
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2006 

Meta-raps: Parameter Setting And New Applications Meta-raps: Parameter Setting And New Applications 

Seyhun Hepdogan 
University of Central Florida 

 Part of the Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Hepdogan, Seyhun, "Meta-raps: Parameter Setting And New Applications" (2006). Electronic Theses and 
Dissertations, 2004-2019. 914. 
https://stars.library.ucf.edu/etd/914 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F914&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/914?utm_source=stars.library.ucf.edu%2Fetd%2F914&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


 
Meta-RaPS: PARAMETER SETTING AND NEW APPLICATIONS  

 
 

 
 
 
 

by 
 

SEYHUN HEPDOGAN 
 

B.S. Middle East Technical University, 2000  
M.S. Middle East Technical University, 2001 

M.S. University of Central Florida, 2004 
 
 
 
 

A dissertation submitted in partial fulfillment of the requirements  
for the degree of Doctor of Philosophy  

in the Department of Industrial Engineering and Management Systems  
in the College of Engineering and Computer Science 

at the University of Central Florida 
Orlando, Florida 

 
 
 
 
 
 

Summer Term 
2006 

 
 

Major Professors: Gary E. Whitehouse 
                      Gail W. DePuy 

 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2006 Seyhun Hepdogan 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ii



ABSTRACT 

Recently meta-heuristics have become a popular solution methodology, in terms 

of both research and application, for solving combinatorial optimization problems. Meta-

heuristic methods guide simple heuristics or priority rules designed to solve a particular 

problem. Meta-heuristics enhance these simple heuristics by using a higher level strategy. 

The advantage of using meta-heuristics over conventional optimization methods is meta-

heuristics are able to find good (near optimal) solutions within a reasonable computation 

time. Investigating this line of research is justified because in most practical cases with 

medium to large scale problems, the use of meta-heuristics is necessary to be able to find 

a solution in a reasonable time.  

The specific meta-heuristic studied in this research is, Meta-RaPS; Meta-heuristic 

for Randomized Priority Search which is developed by DePuy and Whitehouse in 2001. 

Meta-RaPS is a generic, high level strategy used to modify greedy algorithms based on 

the insertion of a random element (Moraga, 2002). To date, Meta-RaPS had been applied 

to different types of combinatorial optimization problems and achieved comparable 

solution performance to other meta-heuristic techniques.  

The specific problem studied in this dissertation is parameter setting of Meta-

RaPS. The topic of parameter setting for meta-heuristics has not been extensively studied 

in the literature. Although the parameter setting method devised in this dissertation is 

used primarily on Meta-RaPS, it is applicable to any meta-heuristic’s parameter setting 

problem. This dissertation not only enhances the power of Meta-RaPS by parameter 

tuning but also it introduces a robust parameter selection technique with wide-spread 

utility for many meta-heuristics.  
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 Because the distribution of solution values generated by meta-heuristics for 

combinatorial optimization problems is not normal, the current parameter setting 

techniques which employ a parametric approach based on the assumption of normality 

may not be appropriate. The proposed method is Non-parametric Based Genetic 

Algorithms. Based on statistical tests, the Non-parametric Based Genetic Algorithms 

(NPGA) is able to enhance the solution quality of Meta-RaPS more than any other 

parameter setting procedures benchmarked in this research. NPGA sets the best 

parameter settings, of all the methods studied, for 38 of the 41 Early/Tardy Single 

Machine Scheduling with Common Due Date and Sequence-Dependent Setup Time 

(ETP) problems and 50 of the 54 0-1 Multidimensional Knapsack Problems (0-1 MKP). 

In addition to the parameter setting procedure discussed, this dissertation provides 

two Meta-RaPS combinatorial optimization problem applications, the 0-1 MKP, and the 

ETP. For the ETP problem, the Meta-RaPS application in this dissertation currently gives 

the best meta-heuristic solution performance so far in the literature for common ETP test 

sets. For the large ETP test set, Meta-RaPS provided better solution performance than 

Simulated Annealing (SA) for 55 of the 60 problems. For the small test set, in all four 

different small problem sets, the Meta-RaPS solution performance outperformed exiting 

algorithms in terms of average percent deviation from the optimal solution value. For the 

0-1 MKP, the present Meta-RaPS application performs better than the earlier Meta-RaPS 

applications by other researchers on this problem. The Meta-RaPS 0-1 MKP application 

presented here has better solution quality than the existing Meta-RaPS application 

(Moraga, 2005) found in the literature. Meta-RaPS gives 0.75% average percent 

deviation, from the best known solutions, for the 270 0-1 MKP test problems. 
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CHAPTER 1: INTRODUCTION TO COMBINATORIAL 
OPTIMIZATION PROBLEMS 

 
1.1 Combinatorial Optimization Problems 

 
Many practical and theoretical problems involve a search of the best 

configuration, or set of variables, to achieve a goal. Many of these problems can be 

structured to optimize some decision variables within a set of constraints (Papadimitriou, 

and Steiglitz, 1982). The formulations of one end of the hierarchy of such problems are 

given as a general nonlinear programming problem; for example: 

 

where f, gi and hj are general functions of the variable  The goal of the problem is 

to optimize the function f by setting the independent variables, x to a level within the 

allowable ranges of constraints gi and hj. The optimization of f(x) can be a minimization, 

as shown above, or a maximization problem, depending on the nature and objective of the 

problem. The principal goal of optimization models is to mathematically express the 

problem to facilitate a solution method. Solution techniques for many optimization 

problems are almost always iterative in nature, and their convergence is studied using the 

mathematics of real analysis.  
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There are different classes of optimization problems to consider. By placing 

restrictions on the type of functions under consideration (f, gi and hj), and restricting the 

values that decision variables can take, different classes of optimization problems are 

formed (Reeves, 1993). If f is convex, gi concave and hj is linear, then the optimization 

problem is called a convex programming problem. This type of problem is convenient in 

the sense that local optimality implies global optimality. In a more general setting, when 

all f, gi and hj are linear the problem is called a linear programming problem. 

Optimization problems are typically divided into two categories: those with 

continuous variables and those with discrete variables, which are also called 

combinatorial problems. In combinatorial problems, one is looking for a set of decision 

variables from a finite or possibly near-infinite set that satisfies constraints and optimizes 

one or more objective functions (Papadimitriou, and Steiglitz, 1982).  

A wide variety of combinatorial optimization problems are studied in the 

literature as they have numerous practical applications. The combinatorial optimization 

problems most often addressed in the literature include Traveling Salesperson Problem 

(TSP), Quadratic Assignment Problem (QAP), Multiple Knapsack Problem (MKP), Bin 

Packing Problem, and the Vehicle Routing Problem (VRP). 

 

1.2 Why Heuristics Are Needed 

 

A well-known combinatorial optimization problem that is often cited in literature 

is the Traveling Salesperson Problem (TSP). In TSP, one is given an integer number n>1 

number of cities and the distance between every pair of n cities. The objective of the 

problem is to find a tour or a closed path that visits each city exactly once and minimizes 
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total tour length. If the goal is to find the minimal tour by enumeration, one begins by 

computing the length of all the possible tours and picking the one with the smallest tour 

length. Since each city can be visited only once, the number of possible tours will be (n-

1)! The number of possible routes can be enumerated when n is relatively small. 

However as the number of cities increases, the possible combinations of tours become 

impossible to enumerate even with the most advanced computers today. A TSP with 25 

cities has 1.55E+25 possible tours which is not a reasonable number for an enumeration 

approach. TSP is considered a NP-Complete problem for the reason that there is no 

algorithm that can solve the problem in polynomial time (Reeves, 1993).  

Since the enumeration technique seemed impractical for most combinatorial 

optimization problems, researchers propose simpler procedures for finding optimal 

solution. The techniques which guarantee optimal solutions, like complete enumeration, 

are called exact methods. Exact methods try to find a solution more efficiently than 

complete enumeration. Simplex algorithm (used for linear optimization problems), 

branch-and-bound and dynamic programming are some examples of exact methods. 

However, researchers determined that for large problems, most exact methods were not 

able to find optimal solutions in a reasonable amount of computing time. Although exact 

methods are usually more efficient than complete enumeration, they are still impractical 

in terms of computation time for large problems Reeves, 1993). 

To be able to solve large problems, researchers began to investigate how the 

solution time for a problem varies with the size (i.e., number of cities in a TSP instance) 

of the problem (Reeves, 1993). Exact methods for some problems require a computation 

effort with polynomial time complexity. Unfortunately, for some other harder problem 

computational effort required is at a greater magnitude than the polynomial function of 
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the size of the problem, such as exponential function of the problem size (Reeves, 1993). 

However, in many practical cases the goal of achieving the optimal solution is not only 

unrealistic but also unnecessary; finding a “good enough” solution is often considered a 

success considering that the true optimal solution may never be reached and the optimal 

solution may not be necessary in practice. To find the “best” solution subject to the time 

restrictions, researchers devise simple rules of thumbs (i.e., heuristics). The term heuristic 

can be defined as “a technique which seeks good (i.e., near optimal) solutions at a 

reasonable computational cost without being able to guarantee either feasibility or 

optimality, or even in many cases to state how close to optimality a particular feasible 

solution is” (Reeves, 1993). It is this need to generate a fast, good enough solution that 

justifies why heuristics are merited.  

 

1.3 Meta-Heuristics 

 

Heuristics are classified into several broad categories with respect to the approach 

used to find a solution. Some of these categories are: greedy construction methods, 

neighborhood search (improvement heuristics), relaxation techniques, partial 

enumerations, decomposition and partition. 

Many heuristics are problem specific. However, there are several general 

techniques that give high quality solutions over a wide array of problem types. The local 

neighborhood search strategy is considered to be an important technique for its 

performance flexibility on various types of problems. Some examples of the local search 

techniques are λ-optimal heuristics, in which a feasible solution is improved by 

exchanges (decomposition and reconstruction of a solution), uphill moves in which a 
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solution is allowed to get worse to for the intention that a local optimal solution to be 

“climbed out” in order to ultimately reach a better solution.  

