different

type or size of example problems are combined to yield the parameters that work well on

 57

any type and/or example of problems being selected. For the parameter search with RSM,

the starting level of each parameter, the range over which the parameter is varied and the

increment used are needed. This is usually accomplished using a small pilot study which

is done by taking a small number of problems and running some trial solutions to

intuitively get a feel for the parameter domain.

Depending on the number of parameters two designs are considered: two-level

full factorial designs, if the number of parameters is small, or partial two-level factorial

design such as Taguchi design might be used to provide efficiency when there are more

than a few parameters. For both the full factorial and partial factorial designs, it is

recommended to test both the extreme minimum and maximum parameter settings (often

coded as-1 and +1) as well as a mid-point setting (coded as 0) to test for curvature. After

the experiment is conducted, linear regression is applied to the response surface and the

path of steepest descent is calculated. Next in the direction of the steepest descent data

points are taken by making small steps, along the path. The procedure is continued until

the limit of the experimental region is reached or the best solution found has not changed

for a specified number of steps. The linear regression may not always give optimal

parameters, and this method does not provide exact optimization but a good

approximation. To make the method more accurate at the expense of computation time,

instead a quadratic model can be fit.

Because meta-heuristics give stochastic outputs, when evaluating design points it

is important to take more than one trial run for each point. To find general good

parameter settings independent of the problem, Coy (2000) recommends averaging the

best parameters values found for different problems or different subsets of problems. This

procedure could lead to some poor performance possibilities, because the problems being

 58

studied may be too broad for one set of parameters and the class of problems may be

divided into two or more subclasses. This division should be done in terms of the

significant differences among the problems such as matrix density ratio, size of instance,

computed generated of real world data problems, etc.

To summarize the main steps of this approach, Coy’s (2000) procedure is as

follows:

1. Select a subset of problems to analyze from the entire set of problems

2. Select the starting level of each parameter, the range over which each parameter is

to be varied and the amount of increment to each parameter.

3. Find good parameter settings for each subsets, using design of experiments (DOE)

and RSM optimization by gradient descent.

4. Average the parameter values found in Step 3 to find robust parameters for the

entire class of problems.

The shortcoming of this approach is that even if optimal parameters have been set

for each subset of problems, averaging those parameters will give equal importance to

different types of problems. Golden(1998) proposed weighing the different examples in

terms of their size by taking the natural logarithm of the size of examples and then

normalizing this value for all the subsets to find the weights for each subset.

5.2.1.2 RSM Application to Meta-Raps

For the RSM the design center is chosen to be 40% priority and 40% restriction.

The model for the HP2 0-1 MKP test problem is shown in Table 15. At α level of 0.05,

apart from Priority*Restriction (the interaction term) all other terms are significant. The

 59

model has and R2 value of 90.3% and R2 adjusted value of 83.3%, indicating a good fit.

Table 16 shows the ANOVA table for the model. Figure 5 shows the response surface of

the model, in this plot one can see that the parameter combinations for which the 0-1

MKP test problem is maximized. The response surface in Figure 5, is maximized at lower

levels of %priority and %restriction.

Table 15: Estimated Regression Coefficients and Significance of Terms
Term Coefficient SE Coef T P
Constant 3169.47 17.4794 181.326 0.000
Priority -0.58 0.5453 -1.073 0.319
Restriction -0.53 0.5453 -0.980 0.360
Priority2 0.00 0.0056 0.021 0.984
Restriction2 -0.1 0.0056 -2.307 0.054
Priority*Restriction 0.02 0.0074 3.089 0.018

Table 16: ANOVA for the Model
Source DF Seq SS Adj SS Adj MS F P
Regression 5 2252.12 2252.12 450.42 12.98 0.002
Linear 2 1732.42 53.26 26.43 0.77 0.500
Square 2 188.45 188.45 94.23 2.71 0.134
Interaction 1 331.24 331.24 331.24 9.54 0.018
Residual Error 7 242.99 242.99 34.71
Lack-of-Fit 3 196.16 196.16 65.39 5.28 0.065
Pure Error 4 46.83 46.83 11.71
Total 12 2495.12

After the model is fitted, the normality assumption is checked by looking at the

plot of the residuals, and the model fit parameters. The next step is to find the stationary

point using the eigenvalue analysis. The stationary point is the plane tangent to the

surface, that is parallel to the XY plane (in 3D). Another definition of the stationary point

is where the derivative of the function equals zero. The stationary point is important

 60

http://en.wikipedia.org/wiki/Function_%28mathematics%29

because depending on the eigenvalues the response surface has the point of maximum

response if all eigenvalues are negative, or the point of minimum if all eigenvalues are

positive or the sadde point (point of inflection) if the eigenvalues are mixed in sign. The

stationary point is found as 5.55% priority and 2.9% restriction and it is a saddle point

because the eigenvalues are mixed in sign.

10

3080

3090

20

3100

3110

3120

3130

30 40 50 6

Average

Pri

3130

3140

3150

3160

70
60

50
40 Res30

20
60

10
70

Surface Plot of Average

Figure 5: Surface Plot of Knapsack Problem Solution Value

Based on the surface and the contour plots, the direction of gradient ascent is

found and another model with a different base is fitted in the region where the 0-1 MKP

problem is maximized.

The secondary model has the base at the 10% priority and 10% restriction point.

An identical procedure is carried out on this model to determine the validity of the model.

The new model has R2 = 92.8%, R2 adjusted = 87.7% values and except for the square

terms, all other terms are significant. After the eigenvalue analysis, the stationary point

 61

(maxima) is found as 9.5% priority and 5.5% restriction values which is the final

parameter setting the model proposes.

5.2.2 Genetic Algorithms

 In addition to being a meta-heuristic to solve combinatorial problems, genetic

algorithms (GA), can also be used to set parameters for other meta-heuristics.

(Grefenstette, 1986)

5.2.2.1 Description of Genetic Algorithms

Description of the GA procedure has been given in section 2.2.1. Genetic

algorithms as a parameter search method has many advantages over statistical parameter

setting techniques. The parameters of the meta-heuristics may heavily influence both

computation time and the quality of the solution. One of the reasons that setting robust

parameters is difficult is that there may be complex interactions among different

parameters (Golden et al., 1998). Grefenstette (1986) points out that if the response

surface is fairly simple, conventional nonlinear optimization or control theory techniques

may be suitable, however, for many applications the response surface may be difficult to

search, e.g., a high-dimensional, multimodal, discontinuous, or noisy function of

parameters.

One main advantage of GA over RSM type of methods is GA can be executed

with much less information about the parameter space and the type of problem. Another

difference between these methods is the RSM methods require the user to specify a

design center which requires the user to have prior information about the solution quality.

 62

Specification of the design center can prevent the exploration of the full parameter space.

On the other hand although the RSM procedure is cumbersome, it is a more

straightforward procedure which can be applied in the same way to any type of problem.

GA parameter search has to be modified for different applications. The analyst has to

apply GA in an efficient way for a satisfying performance (Golden et al., 1998).

5.2.2.2 Genetic Algorithms application to Meta-RaPS

GA parameter setting is applied to all large set 0-1 MKP problems. Real-coded

GA is used for the parameters of Meta-RaPS, %priority and %restriction, which are

continuous over the [0,100] interval. Blend crossover and random mutation is used as

described by Deb (2001), for the reproduction, binary tournament selection with an elitist

strategy is used in which the individuals in the top 10% of the population’s best

performance is transferred to the next generation.

For this application the following GA parameter values are used; population size

30, crossover rate 0.9, mutation Rate: 0.5. These parameters are taken from literature

(Deb, 2001) and they are verified/tuned by experimentation. For this application, the

starting population is randomly selected. If a better population with higher fitness values

is selected, it is expected that average fitness value will convergence at an earlier number

generations.

Figure 6 shows the convergence of GA algorithm. After about 30th generation the

average solution value, for 30 individuals, of the HP2 0-1 MKP Test Problem becomes

stable.

 63

GA Convergence

3040

3050

3060

3070

3080

3090

3100

3110

3120

3130

3140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Number of Generations

A
ve

ga
re

 F
itn

es
s

Va
lu

e

Figure 6: GA Convergence

Table 17 shows the %priority and %restriction values and the corresponding 0-1 MKP

solution values (fitness values) of all the 30 individuals in the 30th generation. The best

solution value comes from the 26th individual that has a %priority of 13.3 and

%restriction 6.6.

 64

Table 17: The %Priority and the %Restriction values of the 30th Generation
Individual Number %Priority %Restriction Solution Value

1 19.5 6.7 3150.6
2 19.5 81.1 3097.6
3 19.5 48.5 3118.8
4 22.4 89.7 2991.6
5 22.4 74.9 3069.2
6 26.0 86.0 2952.8
7 26.0 51.8 3116.0
8 39.2 63.7 3085.2
9 29.0 37.1 3137.6

10 30.2 17.4 3156.0
11 34.9 45.1 3092.6
12 21.7 40.3 3114.0
13 48.8 89.0 3120.2
14 41.0 68.2 3117.0
15 27.9 2.5 3150.6
16 55.8 8.9 3057.2
17 26.0 86.0 3025.0
18 15.3 15.9 3037.0
19 69.1 73.5 3078.2
20 64.9 98.6 3100.0
21 17.0 48.5 3093.4
22 13.4 50.9 3104.0
23 69.9 81.1 3026.6
24 6.1 10.0 3126.6
25 44.9 64.4 3077.8
26 13.3 6.6 3159.8
27 13.4 93.8 3031.8
28 40.8 8.3 3113.0
29 67.7 78.2 3028.4
30 67.7 46.5 3049.8

5.2.3 Reactive Search

 Reactive parameter setting methods have a major advantage over other methods

in that they eliminate a separate parameter setting phase and incorporate parameter

setting and solution building.