Despite the utility of these general search strategies, researchers have proposed 

meta-heuristics to further enhance the solution quality of heuristics. Meta-heuristics are 

defined as a top-level general strategy that guides other heuristics to search for feasible 

solutions in domains where the task is particularly hard. In such cases, meta-heuristics 

have been applied to problems classified as NP-Hard and achieved considerable success 

(Reeves, 1993). Some examples of modern meta-heuristics are: Meta-RaPS, tabu search, 

simulated annealing, genetic algorithms, neural networks and greedy randomized 

adaptive search procedure (GRASP). This research focuses on Meta-RaPS, a meta-

heuristic developed by DePuy and Whitehouse (2001). However many of the insights 

gained in this work can be applied to other meta-heuristics. 

Almost all meta-heuristics have decision parameters to be set, and the 

performance of a meta-heuristic is dependent on the choice of these parameters. There are 

many techniques available for meta-heuristic parameter selection, but there is no clear 

consensus on when and why to use a particular parameter selection technique. The main 

objective of this research is to design a robust parameter setting technique for the meta-

heuristic studied in this research, Meta-RaPS. Other objectives of this research are to 

implement Meta-RaPS for 0-1 MKP and ETP combinatorial optimization problems and 

achieve comparable or better solution performance against the other existing meta-

heuristic applications in the literature for these two combinatorial optimization problems. 

This dissertation is organized as follows. In Chapter 2, several common meta-

heuristics including the meta-heuristic used in this research, are described. The research 

objectives are also presented in Chapter 2. In order to best demonstrate the parameter 
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setting techniques developed in this research, two combinatorial optimization problems 

are studied in Chapter 3. Chapter 3 also includes the description and results of several 

modifications made to previous Meta-RaPS 0-1 MKP and Meta-RaPS ETP efforts. The 

enhanced performance of Meta-RaPS for these two application problems constitutes a 

contribution of this research in addition to the main focus of this work of parameter 

selection techniques for meta-heuristics. Parameter setting literature is discussed in 

Chapter 4 and the problem statement is identified based on the research gap found in the 

literature search. Chapter 5 provides the description and Meta-RaPS applications of 

several parameter setting techniques found in literature. Chapter 6 presents the analysis of 

statistical parameter setting comparisons and shows that this comparison should be done 

using distribution-free procedures. In Chapter 6, a new parameter setting method, Non-

parametric Based Genetic Algorithms, is introduced and compared to the parameter 

setting methods in Chapter 5. Chapter 7 briefly summarizes the findings and 

contributions of this research as well as discusses future research directions. 
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CHAPTER 2: COMMON META-HEURISTICS AND 
INTRODUCTION TO Meta-RaPS 

 

 This chapter provides a discussion of several common meta-heuristics, their 

specific features, advantages and disadvantages. In addition, a detailed description of 

Meta-RaPS is presented.  

 

2.1 Common Features of Meta-Heuristics 

 

Meta-heuristics use different strategies to find solutions. However, almost all of 

the meta-heuristics use some combination of these common strategies to find a solution. 

Some examples of the common meta-heuristics strategies are described below.  

A common characteristic in modern search heuristics is being able to accept 

moves that temporarily degrade the objective function value in an attempt to avoid being 

trapped at local optima and ultimately yield a better solution. This strategy is also called 

an “uphill move”. For a minimization problem after finding a local minimum, the search 

is restarted or modified to move to a point with an inferior (higher) solution value than 

the local minimum at which heuristic has been trapped. It is expected that this uphill 

move will be able to move far enough away from the local minimum so that the search 

will not converge to this point and the global minimum may eventually be reached. 

Modern meta-heuristics mostly use sampling and local search to improve solution 

quality. Sampling allows meta-heuristics to explore different regions of the solution space 

so that it is more probable that the final solution is the global optimum. By using 

randomness, sampling allows meta-heuristics to create a variety of solutions. 
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Local search is used to further improve an already constructed solution. An 

important issue in local search is search confinement. Confinement means, if the heuristic 

converges to a local minimum; the heuristic should avoid further searching in this area in 

order to save valuable computation time. To overcome this problem, some meta-

heuristics use a strategy called diversification. Diversification strategy allows the 

heuristics to move away from the local optima. As previously mentioned, the uphill move 

described above is considered to be a typical diversification strategy. On the other hand, 

some search effort around the local minimum should be conducted under the assumption 

that neighborhoods may have correlated evaluation/objective function values, and a 

global optimum may be found in close proximity to this local optimum point. This search 

around a neighborhood is called intensification. Diversification and intensification are 

conflicting search strategy procedures. Yet, a good meta-heuristic should be able to 

balance the intensification and diversification, both of which are vital in finding a good or 

possibly optimal solution. 

Some meta-heuristics, such as evolutionary algorithms, use a set or population of 

solutions. Instead of moving from one solution to another, these types of meta-heuristics 

try to characterize the solution space by determining the regions of the solution space that 

contain the best solutions. By way of comparison, most other meta-heuristics construct 

one solution within each iteration. In general, constructing a solution is done by adding 

feasible elements to the solution one by one until no other elements can be added to the 

solution without the violation of feasibility.  

Some meta-heuristics also may use adaptive memory in the way that the 

information obtained in one solution can be carried to the next, or in other words the 

good solution traits and characteristics can be identified and used in successive iterations. 
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To detail these specifics, some of the most common modern meta-heuristics are briefly 

described in the following section.  

 

2.2 Different Types of Meta-heuristics 

 

 This section describes the genetic algorithms, simulated annealing and tabu 

search, which are most frequently used meta-heuristics in literature and in practice. Apart 

from these aforementioned meta-heuristics, greedy randomized adaptive search procesure 

(GRASP) is also described due to its similarity to Meta-RaPS. 

 

2.2.1 Genetic Algorithms 

 

Genetic algorithms are approaches to solve combinatorial optimization problems 

based on natural selection and evolution mechanics. Genetic algorithms (GA) were 

originally developed by John Holland at University of Michigan to mimic natural 

selection and evolution. The seminal work in this area was published in 1975 as 

Holland’s book called “Adaptation in Natural and Artificial Systems”. The main theme of 

the GA is robustness. Nature laws and evolution are thought to be the key elements of 

robustness where survival of the fittest rule is of primary priority.  

The information about the GA applied problem is carried from one population to 

another population by individuals composed of chromosomes representing decision 

parameters of the problem. A GA works in the way that individuals having favorable 

characteristics are more likely to pass their chromosomes, or their traits, compared to 

those individuals who have less favorable characteristics. The random selection processes 
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and mutation enable GAs to incorporate randomness in their procedure so that sometimes 

the types of individuals introduced into the population are not the fittest. As a result, the 

search is not limited to the previously best performing chromosomes. 

Different from most other optimization methods, genetic algorithms use a 

population of solutions to evaluate the performance of a system based on a fitness 

function value and screen the population for fit individuals that are more likely to 

survive. The underlying idea is mating of fit individuals will result in a yield of better fit 

offspring. The local optimum is avoided by a genetic operation called mutation where at 

a very low probability the solution may move to a completely different region. If this trial 

for exploring different region is not fit enough with respect to the fitness value then this 

solution (or population of solutions) will be eliminated (Goldberg, 1989). 

 While many variations exist, the main steps used by most of the GA-based 

heuristics are: 

• Representation of individuals: Individuals are represented by chromosomes of 

gene strings of fixed length. Depending on the application, the genes are 

represented by binary numbers (0 and 1), or by real and/or integer numbers. 

• Fitness evaluation function: Based on a function, the individuals are evaluated. 

The fitness function depends on the application. For TSP, the fitness of an 

individual (i.e. solution) will be the resulting length of a candidate tour. 

Therefore, the smaller the fitness value, the more fit the individual. 

• Starting population: A suitable number of individuals are selected as a starting 

population from which the GA will explore many different generations. A good 

representative starting population that has good fitness values may be an 

important starting point for some GA applications. 
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• Selection: Parents are selected by a rule, which is related to their fitness functions, 

or fitness rank in the population. Then, they will produce the next generation after 

a series of genetic operations. 

• Genetic operations: Crossover and mutation are the most common genetic 

operations used to modify the genetic information from parents to their offspring. 

In mutation, a gene string that is not found in any of the parents may be 

introduced to offspring. In crossover, where a parent’s chromosome pieces are 

exchanged to form the offspring (Pham, and Karaboga 2000). 

Genetic algorithms have proven their value of being robust in many diverse 

applications. In the literature, GA is applied to various kinds of combinatorial 

optimization problems. Some examples include the Traveling Salesperson Problem by 

Wang et al. (2006), the Knapsack Problem by Yuan (2005), and the Set Covering 

Problem by Vasko (1991).  

Schaffer and Eshelman (1996) point out that, combinatorial optimization 

problems are difficult to solve with GA because representations that induce good schema 

are hard to find. Typically, GAs needs to be modified for each problem it is applied to 

(i.e., chromosome representation, elitism, crossover and mutation types etc.), and this 

lack of universality can be a limitation in optimization problems. 

 

2.2.2 Simulated Annealing 

 

Another popular meta-heuristic is simulated annealing (SA), which is based on 

the analogy of the annealing of solids. The principles of simulated annealing are 

discussed in Metropolis et al. (1953) in an algorithm to simulate the cooling of a material 
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in a heat bath (Rayward-Smith et al., 1996). The idea of using this thermodynamic 

process as an analogy to solve the combinatorial optimization problems is proposed by 

Kirkpatrick (1983).  

The underlying philosophy of SA is as follows: in thermodynamics if the 

temperature is high, then the atoms will have higher energy and they are more mobile. 

The local search is able to move to many different solutions and the chance of moving to 

inferior solutions is high so that the feasible region is explored in detail. When the 

temperature decreases the atoms tend to have more rigid bonds between each other and 

mobility decreases and they become crystallized, for the SA close to the end of procedure 

the probability of moving to inferior solutions decreases. In other words the moves are 

accepted only if they enhance the solution. 

The final goal is to have a perfectly crystallized material which has the perfect 

structure. Similarly for the SA the perfect structure is regarded as the optimal solution. If 

a material is annealed starting from a high temperature and let to cool slowly, the material 

crystallizes because by starting from high temperature all the atoms are mobile enough to 

move the desired locations and by cooling slowly the solidification happens gradually 

without distorting the structure of the crystal structure. In other words, the pieces will 

have time to move into their desired locations to be crystallized. In contrast, if a low 

starting temperature is selected and/or material is cooled fast, the resulting end material 

will not have the perfect crystalline structure, meaning a global optimal point may not be 

found for optimization purposes.  

Simulated annealing is one of the simplest heuristic procedures to apply, yet it is 

very flexible to modifications which produce further decisions to make and parameters to 

be set in the application. A drawback of SA is the disappointingly long running times that 
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may be needed for good quality solutions or convergence to optimality. In the literature 

SA had been applied to many combinatorial optimization problems (Reeves, 1993) 

including Traveling Salesperson Problem (Lee, 2005), Quadratic Assignment Problem 

(Connoly, 1990 and Baykasoglu, 2004), Multi-level Lot Sizing (Kuik, and Salomon, 

1990 and Tang, 2004) and Vehicle Routing Problem (Sohrabi, and Bassiri, 2004 and 

Osman, 1993). 

 

2.2.3 Tabu Search  

 

Tabu search (TS) was originally developed by Fred Glover (Glover and Laguna, 

1997). TS is based on procedures designed to cross the boundaries of feasibility or local 

optimally which are treated as barriers for finding the global optimal solution. The 

method systematically removes the barriers mentioned which limit the exploration of 

otherwise forbidden regions. The feasibility barrier is removed by imposing and releasing 

the constraints. This idea was also developed by Pierre Hansen in the steepest/mildest 

descent method (Hansen, 1986). 

The advantage of tabu search lies in this local search which uses adaptive 

memory. The local search method tabu search uses is based on an evaluation function 

that chooses the highest evaluation solution move, subject to tabu list restrictions at each 

iteration. From the available moves, the move with the best objective improvement, or if 

this is not a possible move, then the one with the least objective deterioration is made.  

The concept of the tabu list and its restriction is simple. A tabu list keeps track of 

the recently accepted moves made so that these moves should be avoided so as to reduce 
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the probability of local optimality. The tabu list decides which moves are to be permitted 

for the next iteration(s).  

 Tabu search features a list of different strategies to overcome local optimality 

(Pham, and Karaboga 2000): 

• Forbidding strategy is used to avoid cycling by forbidding certain moves. This 

strategy keeps track of the moves made so far in the local search and prohibits 

making the same moves again. The drawback of this strategy is it requires 

extensive computer memory. To overcome this effect instead of keeping all the 

moves in the list, some number of recent moves is kept. This number is also the 

size of the tabu list, the smaller the number, the greater the chance of cycling.    

• Aspiration criteria make a tabu solution a candidate move if this solution is of 

sufficient quality and this criterion may prevent cycling. In tabu search, the move 

attributes are recorded, and if a move is found to yield good quality solutions even 

if this move is in the tabu list, the aspiration criteria may set this move free and re-

use the move since move history shows the value of that move. 

• Freeing Strategy deletes the restrictions on the solution so these moves can be 

made again.  

In general tabu search evolved from ideas of the founders Glover and Laguna 

(1997) and various applications reviewed show that tabu search is an effective method in 

navigating through large and complex solution spaces. tabu search has been applied to 

many different kinds of problems: Flow Shop (Grabowski, and Wodecki, 2004; Taillard, 

1990), Single Machine Scheduling (Hino et al., 2005; Laguna 1991), Traveling 

Salesperson Problem (Yang et al., 2006; Glover, 1992), Quadratic Assignment Problem 

(Misevicius, 2005; Skoring-Kapov, 1990). 
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2.2.4 Greedy Randomized Adaptive Search Procedure (GRASP) 

 

GRASP is a meta-heuristic founded by Feo and Resende(1995). GRASP has two 

main stages: a solution constructor, that generates randomized solutions, and a local 

search heuristic, that improves the solutions generated by the constructor (Gomes, 2001).  

 

Stage 1: Construction 

 

In the construction stage a feasible solution is constructed in an iterative fashion 

using an adaptive greedy heuristic. A greedy heuristic is an algorithm that always takes 

the best immediate, or local, solution while finding an answer (Black, 1998). The greedy 

heuristic by itself is deterministic and it does not allow variation of solutions. The greedy 

heuristic ranks the feasible moves to be made and selects the best possible move. The 

probabilistic component, or randomization, of GRASP is done by randomly choosing one 

of the best candidates in the list, but not necessarily the top candidate. The list of best 

candidates is called the restricted candidate list (RCL). This RCL choice technique allows 

GRASP to have different solutions at each iteration and still does not compromise the 

power of adaptive greedy heuristic (Feo, and Resende 1995).  

The greedy heuristic used in GRASP is adaptive because the benefits associated 

with every element are updated at each iteration of the construction phase to reflect the 

changes brought on by the selection of the previous element (Feo, and Resende, 1995).  
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Stage 2: Improvement 

 

After the construction stage is completed a local search is done to further improve 

the constructed solution. Like the construction stage heuristic, a local search algorithm 

also works in an iterative fashion but in a different way. Local search replaces the current 

solution with a better solution in the neighborhood of the current solution (Feo, Resende 

1995).  

At each iteration, GRASP samples the solution space by a randomized greedy 

function and then applies the local search to improve the constructed solution. The 

GRASP procedure is repeated for a large number of iterations and the best solution found 

is reported when all iterations are completed. An outline of the GRASP algorithm is 

shown in Figure 1: 

GRASP has been used for several problems, such as scheduling problems, 

routing, facility planning, maximum independent set (Gomez, 2001). Resende and Festa 

(2001) lists many other applications of GRASP in their annotated bibliography of 

GRASP. 

 

 
begin 
for a fixed number of iterations do 
Construct a Greedy Randomized Solution 
Apply Local Search  Update best solution 
end 

 
 
Figure 1: General GRASP Algorithm 
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2.3 Meta-heuristic for Randomized Priority Search (Meta-RaPS) 

 

Meta-RaPS is a generic, high-level strategy used to modify greedy algorithms 

based on the insertion of a random element.  Meta-RaPS integrates priority rules, 

randomness, and sampling in each iteration, As with other meta-heuristics, the 

randomness represents a device to avoid getting stuck in local optima (Moraga, 2002). 

Meta-RaPS constructs and improves feasible solutions through the utilization of a 

greedy algorithm in a randomized fashion.  After a number of iterations, Meta-RaPS 

reports the best solution found. Meta-RaPS is the result of research conducted on the 

application of a modified COMSOAL approach. COMSOAL (Computer Method of 

Sequencing Operations for Assembly Lines), which was developed by Arcus (1966), is a 

computer heuristic originally reported as a solution approach to the assembly line 

balancing problem. Whitehouse and Tidwell (1980) modify COMSOAL for the resource 

allocation problem. Although Meta-RaPS conserves Arcus’s original idea, it differs 

considerably from the original COMSOAL. This significant difference led DePuy and 

Whitehouse (2001) to present their approach as Meta-RaPS. 

Meta-RaPS, as well as COMSOAL, constructs solutions by generating a list of 

feasible elements that may be added to the partially constructed solution. The next 

element to be added to the solution is randomly chosen from the list referred to as the 

candidate or available list. This iterative process of building the solution is continued 

until all the feasible elements are included in the solution and no more feasible elements 

can be added to the solution (i.e., until the available list is empty). Many iterations are run 

and best solution is reported. One should note that because randomness is involved in the 

selection of the elements that are to be included in the solution, different iterations will 
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give different solutions most of the time. The difference between Meta-RaPS and 

COMSOAL comes from the way that the procedure chooses the next element to enter the 

solution. Meta-RaPS chooses the next feasible element from the available list either 

strictly by a priority rule or by a relaxed priority rule. 

Meta-RaPS has two stages, construction and improvement. In the construction 

stage a feasible solution is built by adding elements to a solution based on a priority rule. 

Meta-RaPS modifies the construction algorithm such that the next element to be added to 

the solution does not always have to have the best priority value. The construction stage 

ends after no possible elements can be added to solution. In the improvement phase, a 

local search is applied. The local search may use a similar priority rule as the construction 

stage or a completely different procedure. 

The Meta-RaPS technique involves the use of four parameters: number of 

iterations, I, the priority percentage, %p, the restriction percentage, %r, and the 

improvement percentage, %I. For a number of iterations I, Meta-RaPS constructs feasible 

solutions and Meta-RaPS will pick the best solution from I iterations. During each 

iteration, the parameter %p is used to determine the percentage of time the next activity 

will be scheduled using the base or unmodified priority rule. The remaining (100%-%p) 

of the time, the priority rule is modified by %restriction, %r parameter. In (100%-%p) of 

the time the next element added is randomly chosen from the feasible elements whose 

priority values are within %restriction of the best priority value. Improvement %I decides 

if the solution created at the construction stage is worthy to be improved. The 

improvement heuristic is used if the solution value at the end of construction stage is 

within %I of the best unimproved solution value found so far from the preceding 

iterations (Moraga, 2002).The solution quality of the Meta-RaPS depends on the number 
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of iterations I, %priority %p, %restriction %r and %improvement %I parameters. Meta-

RaPS integrates priority rules, randomness by %p, %r and %I parameters and uses 

sampling by I parameter.  

The general steps in applying the Meta-RaPS methodology to any combinatorial 

problem are as follows (Moraga, 2002):  

1. Study the structure of the problem to be solved. 

2. Find priority rules that construct feasible solutions.  

3. Modify priority rules to incorporate randomness by adjustment of %p and %r 

parameters. 

4. Construct feasible solutions using priority rule and randomness. 

5. Improve selected solutions, keep the best solution found by Meta-RAPS for 

both construction and improvement stages. 

6. Report the best solution found at the end of I iterations. 

Apart from COMSOAL, the Meta-RaPS procedure is also similar to GRASP. 