 65

5.2.3.1 Description of Reactive Search

The reactive search (RS) method uses the feedback from the meta-heuristic to set

the parameters. RS aims to eliminate the parameter setting problems of meta-heuristics

and make them robust. RS incorporates a history-based adaptive procedure in meta-

heuristic search for online determination of the parameters. History-based learning

gradually sets parameter values to better performing parameter combinations. After a

given number of iterations or predefined time, the parameters having higher probabilities

are determined to be better parameters in terms of solution performance. The online

setting of parameters eliminates the need for a parameter setting procedure and sets the

parameters as the meta-heuristic is run. The RS procedure has been applied to GRASP

meta-heuristics (Gomes, 2001) and TS (Rayward-Smith, 1996; Delmaire, 1999).

In the RS procedure, one parameter setting combination is randomly selected

from a candidate set of parameter setting combinations at each iteration and the meta-

heuristic is run with the selected parameter combination. At the end of a predefined fixed

number of iterations the probability of selecting a particular parameter setting is

calculated based on the performance (the solution value) of that parameter setting with

respect to the best parameter setting performance found so far. The RS procedure stops

when there is no improvement (change in the values of probabilities) for a number of

iterations.

For a given parameter setting Delmaire (1999) measures the effectiveness in two

dimensions:

1. Quality of solution by determining the average deviation from the best solution

known so far.

 66

2. Variability of solution which is the ability to generate many different solutions.

This is measured by the proportion of different solutions obtained at a setting by

total number of iterations for which the setting is used.

Both dimensions are aggregated as the utility of the parameter setting.

Gomes (2001) reports that the RS procedure gives better results than the GRASP

heuristic alone because it is able to determine appropriate values of parameter(s).

Delmaire (1999) reports that for some test problems of Single Source Capacited Plant

Location Problem, RS incorporated GRASP reduced the average deviation from the value

of best solution obtained with GRASP by at least 50%. For a specific set of test problems,

the RS applied GRASP average mean deviation never exceeds 0.5% while pure GRASP

is always above 1% deviation.

The RS procedure applied to Meta-RaPS is as follows:

1. Candidate parameter selection: 9 levels of %p and 9 levels of %r

parameters,both starting from 10 to 90 with 10 increments. 81 %p and %r

combinations in total.

C={c1, …, c81} (6)

2. Each parameter setting combination in set C is set to have equal probability of

being selected

3. Meta-RaPS is run for 200 iterations. At each iteration parameters are

randomly selected from set C based on their probabilities (pi) and the best
 67

solution value for all the parameter combinations that are run are stored in

array

Ā= {a1, …, an} (8)

4. After every 200 iterations qi, values are updated according to Eq. 9.

5. The probabilities are updated at the last step by Eq. 10.

6. Procedure is terminated at 1000 iterations. It may also be terminated when

there is no change in pi values for predefined number of iterations.

5.2.3.2 Application to Meta-RaPS

The reactive search is applied to 0-1 MKP. The problem used for the application

is HP2. Table 18 shows the probabilities after 5000 trials for the HP2 test problem.

Higher probability values for a particular parameter combination indicates better solution

performance. The %priority and %restriction parameters are searched with the

increments of 10 within 10% to 90% domain for both parameters.

As the results of the parameter setting techniques suggests, there is more than one

parameter combinations that give good results. In Table 18, the 10% priority and 10%

restriction combination gives the best solution performance as it is the parameter setting

with the largest probability. It should be noted that while using RS to generate the values

 68

in Table 18 to determine the best parameter setting, Meta-RaPS is simultaneously

arriving at the final solution value for the MKP problem HP2.

 69

Table 18: Reactive Search Results

%Priority %Restriction Probability
Times
used

%Priority %Restriction Probability

Times
used

10 10 0.01816 16 50 60 0.01162 12
10 20 0.01736 12 50 70 0.00784 11
10 30 0.01575 13 50 80 0.00762 11
10 40 0.01308 14 50 90 0.00707 5
10 50 0.01029 19 60 10 0.01412 16
10 60 0.01146 9 60 20 0.01669 19
10 70 0.00731 11 60 30 0.01581 13
10 80 0.00438 5 60 40 0.01599 15
10 90 0.00057 6 60 50 0.01307 9
20 10 0.01620 18 60 60 0.01152 13
20 20 0.01728 16 60 70 0.01132 12
20 30 0.01469 14 60 80 0.01015 12
20 40 0.01225 9 60 90 0.00886 17
20 50 0.01054 9 70 10 0.01324 6
20 60 0.01096 13 70 20 0.01513 12
20 70 0.00593 12 70 30 0.01559 17
20 80 0.00365 5 70 40 0.01510 17
20 90 0.00213 5 70 50 0.01564 13
30 10 0.01555 15 70 60 0.01423 13
30 20 0.01589 12 70 70 0.01303 15
30 30 0.01479 14 70 80 0.01186 13
30 40 0.01291 12 70 90 0.01208 13
30 50 0.01047 12 80 10 0.01298 6
30 60 0.01004 13 80 20 0.01497 15
30 70 0.00620 4 80 30 0.01574 19
30 80 0.00458 6 80 40 0.01598 15
30 90 0.00413 8 80 50 0.01655 11
40 10 0.01618 10 80 60 0.01457 13
40 20 0.01744 9 80 70 0.01302 16
40 30 0.01542 14 80 80 0.01553 12
40 40 0.01166 19 80 90 0.01493 12
40 50 0.01266 15 90 10 0.01231 8
40 60 0.01012 10 90 20 0.01314 15
40 70 0.00748 10 90 30 0.01399 7
40 80 0.00547 17 90 40 0.01403 12
40 90 0.00502 13 90 50 0.01606 12
50 10 0.01501 16 90 60 0.01481 15
50 20 0.01613 13 90 70 0.01488 18
50 30 0.01538 16 90 80 0.01369 13
50 40 0.01417 13 90 90 0.01477 10
50 50 0.01175 12

 70

5.2.4 Ranking and Selection Techniques

 The ranking and selection (R&S) method is a very common statistical parameter

selection method for different settings. This methods is based on systematically

eliminating inferior parameter settings.

5.2.4.1 Description of Ranking and Selection Technique

Moraga (2002) proposed solving the parameter setting problem of Meta-RaPS by

ranking and selection procedures for simulation. Ranking and Selection methods are

techniques in simulation to find the best of k treatments or the subset of size m containing

the best of k treatments or m best of k treatments (Moraga, 2002).

Since the goal of the parameter setting problem is to find the best possible

parameter settings the R&S technique of selecting the best of k treatments can be applied.

In this case, the goal is to select the setting with the maximum response, because 0-1

MKP is a maximization problem, but the procedure can also be applied to set the

minimum response without any modifications. Due to randomness preserved in the Meta-

RaPS procedure, R&S technique requires a large number of replications to overcome the

problem of finding an inferior parameter setting.

To make sure that one setting is better than another, the R&S technique uses two

parameters which are to be determined by the analyst. If A is the correct parameter

combination and B is the inferior parameter combination which yields close solutions to

A, then P(CS) ≥ P*, the probability of making the correct selection(P(CS)) is more than

P*. P* the parameter determined by analyst should be greater than 1/k where k is the

 71

number of systems compred.. Also A-B ≥ d*, the indifference amount d*>0 should be

specified by the analyst which is the minimal difference of A and B so that A will be

regarded as a better solution than B (Law and Kelton, 2000).

The procedure for selecting best of k parameter combinations is as follows:

1. In the first stage sampling, make n0≥2 replications for each k settings and compute

the mean and standard deviation.

2. In the second stage, the total required sample size for setting i, Ni is calculated

using the formula:

where is the smallest integer that is greater than or equal to real number x,

and h1 (k,P*,n0) is the Rinott’s constant obtained from tables (Mendenhall and

Sincich, 1994).

3. Run Ni-n0 more replications of treatment i and the average for this stage is

computed.

4. Compute the weights to needed to combine first and second stage results using the

following formula:

5. Compute the sample means as follows:

 72

6. Select the smallest as the best of k treatments (Moraga, 2002)

5.2.4.2 Application to Meta-RaPS

As done for the other methods, the R&S procedure is applied to %priority and

%restriction values between [10,90] with 10 increments except 95% percent last data

point is used for both parameters which is used as an additional point to have a higher P*

value. For each of ten %priority settings, the best of ten %restriction value will be

selected. For example, for p=10, the best out of 10 settings will be found: (10,10),

(10,20), (10,30),…, (10,90), (10,95). Then from the best 10 %priority settings, whose

best %restriction values are already set, the best setting for the entire parameter range

will be selected (Moraga, 2002).

The parameters selected for the procedure are as follows P*=0.90, n0=20, k=10

and constant h1=3.182. The R&S procedure demonstrated using 0-1 MKP test problem

HP2 would proceed as follows.

Stage 1: Selection of the best %restriction values for each of the %priority values. In

Table 19, which is the first screening, the best ten combinations (given a %priority value

the %restriction with largest Xt value is selected), are selected for the second and final

screening. The ten best value are the highest ten Xt values from the Table 19.

Table 19 Shows the best %restriction setting for each %priority.

 73

Table 19: Selection of best %restriction value for a given %priority (Stage 1)
%Priority %Restriction X Std. Ni Ni-no Y(ni-no) Wi1 Wi2 Xt

10 10 2977.72 99.88 1010 910 2956.93 0.100 0.9 2959
10 20 2972.25 87.57 777 677 2968.01 0.136 0.863 2968.6
10 30 2941.48 109.2 1208 1108 2932.95 0.087 0.913 2933.7
10 40 2890.36 127.5 1647 1547 2875.95 0.064 0.935 2876.9
10 50 2837.06 158.9 2558 2458 2846.98 0.040 0.96 2846.6
10 60 2859.36 164.2 2730 2630 2838.42 0.039 0.96 2839.3
10 70 2780.02 169.9 2923 2823 2767.3 0.036 0.963 2767.8
10 80 2723.86 198.3 3980 3880 2700.62 0.026 0.974 2701.2
10 90 2650.97 198.2 3979 3879 2658.28 0.026 0.973 2658.1
10 95 2598.42 232 5452 5352 2648.14 0.019 0.981 2647.2
20 10 2950.18 98.82 989 889 2950.27 0.105 0.895 2950.3
20 20 2970.72 104.6 1108 1008 2966.51 0.093 0.906 2966.9
20 30 2921.2 118.7 1426 1326 2930.41 0.074 0.926 2929.7
20 40 2874.53 116.1 1366 1266 2873.55 0.078 0.922 2873.6
20 50 2841.78 149.5 2264 2164 2838.86 0.045 0.955 2839
20 60 2849.74 157.6 2516 2416 2819.46 0.04 0.958 2820.7
20 70 2753.6 169.7 2918 2818 2757.2 0.036 0.963 2757.1
20 80 2709.95 192.6 3757 3657 2707.51 0.02 0.973 2707.6
20 90 2680.82 203.6 4198 4098 2680.84 0.025 0.974 2680.8
20 95 2656.2 197.9 3966 3866 2678.04 0.026 0.973 2677.5
30 10 2937.77 94.02 896 796 2945.29 0.121 0.878 2944.4
30 20 2944.23 100.2 1016 916 2970.33 0.101 0.899 2967.7
30 30 2923.13 119.3 1441 1341 2936.2 0.070 0.929 2935.3
30 40 2887.18 129.8 1706 1606 2878.11 0.059 0.94 2878.7
30 50 2840.44 157.6 2517 2417 2850.47 0.043 0.957 2850
30 60 2832.25 165.7 2782 2682 2811.7 0.03 0.962 2812.5
30 70 2758.72 170.7 2950 2850 2762.76 0.037 0.963 2762.6
30 80 2727.67 186.4 3518 3418 2732.53 0.030 0.969 2732.4
30 90 2719.11 204.8 4247 4147 2711.72 0.024 0.975 2711.9
30 95 2706.84 208.9 4420 4320 2698.84 0.024 0.975 2699
40 10 2949.84 103.7 1090 990 2934.45 0.097 0.902 2936
40 20 2973.84 105.9 1137 1037 2964.04 0.094 0.906 2965
40 30 2935.12 103.1 1076 976 2935.41 0.096 0.903 2935.4
40 40 2863.31 135.5 1861 1761 2887.82 0.058 0.942 2886.4
40 50 2882.41 137.3 1910 1810 2858.75 0.055 0.944 2860.1
40 60 2833.73 174.5 3084 2984 2857.02 0.035 0.965 2856.2
40 70 2783.24 157.3 2506 2406 2784.85 0.042 0.957 2784.8
40 80 2744.68 186.9 3536 3436 2756 0.029 0.97 2755.7
40 90 2736.04 198.6 3993 3893 2738.25 0.027 0.973 2738.2
40 95 2727.2 210.1 4470 4370 2736.47 0.023 0.976 2736.3

 74

Continued
%Priority %Restriction X Std. Ni Ni-no Y(ni-no) Wi1 Wi2 Xt

50 10 2927.35 105 1118 1018 2926.69 0.096 0.903 2926.8
50 20 2948.72 100 1013 913 2965.16 0.104 0.895 2963.4
50 30 2934.52 114.8 1336 1236 2942.86 0.080 0.919 2942.2
50 40 2911.27 138.3 1936 1836 2903.74 0.054 0.945 2904.2
50 50 2864.93 171.1 2965 2865 2870.37 0.036 0.964 2870.2
50 60 2862.53 160.5 2608 2508 2842.56 0.041 0.959 2843.4
50 70 2790.15 191.6 3716 3616 2807.31 0.02 0.972 2806.8
50 80 2785.95 195.2 3857 3757 2791.15 0.028 0.972 2791
50 90 2775.38 191.1 3698 3598 2778.4 0.028 0.971 2778.3
50 95 2800.17 203.3 4184 4084 2769.25 0.025 0.975 2770
60 10 2910.39 100 1013 913 2908.67 0.105 0.895 2908.9
60 20 2959.57 108.9 1202 1102 2955.64 0.089 0.91 2956
60 30 2942.68 118.8 1429 1329 2949.73 0.074 0.926 2949.2
60 40 2946.07 116.4 1371 1271 2924.64 0.07 0.924 2926.3
60 50 2890.17 153.2 2378 2278 2891.64 0.045 0.955 2891.6
60 60 2860.61 168.3 2868 2768 2869.87 0.03 0.964 2869.5
60 70 2856.62 160 2592 2492 2843.08 0.04 0.959 2843.6
60 80 2834.24 175.4 3114 3014 2838.82 0.034 0.966 2838.7
60 90 2809.59 193.4 3789 3689 2824.37 0.026 0.973 2824
60 95 2800.63 188 3580 3480 2825.93 0.029 0.971 2825.2
70 10 2893.45 96.13 936 836 2901.39 0.113 0.887 2900.5
70 20 2929.58 112 1272 1172 2950.58 0.085 0.915 2948.8
70 30 2938.49 101.3 1039 939 2948.73 0.097 0.903 2947.7
70 40 2929.07 138.4 1939 1839 2934.52 0.053 0.947 2934.2
70 50 2939.41 130 1712 1612 2919.64 0.063 0.936 2920.9
70 60 2912.39 130.4 1722 1622 2900.33 0.062 0.937 2901.1
70 70 2889.39 142.6 2059 1959 2884.79 0.050 0.949 2885
70 80 2867.04 167 2823 2723 2880.02 0.037 0.963 2879.5
70 90 2871.24 157.9 2524 2424 2871.75 0.043 0.957 2871.7
70 95 2855.38 169.3 2904 2804 2865.24 0.037 0.963 2864.9
80 10 2888.44 97.43 962 862 2875.16 0.113 0.887 2876.7
80 20 2926.6 114.2 1320 1220 2931.08 0.077 0.923 2930.7
80 30 2941.41 121.9 1506 1406 2940.9 0.07 0.928 2940.9
80 40 2946 116 1364 1264 2938.01 0.078 0.922 2938.6
80 50 2956.76 117.5 1397 1297 2940.72 0.072 0.927 2941.9
80 60 2918.99 134.2 1823 1723 2926.46 0.057 0.943 2926
80 70 2889.23 133.9 1817 1717 2923.73 0.060 0.94 2921.7
80 80 2937.25 124 1558 1458 2920.49 0.06 0.934 2921.6
80 90 2925.9 123.5 1545 1445 2913.32 0.06 0.934 2914.2
80 95 2902.49 152.7 2363 2263 2910.36 0.045 0.954 2910

 75

Continued
%Priority %Restriction X Std. Ni Ni-no Y(ni-no) Wi1 Wi2 Xt

90 10 2875.61 102 1053 953 2853.66 0.101 0.899 2855.9
90 20 2891.51 104.8 1113 1013 2896.27 0.097 0.902 2895.8
90 30 2907.73 119.3 1442 1342 2910.98 0.074 0.926 2910.7
90 40 2908.55 120.4 1468 1368 2928.41 0.074 0.926 2926.9
90 50 2947.41 131 1738 1638 2930.89 0.063 0.937 2931.9
90 60 2923.6 117 1386 1286 2920.85 0.07 0.924 2921.1
90 70 2924.93 126.7 1625 1525 2930.07 0.066 0.933 2929.7
90 80 2942.17 120.7 1475 1375 2934.33 0.071 0.929 2934.9
90 90 2922.7 125.8 1604 1504 2928.79 0.06 0.932 2928.4
90 95 2926.2 123.5 1544 1444 2935.65 0.070 0.93 2935
95 10 2846.42 70.95 510 410 2837.31 0.206 0.794 2839.2
95 20 2873.76 101.1 1036 936 2869.75 0.100 0.899 2870.2
95 30 2876.39 97.58 965 865 2876.85 0.113 0.887 2876.8
95 40 2908.75 118 1410 1310 2893.58 0.076 0.923 2894.7
95 50 2889.04 105.3 1124 1024 2895.64 0.094 0.905 2895
95 60 2897.84 108.8 1200 1100 2904.6 0.088 0.911 2904
95 70 2896.75 110.2 1230 1130 2906.77 0.088 0.912 2905.9
95 80 2907.72 120.7 1476 1376 2908.24 0.073 0.926 2908.2
95 90 2908.91 125.4 1592 1492 2907.61 0.066 0.934 2907.7
95 95 2911.47 122.6 1521 1421 2906.01 0.068 0.931 2906.4

Stage 2: The same procedure in Stage 1 is applied to all the selected %priority

values with the best %restriction values. The experiment is run again for the parameters

of the second stage. Results are shown at table Table 20. The best parameter combination

has the the largest Xt value which is the 20% priority and 20% restriction.

Table 20: Selection of the best parameter setting (Stage 2)
%Priority %Restriction X Std. Ni Ni-no Y(ni-no) Wi1 Wi2 Xt

10 20 2973.0 102 1057 957 2965.4 0.1014 0.898 2966.2
20 20 2984.5 85 744 644 2968.4 0.1359 0.864 2970.7
30 20 2963.1 105 1134 1034 2964.8 0.0922 0.907 2964.7
40 20 2969.0 95 916 816 2966.9 0.1176 0.882 2967.2
50 20 2960.9 106 1153 1053 2960.4 0.0925 0.907 2960.5
60 20 2960.8 104 1117 1017 2952.0 0.0971 0.902 2952.9
70 20 2944.1 116 1386 1286 2941.8 0.0782 0.921 2942
80 50 2940.6 121 1487 1387 2936.3 0.0699 0.930 2936.6
90 80 2931.4 121 1504 1404 2930.5 0.0701 0.929 2930.6
95 80 2903.0 128 1678 1578 2903.8 0.0651 0.934 2903.8

 76

5.2.5 Summary of Techniques for 0-1 MKP and ETP

The four analytical parameter setting techniques discussed in this chapter are also

applied to ETP. Table 21 shows the results of all the parameter setting techniques applied

to one sample 0-1 MKP and ETP (5th problem of 25 Job high setting set) problems.