However, there are two main differences between Meta-RaPS and GRASP. In the 

construction stage, Meta-RaPS either uses the pure greedy heuristic or uses randomness 

inserted (relaxed) into the greedy heuristic whereas GRASP always uses randomness 

inserted into the greedy function during the construction phase. The second difference is: 

in the improvement stage Meta-RaPS improves the solutions that are %I (improvement 

percentage) close to the best solution found so far. On the other hand, GRASP improves 

every solution produced by it’s construction stage. In some GRASP applications (Feo et 

al.,1994; Prais and Ribeiro, 2000), which are referred as GRASP with filtering strategies, 

the similar idea of applying local search is applied only to some promising solutions. In 

conclusion, Meta-RaPS may be seen as a generalization of both COMSOAL and GRASP. 
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Meta-RaPS has been applied to the Traveling Salesperson Problem (Moraga et 

al.,2001; DePuty et al.,  2005), the Set Covering Problem (Lan et. al, forthcoming), the 

Resource Constrained Project Scheduling Problem (DePuy. and Whitehouse 2001), 

Vehicle Routing (Moraga, 2002), and the Knapsack Problem (Moraga et al., 2005). Meta-

RaPS has demonstrated good performance in terms of both solution quality and 

computation time with respect to other meta-heuristics (genetic algorithms, neural 

networks, simulated annealing etc.) Table 1 (from Moraga, 2001) shows a comparison of 

Meta-RaPS and other meta-heuristics in terms of computation time and percent deviation 

from the best known solution value for five 100-city TSP test problems taken from 

TSPLIB (Reinelt and Bixby, 1995).  

 

Table 1: Comparison of meta-heuristics for 5 TSP test problems (Moraga, 2002). 
Problem Solution Method 

KroA KroB KroC KroD KroE 
Run Time 
for KroA 

Meta-RaPS 
TSP(Moraga, 2002) 

0.00% 0.25% 0.00% 0.00% 0.17% 50 sec 

Cheapest Insertion & 
Node Insertion 

0.50% 2.46% 0.82% 1.43% 1.10% - 

GA (Chatterjee et al., 
1996) 

0.70% - 1.78% 1.45% - 1 hour 

Neural Networks 
(Modares et al., 1999) 

0.31% 1.43% - - - 55 sec 

SA(Voudouris & 
Tsang, 1999) 

0.42% - 0.80% - - 37 sec 

TS (Voudouris & 
Tsang, 1999) 

0.00% - 0.25% - - 21 sec 

 

 

Table 2 (from Moraga, 2002) compares the solution quality of Meta-RaPS to 

other heuristics for the Resource Constrained Project Scheduling Problem (RCPSP). 

Table 2 shows the %difference from the optimal solution for 480 RCPSP test problems. 
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These 480 problems are 30 node RCPSP test problems taken from PSPLIB (Kolisch and 

Sprecher, 1996). Meta-RaPS produces statistically significantly smaller average percent 

differences from the results of all the articles in Table 2 except Brucker (1998) in which 

branch and bound method is used. It is important to note that branch and bound has a 

much longer average run time than Meta-RaPS.  

 

Table 2: Comparison of Meta-RaPS versus other heuristics for 30 node PSPLIB test 
problems 

Solution Method 

Average 
%Deviation 

from 
Optimal 

Standard 
Deviation 

from 
Optimal 

Maximum 
%Deviation 

from 
Optimal 

%Optimal 
Solutions 

Meta-RaPS (Moraga, 2002) 0.598% 1.22% 6.25% 76.00% 
Khattab and Choobinch 
(1991) 

3.29% 4.24% 23.68% 47.30% 

Brown (1995) 2.05% 2.82% 15.79% 52.10% 
Kolisch and Drexl (1996) 0.910% 1.83% 8.62% 75.00% 
Brucker et al. (1998) 0.138% - 4.00% 88.50% 

 

 

As seen in Tables 1 and 2, Meta-RaPS achieves better or comparable results to 

other meta-heuristics. Moraga (2002) summarizes the pros and cons of Meta-RaPS in 

Table 3. 

 Table 4 compares many of the common meta-heuristics to Meta-RaPS. A 

meta-heuristic has adaptive memory if it uses the information from the previously found 

solution to produce a new solution. All meta-heuristics shown in Table 4, except GA, use 

priority rules to produce solutions, GA instead uses sample solutions (input and output 

pairs) to function. Although Table 4 summarizes the general attributes, each meta-

heuristic procedure is flexible and can be designed in a way to implement different 

attributes of meta-heuristics depending on the specific implementation. Thus Table 4 
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shows the general properties of different meta-heuristic procedures when they are 

implemented in their conventional way. 

 

Table 3: Meta-RaPS pros and cons (Moraga, 2002) 
Pros Cons 

1. Global Search Method 
2. Not problem dependent 
3. High capability of avoiding local 

optima 
4. Keep best solution after a number 

of iterations 
5. Can incorporate intelligence as 

stopping rule 
6. Reasonable runtimes 
7. Good results for less-restricted 

problems, such as TSP 
8. Easy to implement 

1. Might duplicate solutions 
2. Priority rule dependent 
3. Not adaptive 
4. Does not exploit parallelism 
5. Parameter dependent 

 

 

Table 4: Comparison of meta-heuristics  
Meta-

heuristic 
Adaptive 
Memory 

Use of 
Randomness 

# Solutions 
per Iteration 

Priority 
Rule 

Dependent 

Need of 
sample 

solutions 
Meta-RaPS No Yes 1 Yes No 

SA No Yes 1 Yes No 
GA Yes Yes Many No Yes 
TS Yes Yes 1 Yes No 

GRASP No Yes 1 Yes No 
 
 
 

2.4 Research Objectives 

 

Meta-RaPS has been applied to Traveling Salesperson (Moraga et al., 2001), Set 

Covering Problem (Lan et. al, forthcoming), Resource Constrained Project Scheduling 

Problem (DePuy and Whitehouse 2001), Vehicle Routing (Moraga, 2002) and 0-1 

Multidimensional Knapsack (Moraga et al. 2005) problems and yielded competitive 
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results with respect to other meta-heuristics. Although the Meta-RaPS procedure is 

straightforward and easy to implement, its performance is dependent on the parameters (I, 

%p, %r, %I ) that it uses. So far numerous techniques have been used for Meta-RaPS 

parameter selection (Moraga, 2002) but there is no clear consensus on when and why to 

use a particular parameter selection technique. 

Similar to the differences in meta-heuristics explained in Section 2.1, the 

parameter setting procedures have different strengths and weaknesses. An ideal 

parameter setting method is not only needed to effectively find the effective parameters 

settings, but it should also have the following properties: 

• Use as few points in the parameter domain as possible and have simple 

procedure steps. These two points help the procedure to be fast in terms of the 

computation time. 

• Robust for different types of combinatorial optimization problems; be able to 

suggest effective parameters when used for different type of problems 

• Easy to use and ease of repeatability of the procedure. The procedure of 

application is desired to be straightforward. The amount of human effort 

required during the application should be minimal and the procedure should 

be repeatable without complication. 

 Having a combination of these properties enables a meta-heuristic to be effective 

and a user friendly procedure. The different attributes of parameter setting procedures 

will be discussed in detail in Chapter 5.  

 In order to best demonstrate the parameter setting techniques developed in 

Chapter 5, two combinatorial optimization problems are used: 0-1 Multidimensional 

Knapsack Problem (0-1 MKP) and Early/Tardy Single Machine Scheduling Problem with 
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Common Due Date and Sequence Dependent Setup Times (ETP). These two 

applications, 0-1 MKP and ETP, are first described in Chapter 3. Chapter 3 also includes 

the description and results of several modifications made to previous Meta-RaPS 0-1 

MKP and Meta-RaPS ETP efforts. The enhanced performance of Meta-RaPS for these 

two application problems constitutes a contribution of this research in addition to the 

main focus of this work presented in Chapters 5 and 6 of parameter selection techniques 

for meta-heuristics. 

 The research objectives are as follows: 

1. Design a robust parameter setting technique for Meta-RaPS, that can also be 

applied to other meta-heuristics. 

2. Implementation of Meta-RaPS to 0-1 MKP and ETP combinatorial 

optimization problems. Achieve comparable or better solution performance 

against the other existing meta-heuristic applications in literature for these two 

combinatorial optimization problems. 
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CHAPTER 3: Meta-RaPS APPLICATIONS 

 To compare the different parameter setting methods presented in Chapters 5 and 6 

and to demonstrate the parameter sensitivity of Meta-RaPS, two applications of Meta-

RaPS are introduced and developed in this chapter. In this research, the 0-1 

Multidimensional Knapsack Problem and the Early Tardy Single Machine Scheduling 

with a Common Due Date and Sequence Dependent Setup Times Problem are chosen as 

Meta-RaPS application areas. 

 

3.1 Application to 0-1 Multidimensional Knapsack Problem (0-1 MKP) 

 

 The 0-1 Multidimensional Knapsack Problem (0-1 MKP) is one of the most 

studied combinatorial optimization problems. It had been extensively studied in literature 

and therefore it is a very good benchmark problem. Moreover, there are many simple 

greedy heuristics which makes the problem an easy application for Meta-RaPS.  

 

3.1.1 Description of 0-1 MKP 

 

The idea of the 0-1 MKP is to fill a knapsack with different types of objects to 

maximize the profit or the total worth of the objects in the knapsack. The knapsack has a 

set of m capacity constraints bounded by bj where j=1...m. The knapsack constraints are 

often described as weight constraints which cannot exceed some upper limit. To fill the 

knapsack, n different types of objects of ci worth and of aij weight is available i=1...n.  

The formulation of 0-1 MKP is as follows: 
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Where xi is a binary variable; 1 if item i is selected, 0 if item i is not selected 

The objective of the 0-1 MKP is to maximize the total worth or profit subject to 

the constraints. The solution of a 0-1 MKP is a vector x of size n which is composed of 

binary numbers. The real world applications of 0-1 MKP include: cargo loading (Shih, 

1979), cutting stock (Gilmore and Gomory, 1966) and capital budgeting (Weingartner, 

1967). Cargo loading aims to fill the designated area with the most valuable load. Cutting 

stock tries to partition an area into different sizes in the most profitable way. The capital 

budgeting problem tries to maximize the total payoff by selecting options from a list of 

possible investment options.  