Table 21: Final Parameter Setting Suggestions for 0-1 MKP and ETP
Problem RSM GA RS R&S
0-1 MKP 9% Priority

5% Restriction
13% Priority
6% Restriction

10% Priority
10% Restriction

20% Priority
20% Restriction

ETP 62% Priority
33% Restriction

45% Priority
34% Restriction

50% Priority
40% Restriction

40% Priority
40% Restriction

 The different techniques usually result in consistent parameter settings but there

may be occasions where alternative parameter settings could be found by different

parameter setting techniques. The results in Table 21 show that the best parameter found

by different techniques are within a small region of the parameter domain (e.g., in Table

21 the parameter settings of different techniques for the ETP problem are all close to 45%

priority and 35% restriction).

 The drawbacks of the reactive search (RS) and ranking and selection (R&S)

procedures are that they are both dependent on the initial set of candidate parameters

which are defined by the user. The principal concern with the response surface method

(RSM) procedure is that it does not guarantee optimality. This leaves with genetic

algorithms (GA) as the only technique that can globally optimize the parameters. Both

R&S and RSM require extensive human effort each time the procedure is repeated. Once

the code is completed both GA and RS can be repeated without any human effort.

 77

 In summary, aside from issues of initial choice of parameters and being able to

find global best parameters, GA appears to be the best in terms of solution quality, and

the most robust setting technique. The major strength of RS is its ability to

simultaneously set parameters while generating the final result. However, this can be

achieved with GA keeping the best solution from all the individuals. Any GA procedure

using elitism, which carries the fittest individual to next generation without any genetic

operations, is able to keep the best found solution till the end of the procedure.

 For its flexibility in application, ease of use, repeatability, global optimization

performance, reactiveness, and freedom from user defined candidate parameter settings,

the GA appears to be the best parameter setting technique of those considered. A more in

depth comparison of different parameter setting techniques is continued in Chapter 6,

where the techniques introduced in this chapter are compared to the technique developed

in this research effort.

5.3 Setting Robust Parameters For a Set of Problems

Section 5.2 discussed methods to find the best setting or preferred settings for

%priority and %restriction for one problem. However most of the time the Meta-RaPS

application (or the application of another meta-heuristic) is used for a number of

problems and due to time restrictions it is not always possible to set parameters for each

problem and run each problem with its best setting.

To overcome this problem, researchers have studied procedures that find

parameters that yield good solutions for a set of problems. If the number of problems in

the set is big, it is recommended that instead of using all the problems for parameter

 78

setting, a small subset of problems should be selected. The sample subset problems are

selected so that the sample is representative of the problem set in terms of the size and the

structure of the problem. The structure of the problem depends on the problem’s

specifications. For some problem types, the complexity of the problems may also be

various. The matrices in the problems that represent distance, flow, capacity may be

binary values or integers even though problems may have the same size. Also the density

of the matrix (ratio of non-zero element of the matrix to the number of entries in the

matrix) may differ in similar problem sizes and this may require a different set of

parameter values.

After a representative sample is selected, Coy (2000) proposes setting the best

parameters for each of these problems and then averaging the parameter values for the

final parameter settings. Golden et al. (1998) combines the parameter settings for each

problem by linearly weighting them. Averaging parameter values give equal weight for

each test problem. Golden et al. (1998) set the weights equal to the natural logarithm of

the size of the test problem for example, number of nodes in the VRP problem. The GA

that Golden et al. (1998) implemented searches through the best settings available using

the function of tour length for VRP which combines different problems by using the

weights. Moraga (2002) used the average of all the %deviation from the best known or

optimal solution of the problems in the subset as the aggregate performance measure to

find out which parameter settings average %deviation performs best.

Although the parameter setting techniques discussed in this chapter are effective

procedures, none of the techniques is initially designed specifically for the parameter

setting context. Also some of these techniques (i.e. R&S for ranking of simulation

models, both RSM and GA as a general optimization algorithm) are not specifically

 79

tailored to include features to fit the parameter setting context. They are used for

parameter setting purpose without any modification to their procedure. Chapter 6 initially

discusses how parameter setting methods compare and select parameter settings, and then

tries to design a new parameter setting technique that will outperform current parameter

setting techniques found in the literature.

 80

CHAPTER 6: PARAMETER SETTING WITH NON-PARAMETERIC
BASED GENETIC ALGORITMS

 A new parameter setting technique, non-parametric based genetic algorithms

(NPGA), is introduced in this chapter as well as the motivation for its development. A

comparison of NPGA with the other known techniques discussed in Chapter 5 is also

presented.

6.1 Analysis of the best solution behavior

Some of the parameter setting methods (RSM and R&S) used in Chapter 5

assume that the distribution of the best solution from a given number of iterations is

normal. It is the nature of any combinatorial optimization problem that the distribution of

the best solution values form a number of iterations of a randomized meta-heuristic, taken

from a number of iterations will be a discrete distribution. The feasible region of a

combinatorial optimization problem will have discontinuous points in the solution space.

Additionally the best solution distribution will be bounded by the optimal solution value.

The trials made with both Meta-RaPS 0-1 MKP and ETP applications show that

the best solution distribution does not follow any particular distribution. Both the

Kolmogorov-Smirnov and chi-square goodness of fit tests reject the fit of a normal

distribution. The distribution is dependent on the problem used, type of application and

type of algorithm used. In fact it is desired for a well designed meta-heuristic to give non-

symmetrical solution distribution. For a maximization problem it is better for the meta-

heuristic’s solution distribution to be skewed to the left near the optimal solution value.

For the minimization problems a solution distribution skewed to the right is preferred.

 81

Figures 7 and 8 show examples of the best solution distributions for the ETP and

0-1 MKP problems. In Figure 7, the distribution for the 7th 25 job high setting problem’s

best solution (for 100 iterations) is shown. Since ETP is a minimization, the right-skew is

expected. While Figure 7 is the distribution for one specific problem, the same general

shape distributions are present for all the ETP data sets.

Objective Solution Value

Fr
eq

ue
nc

y

28702860285028402830

50

40

30

20

10

0

Histogram for 25 high set 7th ETP Problem

Figure 7: Meta-RaPS ETP 25-7-high Problem Solution Distribution

 Table 22 shows that only 15.4% of the ETP Problems solutions are normally

distributed and even if the solution distribution is normal, 53% of the time normal

distribution is not the best parametric distribution that represents the data. The

experimentation showed that most of the best fits come from a beta distribution, followed

by triangular and Erlang distributions.

 82

Table 22: Summary of Normal Distribution Fit to ETP Solution Distribution
Normal Distribution is: Number of Problems Percentage of Problems in

all ETP Problems
Rejected 208 86.6%
Failed to Reject and not found as best fit 17 8.2%
Failed to Reject and found as best fit 15 7.2%
Total 240 100%

Figure 8 shows the distribution of best solutions (from 100 iterations) for the first

0-1 MKP problem of 5 constraint, 100 item test problem set. As summarized in Table

23, almost all the problems in 0-1 MKP set show a similar shaped distribution as Figure 8

which is skewed to the left. Normal distribution rarely represents the best solution

distribution from a large number of iterations for the OR-Library (Chu & Beasley 1999)

problems. In most cases (93.7% of the problems), normality is rejected based on

statistical tests (i.e. chi-square and Kolmogorov-Smirnov).

Objective Solution Value

Fr
eq

ue
nc

y

2410024000239002380023700236002350023400

70

60

50

40

30

20

10

0

Histogram for 5-100 set 1st 0-1 MKP Problem

Figure 8: Meta-RaPS 0-1 MKP 5-100-1 Problem Solution Distribution

 83

Table 23: Summary of Normal Distribution Fit to 0-1 MKP Solution Distribution
Normal Distribution is: Number of Problems Percentage of Problems in

all ETP Problems
Rejected 253 93.7%
Failed to Reject and not found as best fit 7 2.6%
Failed to Reject and found as best fit 10 3.7%
Total 270 100%

Because the solution distributions are not normally distributed, as discussed

above, parameter setting techniques that rely on normality assumption to fail or to give

inconsistent results. Because the best solution distribution is not normal and dependent on

the application and/or problem, the use of techniques involving parametric techniques

may not be appropriate for parameter setting purposes. Therefore a robust parameter

setting method should make a comparison between parameter setting performances with

a distribution-free or non-parametric method. Although normality assuming techniques

may work and be able to suggest good parameter settings for some cases, in general they

are not the right techniques to represent, or model, the solution distribution of a parameter

setting of a meta-heuristic.

6.2 Non-Parametric Tests

When the performance of different parameter values is compared, there can be

two comparison cases: two different parameter’s solutions can be compared, or a group

of parameter’s solution values can be compared.

The parametric techniques for these kind of comparisons are t-test for comparing

two parameter setting samples and a one-way ANOVA for comparing three or more

parameter setting samples. Both parametric techniques assume that the populations come

from normal frequency distributions. The non-parametric equivalents of these techniques
 84

are Mann-Whitney (also called Wilcoxon rank sum test) for two samples and Kruskal-

Wallis Test for more than two samples. The following description of the Mann-Whitney

and Kruskal-Wallis, non-parametric tests are taken from Hollander (1999).

 The steps of the Mann-Whitney Test is:

1. Rank two combined samples in ascending order.

2. If there is a tie between two or more the observations then average rank is

assigned.

3. Sum of the ranks for first sample (the larger sample if sample sizes are different)

is summed and this value is called T1.

4. Calculate the test statistics

5. Reject H0: equality of population medians if

In Equation 15, m refers to the sizes of the 2 populations, N is the combined

sample size which is n+m and Ri stands for the rank of observations. The z value can be

used if both n and m are greater than or equal to 20. Otherwise a t value with N-1 degrees

of freedom at specified alpha level should be used.

 The steps of the Kruskal-Wallis Test are:

1. Rank combined samples in ascending order.

2. If there is a tie between two or more the observations then average rank is

assigned.

 85

3. The sum of ranks for all sample groups are calculated. (Ri)

4. Calculate the test statistic

5.

6. Reject H0: mean ranks of k groups do not differ if

 In Steps 4 and 5, ni stands for the ith sample size for k samples, N stands for the

total number of observations which is the sum of all ni’s from 1 to k, Rij is the rank of

individual observations and Ri is the sum of ranks of the observations within a group.

 When comparing a number of different parameter values, the Kruskal-Wallis test

may arrive at the conclusion that all the sampled populations are not identical. However

Kruskal-Wallis does not answer the question of which populations are different than the

others. In order to answer this question multiple comparisons can be performed. However

there exists a problem in keeping the stated significance level (α), used in Kruskal-Wallis,

while making C independent comparisons. Because the number of multiple comparisons

made (C) effects the overall probability of making only correct decisions at 1-α, when the

null hypothesis of no difference among populations is true, in order to adjust this problem

Dunn’s (Snell, 1983) procedure is used.

 The Dunn’s comparison formula uses the z-table and each pairwise comparison is

performed according to following formula:

 86

For samples i and j of like size; k is the number of samples (different parameter

settings), is the mean of the ranks of a sample and N is the total number of

observations. In Equation 16 if the difference of mean of ranks are larger than the right-

hand-side of the inequality, then test is significant at α level.

 It should be noted here that instead of Kruskal Wallis test, Mood's median test

could also have been used. Mood’s median test is more robust than is the Kruskal-Wallis

test against outliers, but is less powerful for data from many distributions.

6.3 Non-Parametric Based Genetic Algorithm

The Non-Parametric Based Genetic Algorithm (NPGA) uses similar genetic

operation and coding as the GA used in section 5.2.2. The difference between the NPGA

developed here and GA developed in section 5.2.2 is during the selection of parents for

reproduction which is done by tournament selection. In NPGA, when two different

individuals representing two parameter settings are compared to be parents in tournament

selection, the winner is selected by looking at the distribution of fitness values, which is

the solution value of the combinatorial optimization problem, instead of comparing one

fitness value from each individual as done in the GA described in section 5.2.2. NPGA

compares parameter settings with each other to determine if they are statistically better

than one another by using the non-parametric methods described in section 6.2. The

comparison Mann-Whitney test is used to compare two individuals (parameter settings)

from 10 best solutions selected out of 100 iterations. After the tournament selection, the

 87

NPGA continues to the regular GA’s genetic operations as described in section 5.2.2.

NPGA also uses blend crossover and random mutation for these two procedures since

they are common and effective procedures for the real-coded (chromosomes represented

with real values as opposed to binary coding procedure which uses binary strings)) GAs.

Although the GA does not assume normality within its procedure, during parent

selection, it compares two different parameter settings and does not use a non-parametric

comparison. Therefore NPGA enhances and modifies the GA procedure to use non-

parametric comparisons. The flowchart of the NPGA procedure is given in Figure 9.

 Random 30 Individuals: real valued
%p and %r pairs

 Meta-RaPS is run for fitness values

Elitism: Top 10% individuals to next
generation

Binary Tournament Selection of Parents:
Parents’ Fitness Distribution is compared

Genetic Operations:
Blend Crossover & Random Mutation

Figure 9: Flowchart of NPGA

 88

For the experimentation in this chapter, the NPGA uses 30 individuals for the

population with 90% crossover and 50% mutation rates. These parameters are taken from

the literature on GA (Deb, 2002) and verified by experimentation. Based on

experimentation, the performance of the NPGA parameter tuned Meta-RaPS is robust to

the small changes in the NPGA parameters’ values used. In other words, NPGA yields

consistent results even if NPGA parameters used are varied in a narrow range from the

literature.

 It should be noted that the importance of this new non-parametric GA method

(NPGA) comes from both the performance of the parameter setting methods. As well as

it is sound, the NPGA is the correct procedure to use since the distribution of the best

solution values is rarely normally distributed.

 NPGA can be used for any type of meta-heuristic method. It is not specific to

Meta-RaPS. The method can be extended to more than two parameters and the parameter

ranges do not have to be percentage values. The flexibility of GA enables different types

of parameters to be set by NPGA for any meta-heuristic procedure that requires

parameter tuning.

6.4 NPGA Results

 Similar to the parameter setting methods mentioned in Chapter 5, NPGA is tested

for both 0-1 MKP and ETP. Tables 24 and 25 compare the results of different parameter

techniques for 0-1 MKP and ETP problems respectively. The comparison between

different methods is done using Kruskal-Wallis (K-W) and multiple comparison tests as

described in Section 6.2. If K-W test is found significant, then multiple pairwise

 89

comparisons are performed using Dunn’s method. For these comparisons a significance

level of 0.05 is selected.

The numbers shown in Tables 24 and 25 are the counts of problems for a

parameter setting technique that gives statistically better distribution of solution values

(solution performance) than others. For each problem set all 30 problems are tested. In

some cases Kruskal-Wallis (K-W) test may not be significant, meaning that all the

parameter setting methods had similar performance. The far right column in Table 24

shows the number of problems from the set of 30 in which the K-W test is significant (i.e.

when at least one parameter setting method’s solution performance is better). When the

K-W test is significant, there are cases when the solution performance is optimized by

more than one parameter setting techniques. In other words, a subset of parameter setting

methods provide the best performance and their performance is indifferent when

compared within each other. In Tables 24 and 25 compare all five parameter setting

techniques discussed in Chapter 5 (including trail-and-error, labeled as TE) to NPGA.

Table 24 shows for 54 problems of the 270 MKP problems compared, at least one

parameter setting method yielded a significantly different solution value than other

parameter setting techniques. For these 54 problems, the Meta-RaPS results using the

NPGA parameter setting technique are statistically better or similar to the other parameter

setting techniques in most (50) of these problems.

 90

Table 24: Comparison of Parameter Setting Methods for 0-1 MKP
Problem Set Technique is in the Best Techniques List
m n TE RS RSM R&S GA NPGA

K-W Test
significant

5 100 3 4 5 3 6 6 6
5 250 2 5 6 2 7 8 10
5 500 2 6 4 2 3 7 9
10 100 2 5 5 2 5 7 7
10 250 2 1 4 5 5 5 5
10 500 0 2 2 3 3 4 4
30 100 2 2 3 0 1 3 3
30 250 0 0 1 0 1 2 2
30 500 2 5 8 3 8 8 8
Total Count 15 30 38 20 39 50 54

Similar to the 0-1 MKP results shown in Table 24, Table 25 suggests that NPGA

is consistently able to set the best parameters for ETP as well. For 41 problems of the 240

ETP problems compared, at least one parameter setting method yielded a significantly

different solution value than other parameter setting techniques. It is observed in Table 25

the 10 and 15 Job ETP problems are not parameter sensitive and their parameters can be

set with simple parameter setting methods such as running small experiments. However

for the larger size problems, the problems get harder for Meta-RaPS to solve and the

parameter tuning for Meta-RaPS gains more importance.

 91

Table 25: Comparison of Parameter Setting Methods for ETP
Problem Set Technique is in the Best Techniques List
n Level TE RS RSM R&S GA NPGA

K-W Test
significant

10 Low 0 0 0 0 0 0 0
10 Medium 0 0 0 0 0 0 0
10 High 0 1 0 1 1 1 1
15 Low 0 0 0 0 0 0 0
15 Medium 0 0 1 0 1 0 0
15 High 2 1 2 2 1 2 2
20 Low 2 3 3 3 3 3 3
20 Medium 0 1 1 1 1 2 2
20 High 2 1 2 2 2 3 3
25 Low 2 2 4 1 3 4 5
25 Medium 2 2 2 2 4 4 4
25 High 1 1 2 2 1 2 3
40 Low 3 2 4 2 3 4 5
40 High 1 3 3 1 3 3 3
50 Low 2 1 3 5 3 4 4
50 High 3 4 5 4 5 6 6
Total Count 20 22 32 26 31 38 41

 92

CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH

This dissertation offers a comprehensive comparative study of several established

meta-heuristic parameter setting techniques as well as developing a new parameter

setting method. Although parameter setting is required for most meta-heuristics, it has not

been addressed extensively in literature.

Although the proposed parameter setting technique, NPGA, is tested on Meta-

RaPS, it is applicable to any meta-heuristic that has parameters. The experimentation

from several different combinatorial problems reveals that the distribution of a best

solution of a meta-heuristic taken from a large number of iterations rarely follows a

mound-shaped and/or normal distribution. The distribution of best solution, from a given

number of iterations, for 87% of the 240 ETP test problems and 94% of the 270 0-1 MKP

test problems are found not to be normally distributed. Therefore when using a parameter

setting technique, that compare different parameter setting levels, a distribution-free

method should be used, hence the development of NPGA.