 

3.1.2 Meta-RaPS 0-1 MKP Application 

 

Performance of the Meta-RaPS 0-1 MKP application relies on the priority rule 

selected. In this application the priority rule selected is found by Moraga (2003) and 

named as Dynamic Greedy Rule. Most priority rules for 0-1 MKP are based on a profit-

weight ratio calculation for each item to be added to knapsack. This ratio is called 

pseudo-utility ratio. The pseudo-utility ratio is αi= ci/wi; where wi is the penalty factor for 

item i.  After pseudo-utility ratios are calculated for each item, the items are ordered in 

decreasing pseudo-utility order and the ordered items are added to the solution one by 
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one as long as they do not violate any constraints. There are different variations on the 

calculation of the penalty factor, wi, in the literature (i.e. primal effective gradient method 

by Toyoda (1975); dual-effective gradient method by Senyu and Toyoda (1968) and 

lognormal point function using wi by Cho et al. (2004a and 2004b). 

In this application the Meta-RaPS priority rule selected uses the normalization of 

weights idea introduced by Cho et al. (2004a and 2004b). This heuristic uses a lognormal 

point function for the weight vector. This transformation gives more weight to the 

constraint with the least resource remaining. By this way the priority rule selects items 

that use the scarce constraints (resources) effectively, allowing the priority rule to include 

more items in the knapsack.  This idea from Cho et al. (2004a and 2004b) is combined 

with a new weight ratio devised in this research, to yield the following weight formula: 

 

In equation 3, Φ-1 is the inverse of standard normal cumulative density function 

and σ takes the value 3. σ is the shape parameter and is set empirically. The term inside 

the Φ-1 function (CWj/ bj) is normalization by dividing the amount of resources remaining 

with the initial capacity of the knapsack constraints. In other words, CWj is the amount of 

the jth resource consumed by the items assigned so far and aij is the weight of item i for 

the constraint j. The idea of using lognormal point function is that this transformation 

assigns a higher priority to the constraints with less resources remaining, so that scarce 

resources (constraints with less capacity remaining) will be more effectively used. 

For the Meta-RaPS improvement stage, the exchange neighborhood search is 

employed which tries to exchange the items in the solution with the items that are not in 

solution for all possible combinations. The improvement stage in Meta-RaPS 0-1 MKP 
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application has two different exchange improvement procedures; 2-way and 1-way 

exchange improvement. Initially any possible 2 items which are already included in the 

solution are exchanged with any 2 items that are not in the solution. If the solution value 

improves, the exchange is accepted, otherwise, the exchange is rejected. After 2-way 

exchange, 1-way exchange is done, any item in the solution is exchanged with an item 

not in the solution. Same as in the 2-way exchange, if the exchange improves the solution 

value it is accepted, else the exchange is rejected. The 0-1 MKP Meta-RaPS approach is 

detailed in Figure 2. 

The Meta-RaPS 0-1 MKP application is coded in C++ and tested on a P4 2.2 GHz 

PC. The application is tested on 55 small-sized test problems from MP-TESTDATA 

(Skorobohathyj, 2002) and 270 large-sized test problems from OR-Library (Beasley, 

1990). Both of the problem sets are commonly used benchmark problems used by many 

researchers.  

Meta-RaPS is run for 1,000 iterations for each problem in the small problem set. 

The small set includes problems from various researchers. The problem sizes range from 

2 to 30 constraints and 10 to 105 items. All the problems in this set have known optimal 

values. For each different problem set generated by different researcher, the Meta-RaPS 

parameters are selected using trial-and-error.  

Table 5 shows the number of optimal solutions obtained, the average and the 

maximum percentage deviation from the optimal solution. Table 5 compares the solution 

quality of Meta-RaPS with the improvement phase versus the non-improved Meta-RaPS. 

The results show the enhancement gained by the improvement stage. For the entire 55 

small problems, %I is set as 20. Meta-RaPS is able to solve all the 55 problems in the 
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small problem set optimally with improvement. The entire data set is optimally solved by 

most well designed heuristics.  

 

Input Parameters (I, %p,%r,%I) and  Load Test Problem 
Best Solution=0, Best Nonimproved Solution=0, S={x1,x2,…,xn} 
While NofIterations ≤ I 

Xselected={Ø}, Xnonfeasible={Ø} 
DO 

p= Random(1,100) 
  IF p≤%p 
   Select element k such that αk= max (ct / wt ) 
         t ε S 

   IF xk feasible THEN xk  Xselected  

   ELSE xk  Xnonfeasible 

   END_IF 
  ELSE 
   Select element k randomly from     
    { t ε S | such that αt≥ max α [1-(%r/100)]} 

IF xk feasible THEN xk  Xselected  

   ELSE xk  Xnonfeasible 

   END_IF 
  END_IF 
 While Xselected + Xnonfeasible ≠ S 
  IF currentsolutionvalue> Best Nonimproved Solution 
  Best Nonimproved Solution= currentsolutionvalue 
             END_IF 
 IF currentsolutionvalue> Best Nonimproved Solution[1-(%I/100)] 

 FOR every pair of items of Xselected  

            IF they can be switched with a pair in Xnonfeasible   
            without violating feasibility THEN  Exchange 
            ELSE  No Exchange 
END_FOR 
 
FOR every  item of Xselected  

            IF they can be switched with an item in Xnonfeasible   
            without violating feasibility THEN  Exchange 
            ELSE  No Exchange 
END_FOR 

IF currentsolutionvalue>Best Solution 
 Best Solution = currentsolutionvalue 
END_IF 

END_WHILE 
Report Best Solution 

Figure 2: 0-1 MKP Pseudocode for Meta-RaPS 
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Table 5: Improved vs. Nonimproved Meta-RaPS for Small Problem Set 

 
Meta-RaPS without 

improvement 
Meta-RaPS with 

improvement 
# of Optimal 46/55 55/55 
Avg. % Dev. 0.007 0 
Max. % Dev. 0.99 0 

 

 

Table 6 compares the new heuristic with the older version of Meta-RaPS 0-1 

MKP applications as well as other meta-heuristics in literature. 

 
 
Table 6: Comparison of Meta-RaPS to other techniques for small sized test problems  
Solution Method Optimal Solutions Average %Deviation 

from optimal 
Meta-RaPS New Heuristic 55/55 0.000% 
Meta-RaPS with Oscillation 
Improvement (Moraga, 2003) 

56/56 0.000% 

Meta-RaPS with Insertion & 
Exchange (Moraga, 2002) 

55/56 0.003% 

SA PROEXC (Dammeyer, 1993) 31/57 0.328% 
TS (Glover, 1995) 57/57 0.000% 
GA (Chu, 1998) 55/55 0.000% 

 

 

The large problem suite has nine different problem sets, each with different 

problem sizes. The number of constraints (m) in these problems is either 5, 10 or 30 and 

the number of items (n) is either 100, 250 or 500. For each n-m combination, 30 problems 

are generated by Chu and Beasley (1998) adding up to a total of 270 problems. For each 

set of problems, the same n-m combinations of 30 problems are generated. The first ten 

problems have a tightness ratio of 0.25, the second ten problems have a tightness (or 

constraint tightness) ratio of 0.50 and the last ten problems have a tightness ratio of 0.75. 

The objective function coefficients are correlated with the constraint coefficients, because 
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the correlated problems are more difficult to solve than uncorrelated problems (Pirkul, 

1987). For each m-n combination, the Meta-RaPS parameters are set by non-parametric 

based genetic algorithms as described in Chapter 6. Table 7 shows the Meta-RaPS 

parameters used to solve large problems. In Table 7, m represents the number of 

constraints and n represents the number of items available for each 30 problem data set. 

Notice in Table 7 that as the problem size increases ( i.e., as number of items increases) a 

smaller %I and I is used in order to have reasonable computation time. 

 

Table 7: Meta-RaPS Parameter Settings for Large Problems 
m n No. of instances I %p %r %I 

5 100 30 1000 20 10 2 
5 250 30 500 10 5 1 
5 500 30 250 80 5 0.5 
10 100 30 1000 80 5 2 
10 250 30 500 80 3 1 
10 500 30 250 90 20 0.5 
30 100 30 1000 95 70 2 
30 250 30 500 80 5 1 
30 500 30 250 80 3 0.5 

 

 

Table 8 shows the Meta-RaPS solution performance for the large problems. The 

optimal solutions for these large problems are not available. The table shows the results 

as the percentage gap from the LP optimal values. LP optimal values serve as the 

theoretical lower bounds for the Knapsack Problem. 
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Table 8: Average % Deviation of Meta-RaPS vs. Other Methods 
m n Meta-RaPS Moraga 

(2005) 
GA 
(1998) 

ADP  
(2002) 

Haul & 
Voss (1997) 

5 100 0.63 0.6 0.59 - 0.72 
5 250 0.22 0.17 0.14 - 0.36 
5 500 0.1 0.09 0.05 - 0.34 
10 100 1.16 1.17 0.94 - 1.26 
10 250 0.45 0.45 0.30 - 0.74 
10 500 0.21 0.20 0.14 - 0.64 
30 100 2.04 2.23 1.69 - 2.14 
30 250 0.99 1.38 0.68 0.97 1.36 
30 500 0.99 0.82 0.35 0.52 1.20 
Overall 0.75 0.77 0.53 0.74 0.93 

 
 
 

The average CPU time for Meta-RaPS 0-1 MKP is mainly dependent on the 

number of items (n) of an instance. For the 100, 250 and 500 item problems, the average 

CPU times are 18.2, 53.7 and 184.6 seconds, respectively. Genetic algorithms (GAs) by 

Chu and Beasley (1998) have one of the best solution performances so far on these 

problems, however, their computation time ranges between 6 and 65 minutes on a Silicon 

Graphics Indigo workstation. Moraga (2005) use a Pentium 4 1.6GHz PC with run times 

of 7 to 35 minutes per problem. The approximate dynamic programming solution 

(Bertimas and Demir, 2002) is denoted by ADP on Table 8. The ADP has an average 

computation time of 87.06 seconds on a Dell Precision 410 machine. Haul and Voss 

(1997) who used GAs for their solution approach, report their algorithm takes a long time 

to solve instances, in some cases more than four hours. Since the 0-1 MKP applications 

are tested on different platforms and machines, the direct comparison of computation 

time is not deemed particularly relevant.  

The Meta-RaPS application implemented in this research provides better 

performance than the other existing Meta-RaPS application in the literature by Moraga 

(2005) in terms of both computation time and solution performance for the overall 
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percentage gap from the LP optimal values across all test problems. However a direct 

comparison of computation may not be appropriate because computers with different 

configurations are used for testing. In Table 5, for five test problem sets (5-100, 5-250, 5-

500, 10-500 and 30-500) the Meta-RaPS application by Moraga (2005) gives better 

solution quality than findings of the Meta-RaPS used in this research. When Meta-RaPS 

is run for as many iterations as Moraga’s application (for 5, 100, 500 item problems 

10000, 5000 and 1000 iterations respectively), Meta-RaPS outperformed Moraga’s 

results in all cases except the 5-100 problem set which yielded the same percent deviation 

from optimal. When compared with the other techniques, Meta-RaPS provide better 

solution performance than the others except for GA (Chu and Beasley, 1998) and ADP 

(Bertsimas and Demir, 2002). It should be noted that Meta-RaPS is a general solution 

approach that is applied to various combinatorial optimization problems, and its 

performance is dependent on the construction and the improvement stage algorithms used 

(Moraga, 2005). 

The reason Meta-RaPS did not perform as well as the other two existing methods 

can be attributed to either the underlying construction heuristic, or the local search which 

may not be effective enough to carry the promising constructed solution to optima. It 

should also be noted meta-heuristics work in different ways and a meta-heuristic’s 

solution and time performance are dependent on many factors such as type of problem, 

type of test problem and the specific features of the application (i.e., for Meta-RaPS the 

construction heuristic used and for GA the type of genetic operations used). 
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3.2 Application to Early/Tardy Single Machine Scheduling Problem with Common Due 

Date and Sequence-Dependent Setup Times (ETP) 

 

 The Early/Tardy Problem with Common Due Date and Sequence-Dependent 

Setup Times (ETP) variation of Single Machine Scheduling problem is selected as the 

second combinatorial optimization for the experimentation of different parameter setting 

techniques discussed later in Chapters 5 and 6. The single machine scheduling problem is 

studied with many different variations in the literature. In this version of the problem, the 

objective is to minimize the total amount of earliness and tardiness. 

 

3.2.1 Description of ETP 

 

The objective of the ETP is to complete a set of n jobs {j1,j2...jn} on a single 

machine as close as their due dates as possible (Rabadi et al., 2004). All jobs are 

available at time zero and each job has a processing time pj,and has a sequence-dependent 

setup time sij, which depends on the predecessor job jj. All jobs have a common due date 

d. The machine is able to work on one job at a time without preemption. After a job j is 

completed at completion time Cj, it will have an earliness (Ej=max(0,d-Cj)) and tardiness 

(Tj=max(0,Cj-d)). The objective function of ETP is to minimize the sum of the earliness 

and tardiness for all jobs (Rabadi, 1999): 

 In the objective function, earliness can be thought of as a holding or deterioration 

cost and the tardiness can be thought of as a penalty or loss of goodwill for missing the 

deadline.  
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 Exact methods, like mixed integer programming, branch and bound, can solve the 

ETP optimally; however, the computation time becomes impractical as problem size 

increases. The reason for the extensive computation time is the sequence dependent setup 

property of ETP makes the problem NP-Complete. As a result, the ETP problem is 

commonly solved by meta-heuristic methods rather than exact methods. The ETP 

problem has numerous variations studied in the literature. Each different variation of the 

problem focuses on a special case of the problem. The problem studied in this study, ETP 

with common due date and sequence-dependent setup times, has not been addressed by 

many researchers in literature. In many real life applications, the setup time for a job is 

dependent on the type of job previously completed. Although sequence dependent setup 

times have not been extensively studied, this variation of the ETP is important as it often 

is the case for just-in-time or low batch size production schemes.  

 According to Rabadi (1999), ETP is addressed by Coleman (1992) with 0/1 mixed 

integer programming and by Chen (1997) using polynomial dynamic programming. Both 

of these methods are exact methods. Some meta-heuristic applications to single machine 

early tardy problem are: Koksalan and Ahmet (2003) who use GA and Song et al. (2005) 

who use ant colony optimization. Although these problems are not exactly the same 

problem studied in this research from the meta-heuristic procedure point of view, the 

closest application to Meta-RaPS had been done by Feo et al. (1996). Feo et al. uses 

GRASP to solve the sequence dependent single machine scheduling problem but the 

problem is different than ETP used in this study because it does not involve earliness 

penalties; their objective function minimizes only tardiness. 

Rabadi (1999) proposes a heuristic called shortest adjusted processing time 

(SAPT). Instead of using processing time, which is constant for each job, and setup time, 
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which is dependent on sequence of the jobs, SAPT uses the advantage of constant 

processing time for each job and merges setup and processing time by adding each setup 

time, and the constant processing time. This new value is called adjusted processing time 

(APT). The idea behind SAPT comes from a property of Early/Tardy Problem without 

setup times (or Early/Tardy Problem with sequence independent constant setup times). It 

is known for the Early/Tardy Problem without setup times, that in the optimal schedule 

the early jobs should follow longest processing time (LPT) order and tardy jobs should 

follow shortest processing time (SPT) order (see Figure 3). This scheduling is called V-

shaped scheduling because the job processing times increase as a job is scheduled far 

from the due date regardless if it is an early job or tardy job and vice versa (Rabadi, 

1999). 

 

 
Figure 3: Optimal sequence for E/T Problem without setup times 

due date 

Before Due date: LPT  After Due date: SPT  

J1 …. Jm-1 Jm+1 JnJm+2 …. Jm

 

 

For the sequence dependent setup time case considered in this work, the V-shaped 

scheduling does not guarantee optimality because the dynamics of the sequence 

dependence may force scheduling a job that does not follow LPT rule before the due date 
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or SPT rule after the due date for the optimal job schedule. In other words, in some cases 

a job with longer APT time can be scheduled close to the middle (or due date) so that the 

setup times for other jobs may be minimized. The discussion above concludes that the 

dynamics of the sequence dependent setup times may not allow a perfect V-shaped 

sequence to have the optimal schedule configuration. However, even though a perfect V-

shaped sequence may not be the optimal configuration, a V-shaped like or distorted V-

shaped sequence will likely result in a better objective function value (Rabadi, 1999). 

Rabadi (1999) bases his heuristic on this idea and develops with SAPT which builds 

distorted V-shaped solutions.  

 SAPT builds three different schedules: early schedule first (E), tardy schedule 

first (T) and early and tardy schedules simultaneously (ET). In the case of E schedule, 

initially an early schedule, (jobs scheduled before the due date) is built by selecting jobs 

with the smallest APT combination for the due date and then adding remaining jobs by 

choosing the smallest remaining APT values. After the early schedule is built, the tardy 

schedule, (jobs schedules after the due date) is built by the same rule. In the T schedule 

initially the tardy schedule is built and the early schedule is constructed after that. T 

schedule uses just the opposite sequence of scheduling of the E schedule. Different from 

the E and T schedules, the ET schedule starts building solutions from the due date, and 

then both early and tardy jobs are added to the solution simultaneously depending on 

which APT in the list is smallest. In other words ET schedule simultaneously builds both 

early and tardy schedule.  

SAPT is carried out for the number of jobs of an instance (n) times, each time 

starting with a smaller AP in the AP matrix.  SAPT is executed n times for n entries in the 

AP matrix and each time comes up with 3 schedules. In the end, SAPT evaluates three 
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schedules (E,T and ET) by starting with n different initial AP value, which is equal to 3n 

schedules in total.  

 

3.2.2 Meta-RaPS ETP Application 

 

The SAPT algorihm is used as the priority rule for the Meta-RaPS ETP 

application. In order to have a variation of different answers within a type of schedule, 

SAPT starts with a different job pair for the first assignment, and then the rest of the 

algorithm is carried out in a greedy fashion. Instead of using 3 different types of schedule 

forming strategies (E, T and ET schedules), only ET scheduling is randomized for Meta-

RaPS application. The reason why only the ET schedule is coded is because it is expected 

that the randomness introduced by Meta-RaPS can actually be able to construct the E and 

T schedule solutions as well as the ET schedule solutions.  

In Meta-RaPS ETP at any point in the solution construction, %priority of the time 

the greedy SAPT ET rule is used. In the remaining (100%-%priority) of the time the job 

to be assigned is randomly selected from the list of candidate jobs which are %restriction 

close to the job with the smallest AP time. Incorporating randomness in SAPT in this 

manner does not further necessitate running the heuristic n different times starting with a 

job combination that has different AP. Instead if Meta-RaPS is to be run for n times, the 

randomness will produce a variety of results.  

Rabadi (1999) uses generalized pairwise interchange (GPI) for the local search as 

part of the SAPT heuristic to enhance the solution quality further more. GPI considers all 

the possible 2-job swap combinations and checks if the objective function improves, if 

this is the case, jobs are swapped. This type of local search heuristic searches n(n-1)/2 
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different neighborhoods for a problem size of n jobs. Meta-RaPS ETP application also 

uses GPI after the SAPT heuristic. Using the same local search provides a basis for a fair 

comparison of SAPT and Meta-RaPS if both heuristics are run for same number of 

iterations.  