The proposed method, NPGA, integrates GA with non-parametric tests and is able

to set efficient parameters. NPGA is compared to five existing parameter setting methods

for both ETP and 0-1 MKP problems. In the vast majority of the problems, NPGA

method consistently proposed the best parameters found by any of the parameter setting

studied. For ETP, NPGA provided best 38 parameter settings out of the 41 problems in

which there is a statistical performance difference between the parameter setting

techniques and for the 0-1 MKP, NPGA provided best 50 parameter settings out of the 54

problems in which there is a statistical performance difference between the parameter

setting techniques. In some cases the problems are not parameter sensitive and all of the

 93

parameter setting techniques considered are able to devise similar parameter settings

Apart from these problems, for most of the problems the NPGA is able to suggest

parameter settings whose solution performance is statistically better than the performance

of parameter settings found by other parameter setting techniques. From all the parameter

setting techniques investigated, NPGA set parameters give the best solution performance

for Meta-RAPS.

In addition to the parameter setting work done within this dissertation, advances

were also made on solution algorithms for the two combinatorial optimization problems

used to demonstrate the parameter setting techniques; 0-1 Multidimensional Knapsack (0-

1 MKP) and the Early/Tardy Single Machine Scheduling Problem with a Common Due

Date and Sequence Dependent Setup Times(ETP).

 The first combinatorial optimization problem studied in this dissertation is 0-1

MKP which is one of the most studied problems in literature. The Meta-RaPS application

of 0-1 MKP uses a new heuristic based on the idea of Cho (2004). The Meta-RaPS 0-1

MKP application yields better solution performance than the other pre-existing Meta-

RaPS 0-1 MKP(Moraga, 2005). The application in this research also gives comparable

solution performance against other meta-heuristics in the literature except GA (Chu and

Beasley, 1998) and ADP (Bertsimas, 2002). The Meta-RaPS gives 0.75% average

percent deviation, from best known solutions for the 270 0-1 MKP test problems, where

other Meta-RaPS, GA, ADP and second GA application for 0-1 MKP by Haul and Voss

(1997), yields 0.77%, 0.53%, 0.74% and 0.93% respectively.

The second combinatorial optimization problem studied in this research effort is

ETP which is a special case of single machine scheduling problem. Meta-RaPS utilizes

SAPT (Rabadi, 1999) heuristic and enhances its solution quality by introducing

 94

randomness. The ETP Meta-RaPS is compared against the simulated annealing (SA)

meta-heuristic by Rabadi (2004) and is able to give better solution performance on

comparable CPU time. Out of 60 larger size (40 and 50 job size problems) ETP problems

compared, Meta-RaPS provided better solution performance than SA for 55 of the

problems. For the smaller set, up to 25 job problem size, in all four different problem

sets, each of which have 15 problems generated, the Meta-RaPS solution performance

outperformed SA and SA-SAPT algorithms.

While conducting this research several areas of future work were identified.

During the parameter setting techniques comparison, it is identified that most problems

are either not parameter sensitive or their parameters does not need any sophisticated

parameters setting methods, meaning their parameters can be set by simple trial error

methods. Future research can be directed to analysis of the parameter sensitivity of the

problems by investigating their structure (e.g., correlation structure of a problem, size of

problem). Apart from the problem challenged in this dissertation another gap found in

literature of heuristics and / or meta-heuristics is how to combine the different parameter

settings for different problems and come up with parameters that yield good performance

independent of the problem. Another future research topic comes from a practical

application point of view, given a limited amount of time, the discussion of how much of

this time should be spend on parameter selection and how much time should be spared to

run the Meta-RaPS with the setting found, should be made. Another potential area of

parameter setting research is whether to use a single combination of parameter settings,

or multiple combinations. Given a number of iterations, is the best strategy to solve a

problem to use all the iterations with the best setting found from a parameter setting

technique or to partition the number of iteration to n best parameter setting combinations.

 95

In addition to parameter setting related research topics, additional modification to Meta-

RaPS itself should be considered. Because of its simplicity, Meta-RaPS is open to

modifications in its procedure and is able to use some of the strategies that other meta-

heuristics use. Currently the parameters %restriction and %priority are kept constant

during each iteration. Similar to simulated annealing (see section 2.2.2), Meta-RaPS

could modify the degree of randomness within an iteration. The underlying idea used by

SA is that during the initial stages of the iteration, the algorithm is allowed to explore the

solution space and do a random search. However, when the iteration is close to the end

stages of constructing a solution, the greedy rule may dominate and the algorithm may

limit randomness. Meta-RaPS procedure can make use of this idea SA uses and guide the

search to have a varied level of randomness during different parts of the search.

Introduction of updating parameter settings during an iteration is valuable for Meta-RaPS

because this makes Meta-RaPS a dynamic procedure. In other words dynamic parameter

driven Meta-RaPS will not require any pre-parameter setting phase and thus Meta-RaPS

procedure will be a holistic procedure that modifies, sets and guides its own parameters.

 96

LIST OF REFERENCES

Agogino A., Stanley K., Miikkulainen R., (2000), Online Interactive Neuro-evolution,
Neural Processing Letters, vol. 11, no 1., pp. 29-38.

Batiti R., (1996), Reactive Search: Toward Self-Tuning Heuristics, In Rayward-Smith

V.J., Osman I.H., C.R, Reeves C.R., Smith G.D.,(eds), Modern Heuristic Search
Methods, (1996), John Wiles & Sons.

Baykasoglu A., (2004), A Meta-heuristic Algorithm to Solve Quadratic Assignment

Formulations of Cell Formation Problems without Presetting Number of Cells,
Journal of Intelligent Manufacturing, vol. 15, no. 6, December, pp. 753-759.

Beasley, J.E., 1990, OR-Library: Distributing Test Problems by Electronic Mail,

Journal of the Operational Research Society, vol. 41, pp. 392-404.

Benyahia I., Potvin J. Y., (1995), Generalization and Refinement of Route Construction

Heuristics using Genetic Algorithms, , IEEE International Conference on
Evolutionary Computation, vol.: 1, 29 Nov.-1 Dec., pp. 39-43.

Bertsimas, and Demir, R., (2002), An Approximate Dynamic Programming Approach to

Multidimensional Knapsack Problem, Management Science, vol. 48, no.40,
pp. 550-565.

Black P. E., (1998), Dictionary of Algorithms and Data Structures, National Institute of

Standarts and Technology, http://www.nist.gov/dads/HTML/greedyalgo.html.

Brown J.T., (1995), Priority Rule Search Technique for Resource Constrained Project

Scheduling, Ph.D. dissertation, Orlando, FL: University of Central Florida.

Brucker P., Knust S., Schoo A., Thiele O., (1998), A Branch and Bound Algorithm for

Resource Constrained Project Scheduling Problem, European Journal of
Operational Research, vol. 107, pp. 272-288.

Chatterjee S., Carrera C., Lynch L., (1996), Genetic Algorithms and Traveling Salesman

Problem, European Journal of Operations Research, vol. 93, pp. 490-510.

Chen, Z-L., (1997), Scheduling with Batch Setup Times and Earliness-Tardiness

Penalties, European Journal of Operational Research, vol. 96, pp. 518-537.

Cho Y. K., Moore J.T., Hill R.R., (2004), Empirical Analysis for the Multidimensional

Knapsack Heuristics Based on the Various Correlation Structures, Proceedings of
the 9th Annual International Conference on Industrial Engineering – Theory,
Applications and Practice, The University of Auckland, November 27-30.

 97

Cho, Y. K., J. T. Moore, and R. R. Hill, (2004), Insights Gained via an Empirical
Analysis of Multidimensional Knapsack Problems, Proceedings of the 2004
Industrial Engineering Research Conference, Houston, TX, May 16-19.

Chu P.C., Beasley J.E., (1998), A Genetic Algorithm for the Multidimensional Knapsack

Problem, Journal of Heuristics, vol. 4, pp. 63-86.

Cohen D. M., Dalal S. R., Fredman M. L., Patton G. C., (1997), The AETG System: An

Approach to Testing Based on Combinatorial Design, IEEE Transaction on
Software Engineering, vol. 23, no. 7, pp. 437-444.

Coleman, B. J., (1992), A Simple Model for Optimizing the Single Machine Early/Tardy

Problem with Sequence-Dependent Setups, Production and Operations
Management, vol. 1, pp. 225-228.

Connoly D. T., (1990), An Improved Annealing Scheme for the QAP, European Journal

of Operational Research, vol.46, pp.93-100.

Coy S. P., Golden B. L., Runger G. C., Wasil E. A., (2000), Using Experimental Design

to Find Effective Parameter Settings for Heuristics, Journal of Heuristics, vol. 7,
pp. 77-97.

Daniel W.W., (1990), Applied Nonparametric Statistics, PWS-KENT Publishing

Company, Second Edition, Boston.

Deb K., (2001), Multi-Objective Optimization Using Evolutionary Algorithms, John

Wiley & Sons, West Sussex, England.

Deb K., Pratap A., Agarval S., Meyarivan T.A., (2002), Fast and Elitist Multiobjective

Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computing,
vol. 6, no. 2 pp. 182-197.

DePuy G.W., Whitehouse G.E., (2001), A Simple and Effective Heuristic for the

Resource Constrained Project Scheduling Problem, International Journal of
Production Research, vol. 39, no. 14, Sep 20, pp. 3275-3287.

DePuy G.W., R.J. Moraga, Whitehouse G.E., (2005),Meta-RaPS: A Simple And

Effective Approach For Solving The Traveling Salesman Problem, Transportation
Research Part E: Logistics and Transportation Review, vol. 41, no. 2, pp. 115
130.