Meta-RaPS ETP application is coded in C++ and the application is tested on P4 

2.2GHz PC. The ETP test problems are generated by Rabadi in two sets; smaller (Rabadi, 

1999) and larger instances (Rabadi et al., forthcoming). The small ETP test problems 

have 10, 15, 20 and 25 number of jobs and they have three different settings of APT: low, 

medium and high setting. For each setting and number of job combination, 15 problems 

are generated by Rabadi (1999). For the smaller test set generation, the APT values (only 

set of values that is needed to be generated to create an ETP test problems) are 

independently drawn from uniform distribution as: unif(10, 10+R). R adjusts the three 

level of settings: low, medium and high. R is set as 50 for low, 100 for medium and 150 

for high settings. The larger ETP test problems have 40 and 50 number of jobs and two 

different settings, low/high. The larger set is generated in the same way as the smaller 

problems. Similar to the small problem set, for the larger problem sets for each job-

setting combination 15 test problems are generated. The low, medium and high settings 

refer to the range of random numbers from which the AP values are sampled.  

The optimal values for the small problems are known; however, for the larger 

problems the simulated annealing solution (Rabadi et al., forthcoming) is taken as the 

best known solution for the Meta-RaPS. A trial-and-error of priority% and %restriction 

parameters of Meta-RaPS had been done for each job size and for each APT value range 

of problems.  

 The Meta-RaPS ETP approach is shown in Figure 4. 
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The parameter tuning of Meta-RaPS is done by trial-and-error for each problem 

set of 15 problems. Table 9 shows the parameters used for Tables 10, 11 and 12. 

 

Table 9: Meta-RaPS Parameter Settings for ETP Problems 
Number of Jobs Setting No. of instances %p %r 

10 low 15 30 30 
10 medium 15 50 50 
10 high 15 60 60 
15 low 15 20 20 
15 medium 15 50 50 
15 high 15 20 20 
20 low 15 40 20 
20 medium 15 40 40 
20 high 15 50 50 
25 low 15 40 10 
25 medium 15 40 40 
25 high 15 40 40 
40 low 15 70 5 
40 high 15 70 7 
50 low 15 70 3 
50 high 15 70 4 

 
 
 

The Meta-RaPS ETP application is initially compared with its underlying priority 

rule, SAPT, in Table 10. This comparison shows how much Meta-RaPS can enhance the 

priority rule it uses. In this study Meta-RaPS is initially run to produce the same number 

of schedules as the greedy SAPT heuristic to establish fairness between comparisons. The 

number of iterations for the 10, 15, 20  and 25 job problems are 30, 45, 60 and 75, 

respectively.  
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Input Parameters ( I,%p,%r,%I) and  Load Test Problem 
Best Solution=0, Best Nonimproved Solution=0, J={J1,J2,…,Jn} 
While NofIterations ≤ I 

Escheduled={Ø}, Tscheduled={Ø},    APnonfeasible={Ø} 
DO 

p= Random(1,100) 
  IF p≤%p 
   Select pair of jobs with smallest APij
                                     Assign Ji as the last job in E schedule Escheduled
                                     Assign Jj as the first job in T schedule Tscheduled
                                     Update APnonfeasible as a job cannot follow Ji & 
                                                                        a job cannot precede Jj
                                                                        and any possible combination for 
                                                                        jobs that are assigned 
  ELSE 
   Select APkl randomly from              
                             

                                    Assign Ji as the last open position job in E schedule Escheduled
                                     Assign Jj as the first open position job in T schedule Tscheduled
                                     Update APnonfeasible as a job cannot follow Ji & 
                                                                        a job cannot precede Jj
                                                                        and any possible combination for 
                                                                        jobs that are assigned 
  END_IF 
 While all positions in Escheduled and Tscheduled are filled 
Update current solution value 
IF currentsolutionvalue< Best Nonimproved Solution 
  Best Nonimproved Solution= currentsolutionvalue 
END_IF 
IF currentsolutionvalue< Best Nonimproved Solution[1+(%I/100)] 

do GPI 
FOR i=1 to n 
             FOR j=i+1 to n 
                          Swap schedule of Ji and Jj if objective function improves 
             END FOR 
END FOR 

END_IF 
Update currentsolution with current schdule 
IF currentsolutionvalue<Best Solution 

Best Solution = currentsolutionvalue 
END_IF 
END_WHILE 
Report Best Solution 

Figure 4: ETP Pseudocode for Meta-RaPS 
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In general Meta-RaPS applications, only a percentage of solutions from the 

construction stage are improved. However since one of the main objectives here is to 

compare the SAPT heuristic with Meta-RaPS under the same conditions, all the solutions 

from the constructions are improved by the GPI local search.  

In Table 10 the Meta-RaPS results are compared with SAPT at same number of 

iterations. SAPT results are taken from Rabadi (1999). The values on the table are the 

minimum, average and maximum percentage deviation from the optimal solution for all 

three types of problems (low, medium, high settings for each 15 problems) and the 

standard deviation of the deviation from optimal. The results show that Meta-RaPS not 

only gives better average percentage deviation from optimal but also decreases the 

variation of solution around the average solution value which makes it more efficient and 

robust with respect to SAPT heuristic. 

 

Table 10:  Meta-RaPS & SAPT  % Deviation from Optimal 
  Meta-RaPS SAPT 

Size 
 

AP 
Range 

Min  
% 

Dev. 

Av.  
% 

Dev. 

Max  
% 

 Dev. 

St. Dev 
% 

Dev 

Min 
%  

Dev. 

Av.  
% 

Dev. 

Max  
%  

Dev. 

St. Dev 
% 

Dev 
10 low 0 0.9 5.39 1.7 0 2.55 11.66 3.6 
 med 0 0.6 2.82 1.0 0 2.8 12.38 3.9 
 high 0 1.54 7.98 2.4 0 2.8 17.52 5.1 

15 low 0 2.23 3.85 1.7 0 3.59 8.06 2.2 
 med 0 1.6 5.5 2.3 0 5.33 12.91 4.2 
 high 0 2.04 6.76 2.1 0 8.22 18.67 5.5 

20 low 0 1.78 4.41 1.5 0 3.13 5.3 1.4 
 med 0 3.76 8.36 2.4 0 3.93 12.74 3.4 
 high 0 2.43 6.88 1.7 0 5.95 13.7 3.9 

25 low 0 1.92 3.06 0.5 1.01 3.21 6.56 1.3 
 med 1.93 4.42 6.94 1.8 2.55 5.96 9.37 2.1 
 high 2.87 5.1 8.49 1.9 1.39 6.83 11.42 2.7 
Average 0.4 2.36 5.87 1.75 0.41 4.52 11.69 3.3 
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For each size and AP range combination, 15 test problems are experimented. The 

results in Table 10 are significant because it is rare for a meta-heuristic to have better 

quality solutions than the guided greedy heuristic rule when both meta-heuristic and the 

greedy heuristic are run for same number of iterations. When a greedy heuristic is 

randomized by a meta-heuristic like Meta-RaPS, the benefits of randomization come with 

further sampling of solutions. In a nutshell, although Meta-RaPS is expected to produce 

lower quality results than SAPT when same number of iterations are run, it is shown in 

Table 10 that Meta-RaPS is able to give better solution values. In SAPT heuristic, the 

solution variation, to form different schedules, is introduced either by building E or T 

schedule first or made by building n schedules starting with a different due date assigned 

job pair. SAPT searches only extreme case solutions as in the case of E or T schedules 

and also the variation of solutions is introduced by running the heuristic n times starting 

with a different starting job pair for n sized problem. Both of these strategies are not as 

effective as the randomization from Meta-RaPS and therefore Meta-RaPS outperforms 

SAPT. 

Rabadi et al. (forthcoming) ran simulated annealing (SA) starting from the final 

SAPT solution to decrease the SA computation time and called this method SAPT-SA. 

Table 11 compares SA, SAPT-SA and Meta-RAPS for the 15 and 25 job problems. To 

save computation %I is set as 20, meaning 20% of the solutions from the construction 

stage will be improved. Meta-RaPS in Table 11 is run for 3,000 iterations.  

Meta-RaPS is tested on 2.2 GHz Pentium IV PC and benchmarked methods used 

1.7 GHz Pentium IV PC for testing and all methods are coded in C++. In Table 11 Meta-

RaPS outperforms SA and SA-SAPT in terms of solution quality. Plain SA requires the 

most amount of time and is close to Meta-RaPS solution quality. Although SAPT-SA 
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speeds up the SA computation time, the solution quality is inferior to both Meta-RaPS 

and SA. 

 

Table 11: Meta-RaPS vs. SA and SAPT-SA for Small Problems  
 15job low 15job high 25job low 25job high 

 
Avg.  
Dev Time 

Avg.  
Dev Time

Avg.  
Dev Time 

Avg.  
Dev Time 

Meta-RaPS 0.04 0.33 0 0.33 0.61 3 1.07 2 
SAPT - SA  1.95 0 1.87 0 1.11 1 2.53 1 
SA 0.21 6.08 0.27 3.73 0.81 20.65 1.34 18.52 

 

 

Meta-RaPS is also compared to the simulated annealing (Rabadi et al., 

forthcoming) for larger problems. Since no optimal solutions are available for these sizes 

of problems, Table 12 compares the solution based on relative percentage difference 

between the objective functions relative to SA which is labeled as % GAP. In Table 12, 

positive values indicate that the SA solution is better, meaning Meta-RaPS has a larger 

sum of earliness and tardiness, and negative values indicate that the Meta-RaPS has better 

objective function value. Since the SA does not have a clear number of iterations 

definition, Meta-RaPS was set to be run at the similar computation time at a similar PC 

configuration for comparison purposes. For 40 size problems Meta-RaPS is run for 5,000 

iterations which yielded 22 seconds average per problem where SA took 24 seconds and 

for the 50 size problem Meta-RaPS is run for 3,000 iterations which took 19.5 seconds 

where SA took about 20.5 seconds. Each problem set is replicated for 30 times and the 

average value is reported on Table 12. As shown in Table 12, Meta-RaPS found better 

solution in 55 problems out of 60 problems. The Table 12 results are replicated 30 times 

and average of these 30 solutions is reported. When Meta-RaPS number of iterations is 
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increased (7000 iterations for 40 and 5000 iterations for 50 size problems) Meta-RaPS is 

able to outperform SA for all problems in large set. 