Dammeyer F., Voss S., (1993), Dynamic Tabu List Management Using the Reverse

Elimination Method, Annals of Operations Research, vol 41, pp. 31-46

Delmaire H., Diaz J. A., Fernandez E., (1999), Reactive Grasp and Tabu Search Based

Heuristics for the Single Resource Capacitated Plant Location Problem, INFOR,
vol. 37, pp. 194-225

 98

Feo T.A., Resende M.G.C., Smith S.H., (1994), A Greedy Randomized Adaptive Search
Procedure for Maximum Independent Set, Operations Research, vol. 42, pp.
860-878.

Feo T. A., Resende M.G.C., (1995), Greedy Adaptive Search Procedures, Journal of

Global Optimization, vol. 6, pp. 109-133.

Feo T. A., Sarathy K., McGahan J., (1996), A Grasp for Single Machine Scheduling with

Sequence Dependent Setup Costs and Linear Delay Penalties, Computers &
Operations Research, vol. 23, no. 9, pp. 881-895.

Festa P., Resende M.G.C.,(2001), GRASP: An Annotated Bibliography. Appear in

“Essays and Surveys on Meta-heuristics”, Hansen P., Ribeiro C.C. eds., Kluwer
Academic Publishers

Gilmore, P.C. and Gomory, R.E., 1966, The Theory and Computation of Knapsack

Functions, Operations Research, vol. 14, pp. 1045-1074.

Glover F., (1991), Multilevel Tabu Search and Embedded Search Neighborhoods for the

Traveling Salesman Problem, ORSA Journal on Computing.

Glover F., Kochenberger G.A., (1995), Critical Events Tabu Search For

Multidimensional Knapsack Problems, in: I.H. Osman, J.P. Kelly(Eds.),
Metaheuristics: Theory and Applications, Kluwer Academic Publishers,
Dordrecht, 1995, pp. 407-428.

Glover F., Laguna M., (1997), Tabu Search, Kluwer Academic Publishers.

Golden B., Pepper J., Vossen T., (1998), Using genetic algorithms for setting parameter

values in heuristic search, Intelligent Engineering Systems Through Artificial
Neural Networks, vol. 8, pp. 239-245.

Goldberg D.E. and Smith R.E. (1987) Nonstationary Function Optimization Using

Genetic Algorithms with Dominance and Diploidy. ln J. J. Grefenstette(editor),
Proceedings of the 2nd International Conference on Genetic Algorithms. Lawrence
Erlbaum Associates, Hillsdale, NJ, pp. 59-68.

Goldberg D. E., (2002), Genetic Algorithms in Search Optimization & Machine

Learning, Addison Wesley.

Gomes F. C., Pardalos P., Oliveira C. S., Resende M. G. C.,(2001), Reactive GRAPS

with Path Relinking for Channel Assignment in Mobile Phone Networks,
Proceedings of the 5th International Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications,pp. 60-67.

Grabowski J., Wodecki M., (2004), A Very Fast Tabu Search Algorithm for the

Permutation Flow Shop Problem with Makespan Criterion, Computers and
Operations Research, vol. 31, no. 11, September, pp. 1891-1909.

 99

Grefenstette, J. J., (1986), Optimization of Control Parameters for Genetic Algorithms,
IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-16 n 1 Jan-Feb
1986. pp. 122-128.

Hansen, P., (1986), The Steepest Ascent Mildest Descent Heuristic for Combinatorial

Programming, Congress on Numerical Methods in Combinatorial Optimization,
Capri, Italy.

Haul C., Voss S., (1997), Using Surrogate Constraints in Genetic Algorithms for Solving

Multidimensional Knapsack Problems. In D.L. Woodruff, Advances in
computational and stochastic optimization, logic programming and heuristic
search. Interfaces in computer science and operation research (pp. 235-251)
Dordecht: Kluwer Academic Publishers.

Hino C.M., Ronconi D.P., Mendes A.B., (2005), Minimizing Earliness and Tardiness

Penalties in a Single-Machine Problem with a Common Due Date, European
Journal of Operational Research, vol. 160, no. 1, Jan 1, pp. 190-201.

Hollander M., Wolfe D., (1999), Nonparametric Statistical Methods, John Wiley and

Sons, NY.

Kellerer H., Pferschy U., Pisinger D. (2004), Knapsack Problems, Springer Publications.

Khattab M., Choobineh F., (1991), A New Approach for Project Scheduling with a

Limited Resource, International Journal of Production Research, vol. 29, pp. 185
198.

Koksalan M., Ahmet K.B., (2003), Using Genetic Algorithms for Single-Machine

Bicriteria Scheduling Problems, European Journal of Operational Research, vol.
145, no, 3, Mar 16, pp. 543-556.

Kolisch R., Drexl A., (1996), Adaptive Search for Solving Hard Project Scheduling

Problems, Naval Research Logistics, vol. 43, pp.23-40

Kolisch R., Specher A., (1996), PSPLIB- A Project Scheduling Problem Library,

European Journal of Operational Research, vol. 96, pp. 205-216

Kuik R.,Salomon M. (1990), Multi-Level Lot-Sizing Problem: Evaluation of a Simulated

Annealing Heuristic. EJOR, vol. 45, pp.25-37

Laguna M., Barnes J.W. and Glover F. (1991) Tabu Search Methods for Single Machine

Scheduling Problem, Journal of Intelligent Manufacturing, vol. 2, pp. 63-74.

Lan G., DePuy, G.W., Whitehouse G.E.,(forthcoming), An Effective and Simple

Heuristic for the Set Covering Problem, European Journal of Operational
Research, Available online 6 December 2005.

 100

Law A.M., Kelton W.D.(2000), Simulation Modeling and Analysis, McGraw Hill
Publications.

Lee K., (2005), Simulated annealing by grand canonical ensemble and the TSPs, WSEAS

Transactions on Computers, vol. 4, no. 8, August, pp. 890-897.

Li J., Kwan R. S. K., (2002), A Fuzzy Evolutionary Approach with Taguchi Parameter
Setting for the Set Covering Problem, CEC '02, Proceedings of the 2002 Congress
on Evolutionary Computation, Vol.: 2 ,12-17 May 2002 pp. 1203–1208.

Liepins G. E. and Potter W. D. (1991) A Genetic Algorithm Approach to Multiple-Fault

Diagnosis. In Davis L.(editor), Handbook of Genetic Algorithms, Van Nostrand
Reinhold, 1991, New York,pp. 350-372.

Liu W., Ewins D. J., (1994), Neural Networks: A Method for Joint Dynamic Parameter

Identification, Neural Networks for Signal Processing IV. Proceedings of the
1994 IEEE Workshop (Cat. No.94TH0688-2), pp. 633-640.

Maier R. W., Whiting W. B., (1998), The Variation of Parameter Settings and Their

Effects on Performance for the Simulated Annealing Algorithm, Computers &
Chemical Engineering, vol. 23, pp. 47-62.

Misevicius A., (2005), A Tabu Search Algorithm for the Quadratic Assignment Problem,

Computational Optimization and Applications, vol. 30, no. 1, January, pp. 95-111.

Modares A., Somhom S., Enkawa T., (1999), A Self-Organising Neural Network

Approach For Multiple Traveling Salesman And Vehicle Routing Problems,
International Transactions in Operations Research, vol. 6, pp. 591-606.

Moraga, R.J., Whitehouse G.E., DePuy G.W., Neyveli B., and Kuttuva S., (2001). Meta

Raps: An Efficient And Practical Approach For Solving The Traveling Salesman
Problem, The 5th International Conference on Engineering Design and
Automation, August 5-8, Las Vegas, NV, pp. 191-195.

Moraga R. J., (2002), Meta-RaPS An Effective Solution Approach for Combinatorial

Problems. Ph.D. thesis. Orlando, FL: University of Central Florida.

Moraga R. J., Depuy G. W., Whitehouse G. E.,(2002), Using Meta-RaPS Approach to

Solve Combinatorial Problems, Proceedings of the 2002 Industrial Engineering
Research Conference, Orlando, Florida.

Moraga R. J., Depuy G. W., Whitehouse G. E.,(2003), A Meta-Heuristic Approach for

the 0-1 Multidimensional Knapsack Problem. Ln: Y. Dessouky, Proceedings of
the 31st International Conference on Computers and Industrial Engineering
(pp.173-178). San Francisco, CA.

 101

Moraga, R.J., G.W. DePuy, and G.E. Whitehouse, (2004), A Meta-Heuristic
and Oscillation Improvement Strategy for the 0-1Multidimensional
Knapsack Problem, Proceedings of the 2004 Industrial Engineering
Research Conference, May 15-19, 2004, Houston, Texas.

Moraga, R. J., DePuy, G.W. and Whitehouse, G.E., (2005), Meta-RaPS Approach for the

0-1 Multidimensional Knapsack Problem, Computers and Industrial
Engineering, vol.48, pp. 83-96.

Morgan J.N., Sonquist J.A., (1963), Problems in the Analysis of Survey Data, and a
Proposal, Journal of the American Statistical Association, vol.58,
No.302,pp. 415-434.

Papadimitriou C.H., Steiglitz K.,(1982), Combinatorial Optimization: Algorithms and

Complexity, Prentice-Hall, Inc.

Pham D.T., Karaboga D., (2000), Intelligent Optimization Techniques, Springer-Verlag

London Limited.

Pirkul, H., (1987), A Heuristic Solution Procedure for the Multiconstraint Zero-one

Knapsack Problem, Naval Research Logistics, 34, pp. 161-172.

Poopalasingam S., Reeves C. R. , Steele N. C.,(1994), Application of Neural Networks

for Sensor Performance Improvement, IV. Proceedings of the Neural Networks
for Signal Processing 1994 IEEE Workshop ,6-8 Sept. 1994, pp.633-640.

Prais M., Ribeiro C.C., (2000), Reactive GRASP: An Application to Matrix

Decomposition Problem in TDMA Traffic Assignment, INFORMS Journal on
Computing, vol. 12, pp. 164-176.

Rayward-Smith V.J., Osman I.H., C.R, Reeves C.R., Smith G.D., (1996), Modern

Heuristic Search Methods, John Wiles & Sons.

Rabadi G.(1999), Minimizing the Total Earliness and Tardiness for a Single Machine

Scheduling Problem with a Common Due Date and Sequence-Dependent Setup
Times, University of Central Florida Phd. Dissertation.

Rabadi G., Mollaghasemi M., Anagnostopoulos G.C.,(2004), A Branch-and-Bound

Algorithm for the Early/Tardy Machine Scheduling Problem with a Common
Due-Date and Sequence- Dependent Setup Time, Computers & Operations
Research, vol. 31, pp. 1727-1751.

Rabadi, G ., Anagnostopoulos, G., and Mollaghasemi, M., (forthcoming), A Heuristic

Algorithm For The Just-In-Time Single Machine Scheduling Problem With
Setups: A Comparison With A Simulated Annealing, to appear in The
International Journal of Advanced Manufacturing Technology.

 102

Reeves C.R. and Steele N.C., (1991), A Genetic Algorithm Approach to Designing
Neural Network Architecture. Proc. 8th International Conference on Systems
Engineering.

Reeves C., (1993), Modern Heuristic Techniques for Combinatorial Problems, John

Wiley & Sons.

Reeves C. R., Wright C. C., (1995), Genetic Algorithms and Statistical Methods: A

Comparison, Genetic Algorithms in Engineering Systems: Innovations and
Applications, 12-14 Sep., no. 414, pp.137-140.

Reeves C. R., Eremeev A. V., (2004), Statistical Analysis of Local Search Landscapes,
Journal of the Operational Research Soceity, vol. 55, pp. 687-693.

Rosen S. L., Harmonosky C. M., (2005), An Improved Simulated Annealing Simulation

Optimization Method for Discrete Parameter Stochastic Systems, Computers &
Operations Research, vol. 32, no. 2, pp. 343-358.

Schaffer J.D., Caruana R. A., Eshelman L. J., Das R., (1989), A Study of Control

Parameters Affecting Online Performance of Genetic Algorithms for Function
Optimization, 3rd International Conference on Genetic Algorithms.

Schaffer D. J., Elshelman L. J., (1996), Combinatorial Optimization by Genetic

Algorithms: The Value of the Genotype/Phenotype Distinction, In Rayward
Smith, I., et al. (Eds), Modern Search Methods, John Wiley & Sons.

Senyu, S. and Toyoda, Y., (1968), An Approach to Linear Programming with 0-1

Variables, Management Science, 15, pp. 196-207.

Shih, W., (1979), A Branch and Bound Method for the Multiconstraint Zero-one

Knapsack Problem, Journal of Operation Research Society, vol. 30, pp. 369-378.

Skorin- Kapov J., (1990), Tabu Search Applied to the Quadratic Assignment Problem,

ORSA, Journal on Computing, vol.2, pp. 33-45.

Skorobohatyj G., (2002). MP-TESTDATA: Integer/ Mixed-Integer Programming

Problems. http://elib.zib.de/pub/Packages/mp-testdata/ip/sac94-suite/index.html

Snell M.C., (1983). Recent Literature on Testing for Intergroup Concordance, Applied

Statistics, vol. 32, pp. 134-140.

Sohrabi B., Bassiri M.H., (2004), Experiments to determine the simulated annealing

parameters case study in VRP, International Journal of Engineering, Transactions
B: Applications, vol. 17, no. 1, April, pp. 71-80.

Song Y., Zhang Z., Zheng L., (2005), Ant colony optimization for the single machine

early or tardy problem with distinct ready times, Journal of Tsinghua University,
vol. 45, no. 11, November, pp. 1577-1580.

 103

http://elib.zib.de/pub/Packages/mp-testdata/ip/sac94-suite/index.html

Tang Q., (2004), Simulated annealing in lot sizing problems, International Journal of
Production Economics, vol. 88, no. 2, pp. 173-181.

Taillard E. (1990) Some Efficient Heuristic Methods for the Flowshop Sequencing

Problem, European Journal of Operational Research, vol. 47, pp. 65-74.

Toth, P. and Martello, S., (1990), Knapsack Problems: Algorithms and Computer

Implementations, Wiley-Interscience Series in Discrete Mathematics and
Optimization, England.

Toyoda Y., (1975), “A Simplified Algorithm for Obtaining Approximate Solutions to

Zero-one Programming Problems”, Management Science, vol. 21. no. 12, pp.
1417-1427.

Van Breedam A., (1995), Improvement Heuristics for the Vehicle Routing Problem

Based on Simulated Annealing , European Journal of Operational Research,
vol.86, pp.480-490.

Van Breedam A.(1996), An Analysis of the Effect of Local Improvement Operators in

Genetic Algorithms and Simulated Annealing for the Vehicle Routing Problem,
RUCA Working Paper 96/14, Faculty of Applied Economics, University of
Antwerp, Antwerp, Belguim.

Van Breedam A., (2002), A Parametric Analysis of Heuristics for the Vehicle Routing

Problem with Side-Constraints, European Journal of Operational Research, vol.
137, pp. 348-370.

Vasko F.J., Knolle P.J., Spiegel D.S., (2005), An Empirical Study of Hybrid Genetic

Algorithms for the Set Covering problem, of the Operational Research Society,
vol. 56, no. 10, October, pp. 1213-1223

Voudouris C., Tsang E., (1999), Guided Local Search And Its Application To The

Traveling Salesman Problem, European Journal of Operations Research, vol. 113,
pp. 469-499

Wang Y., Han L., Li Y., Zhao S., (2006), A New Encoding Based Genetic Algorithm for

the Traveling Salesman Problem, Engineering Optimization, vol. 38, no. 1,
January, pp. 1-13.

Weingartner, H.M., 1967, Mathematical Programming and the Analysis of Capital
Budgeting Problems, Markham publishing, Chicago.

Whitley D., Starkweather T., Shanner D.,(1991) The Traveling Salesman and Sequence

Scheduling; Quality Solutions Using Genetic Edge Recombination. In
Davis L.(editor), Handbook of Genetic Algorithms, Van Nostrand Reinhold,
1991, New York,pp. 350-372.

 104

Yang N., Tian W., Jin Z., (2006), Crossover Tabu Search for Traveling Salesman
Problem, Journal of System Simulation, vol. 18, no. 4, April, pp. 897-899.

Yuan L., Liu F., Zhao B., (2005), Improved GA and its Application to Knapsack

Problem, Systems Engineering and Electronics, vol. 27, n 4, April, 2005, pp.
718-719.

 105

	Meta-raps: Parameter Setting And New Applications
	STARS Citation

	 ABSTRACT
	 ACKNOWLEDGMENTS
	 TABLE OF CONTENTS
	 LIST OF FIGURES
	 LIST OF TABLES
	 LIST OF ACRONYMS
	CHAPTER 1: INTRODUCTION TO COMBINATORIAL OPTIMIZATION PROBLEMS
	1.1 Combinatorial Optimization Problems
	1.2 Why Heuristics Are Needed
	1.3 Meta-Heuristics

	 CHAPTER 2: COMMON META-HEURISTICS AND INTRODUCTION TO Meta-RaPS
	2.1 Common Features of Meta-Heuristics
	2.2 Different Types of Meta-heuristics
	2.2.1 Genetic Algorithms
	2.2.2 Simulated Annealing
	2.2.3 Tabu Search
	2.2.4 Greedy Randomized Adaptive Search Procedure (GRASP)

	2.3 Meta-heuristic for Randomized Priority Search (Meta-RaPS)
	2.4 Research Objectives

	 CHAPTER 3: Meta-RaPS APPLICATIONS
	3.1 Application to 0-1 Multidimensional Knapsack Problem (0-1 MKP)
	3.1.1 Description of 0-1 MKP
	3.1.2 Meta-RaPS 0-1 MKP Application

	3.2 Application to Early/Tardy Single Machine Scheduling Problem with Common Due Date and Sequence-Dependent Setup Times (ETP)
	3.2.1 Description of ETP
	3.2.2 Meta-RaPS ETP Application

	 CHAPTER 4: PARAMETER SETTING PROBLEM OF META-HEURISTICS
	4.1 Effect of Parameter Settings and Parameter Setting Techniques
	 4.2 Problem Statement: Robust Parameter Settings in Meta-RaPS

	 CHAPTER 5: PARAMETER SETTING PROCEDURES APPLICABLE TO Meta-RaPS
	5.1 Simple Parameter Setting Technique
	5.2 Analytic Parameter Setting Techniques
	5.2.1 Response Surface Methodology
	5.2.1.1 Description of Response Surface Methodology
	5.2.1.2 RSM Application to Meta-Raps

	5.2.2 Genetic Algorithms
	5.2.2.1 Description of Genetic Algorithms
	5.2.2.2 Genetic Algorithms application to Meta-RaPS

	5.2.3 Reactive Search
	5.2.3.1 Description of Reactive Search
	5.2.3.2 Application to Meta-RaPS

	5.2.4 Ranking and Selection Techniques
	5.2.4.1 Description of Ranking and Selection Technique
	5.2.4.2 Application to Meta-RaPS

	5.2.5 Summary of Techniques for 0-1 MKP and ETP

	5.3 Setting Robust Parameters For a Set of Problems

	 CHAPTER 6: PARAMETER SETTING WITH NON-PARAMETERIC BASED GENETIC ALGORITMS
	6.1 Analysis of the best solution behavior
	6.2 Non-Parametric Tests
	6.3 Non-Parametric Based Genetic Algorithm
	6.4 NPGA Results

	 CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH
	 LIST OF REFERENCES