 

Table 12: Meta-RaPS vs. SA for Larger Problems 
Problem 
set 

Avg. % GAP 
Relative to SA 

Max % GAP 
Relative to SA 

Min % GAP 
Relative to SA 

No. of problems 
Meta-RaPS better 

40 low -0.68 0.07 -1.12 12 out of 15 
40 high -1.07 0.09 -2.54 13 out of 15 
50 low -0.62 -0.13 -1.34 15 out of 15 
50 high -1.45 -0.31 -2.98 15 out of 15 

 

 

The results from this experimentation conclude that Meta-RaPS is able to 

introduce randomness and enhance the solution quality of the greedy SAPT. The 

comparison made with SA and SAPT-SA techniques show that even though the Meta-

RaPS local search procedure is simple, it provides effective results for the Meta-RaPS 

construction stage solutions and it is able to find a good variation of promising solutions. 

The advantage of Meta-RaPS procedure is it is a simple and effective procedure with 

only two main parameters to be set. The simple nature of Meta-RaPS coupled with its 

ability to generate high quality solutions, makes Meta-RaPS a good meta-heuristic 

method for ETP.   
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CHAPTER 4: PARAMETER SETTING PROBLEM OF META-
HEURISTICS 

 The parameter setting of meta-heuristics is an important topic because almost all 

the meta-heuristics have a number of parameters that need to be set. This chapter 

provides a review of parameter setting efforts of other researchers and motivates the 

development of the parameter setting procedures discussed in Chapter 5. 

 

4.1 Effect of Parameter Settings and Parameter Setting Techniques 

 

Almost all known meta-heuristics available have a number of parameters that 

need to be set. As an example meta-heuristics that have been used to solve the Vehicle 

Routing Problem (VRP) contain anywhere from 4 parameters to 25 parameters depending 

on the type of meta-heuristic (Coy, 2000). The performance of general purpose meta-

heuristics performance like SA, GA, Tabu Search and also Meta-RaPS are dependent on 

the choice of these parameters.  

In his heuristic parameter setting literature review, Coy(2000) states that there are 

many different procedures to find effective parameter settings. Also the complexity of 

parameter selection procedures are various, from simple trial-and-error procedures to 

more sophisticated sensitivity analysis and the use of other meta-models. While some 

researchers (Van Breedam, 1995) have tried to set all the technical parameters using trial-

and–error experiments, there are other researchers who have developed systematic ways 

to tackle the parameter setting problem. The research efforts for the systematic parameter 

setting procedures are motivated by the investigation of the effects different parameter 

settings have on meta-heuristic applications.  
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Xu and Kelly (1996) tried to identify the relative contributions of five different 

components of their tabu search heuristic (network flow moves, swap moves, tabu short 

term memory, restart/recovery strategy and a simple tabu search procedure, TSTSP) for 

VRP by disabling each component one at a time and comparing the solutions of the five 

different strategies. They conclude that “… the Tabu Search memory and start/recovery 

strategy effectively help to locate extremely good solutions and TSTSP provides an 

effective enhancement over 3-opt…”  

Van Breedam (1996) tried to determine the significant effects of parameters for 

GA and SA for the VRP using a technique called Automatic Interaction Detection 

Technique (AID) originally developed by Morgan and Sonquist(1963). “.. AID is a tree-

based classification method that uses analysis of variance to summarize the relationship 

between predictor and response variables…”. (Morgan, and Sonquist, 1963) AID uses 

binary splits of parameter setting combinations and at each split an analysis of variance is 

performed to see the significance of a certain parameter. The result of this research yields 

the conclusion that certain types of meta-heuristic parameters have “consistent significant 

effect for all problems.” In other words some meta-heuristic (GA and SA) parameters can 

be set independent of the problem and some parameters are problem dependent. 

Schaffer et al. (1989) study the effect of the control parameters affecting online 

performance of GA for function optimization. The findings of this research show that, for 

function approximation applications of GA, there are function-independent settings that 

result in significantly better performance. Like Schaffer et al. (1989), Maier and Whiting 

(1998) study the variation of parameter settings and their effects on performance for the 

SA. The study’s findings are limited to two different problems, Harverly’s Pooling 

Problems and the Benzene Alkylation Problem. Their results shows that “… the best 
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values for most of the parameters are largely problem independent…”. The only 

parameter that makes difference in this study is λ, maximum length of a move attempt at 

the beginning of the algorithm. The study suggests the optimal value for λ is a function of 

the type of the problem. For the other parameter investigated they did not find a problem 

independent characteristic. Similar to Maier and Whiting (1998), Van Breedam (2002) 

study the parametric analysis of 10 different heuristics for VRP. The results of the Van 

Breedam’s study conclude that there are three groups of parameters: problem 

independent parameters, parameters dependent on the problem characteristics and 

parameters that have limited or no significant effect on the solution value.  

The research on the effects different parameter settings showed that although 

there are parameter settings for some heuristics that give good solution performance in 

general, most of the parameters required settings that are dependent on the size and the 

type of problem studied. The findings of the parameter setting effect studies show that 

there is a need for development of systematic ways to determine the appropriate 

parameters values. Moraga (2002) addresses the meta-heuristic parameter setting problem 

by associating it with the problem of simulation optimization. In both systems, a number 

of parameters are input to a stochastic system and a response is created. Simulation and 

Meta-RaPS can be thought of as a black box that takes in inputs (input parameters in 

Meta-RaPS and decision variables in simulation) and give out stochastic outputs due to 

variability caused by randomness. This similarity enables the techniques used for 

simulation optimization to be used in Meta-RaPS parameter selection. The parameter 

setting techniques considered by Moraga (2002) are: gradient based techniques 

(stochastic approximation and sample path methods), meta-models (response surface 

methodology and neural networks), statistical techniques (ranking and selection 
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techniques and multiple comparisons) and use of other meta-heuristic techniques. One 

meta-heuristic may set parameters of another meta-heuristic. For example; GA may set 

the parameters of another GA as done by Grefenstette (1986). Moraga’s conclusion based 

on a comparison of different parameter setting methods is a GA search is less vulnerable 

to the selection of the initial parameter setting because GA starts with a reasonable 

sample size. Moraga found that RSM is extremely dependent on the initial design base 

chosen. 

Similar to Moraga’s (2002) research, other literature also suggests various 

statistical methods such as response surface methodology and GA as common techniques 

for optimization of the heuristic/meta-heuristic performances. Reeves and Steele (1994) 

use GA to optimize the performance of neural networks (NN) for sensor performance 

improvement application. The GA optimization of single layer NN structure yielded 

improvement of 10% over the previous findings for the same NN architectures. Gomes et 

al. (2001) and Delmaire et al. (1999) use reactive search (RS) to find the parameter 

settings for GRASP. Reactive methods set the parameters and use the set parameter 

values to come up with the final result simultaneously. Reactive methods eliminate the 

parameter setting phase for meta-heuristics. Batiti (1996) study the RS procedure for TS 

and also provide a bibliography on RS-based TS procedures. A reactive search Meta-

RaPS is presented in Chapter 5. 

Li and Kwan (2002) use simulated evolution (SE) for the Set Covering Problem. 

SE is an evolutionary algorithm like GA but they have very different mechanisms. 

Similar to GA, SE has a number of parameters that influence the overall performance 

greatly. Li and Kwan use Taguchi’s orthogonal experimental design (OED) to tune seven 

parameters. Full experimentation at different value levels would have required 31,250 (21 
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x 56) possible evaluations, but with an OED design 50 experimental trials are used to find 

close to optimal settings. After the trials are made, analysis of variance (ANOVA) is used 

to analyze the results to determine how much variation each factor has contributed.  

Grefenstette (1986) uses GA to optimize the performance of another GA that is 

used for a set of numerical optimization problems. Rosen and Harmonosky (2003) set the 

parameters of a simulation model by using a heuristic that uses techniques from response 

surface methodology and the SA. Coy (2000) addresses the Vehicle Routing Problem 

(VRP) and enhances the heuristic’s performance by experimental design. The technique 

used for VRP is gradient descent, which is an iterative and cumbersome process but gives 

good results for simple search spaces (Van Breedam, 2002). The technique relies on 

taking sample points with a defined parameter settings experimental design then plotting 

the regression equation and moving away from the design center in the direction of 

increasing performance. Golden (1998) also addresses the VRP problem using by 

lagrangian relaxation (LR) heuristic and enhances it with a GA that is unique in the way 

that two layers of GA’s are used for parameter setting. In the first stage a GA is used to 

determine good parameter settings for each of several problem instances. The second 

layer, which is another GA, tries to find robust parameter settings over the whole set of 

problem. The information from the first GA is systematically aggregated for finding good 

problem type independent parameter settings with another GA. The results of the study is 

compared to the experimental design type of approach and found comparable outcome.  

The meta-heuristic parameter setting procedures found in the literature, as 

reviewed in this section, are mostly GA or a variation of RSM. The majority of the 

parameter search techniques in literature try to set parameters for a specific system or 

type of problem. It is expected that good parameter settings differ from problem to 
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problem and even settings may vary for the same type or size of another instance of a 

problem. For that reason, the parameter selection model has to have a procedure to 

suggest robust parameter settings that gives good performance for different types of 

problems.  

 

Table 13: Summary of the meta-heuristic parameter setting methods & parameter effect 
studies in literature 

Parameter Setting Method Used 
Statistical Methods 

 

Anova Gradient 
Descent  
& RSM 

RS 
GA Based 
Methods 

Parameter 
Effect 

Studies 

GA Van 
Breedam 
(1996) 

  Grefenstette 
(1986) 

Schaffer 
(1989) 

SA Van 
Breedam 
(1996) 

   Mainer 
(1998) 

NN    Reeves & 
Steele (1994) 

 

SE Li & Kwan 
(2002) 

    

Meta-RaPS  Moraga 
(2002) 

 Moraga 
(2002) 

 

GRASP   Gomes 
(2001) 

Delmaire 
(1999) 

  

TS   Batiti 
(1996) 

 Xu & 
Kelly 
(1996) 

 
 
 
 
 
 
 
 
 

Parameter 
Tuned 
Meta-

Heuristics 

Problem 
Specific 

Heuristics 

 Coy 
(2000) 

 Golden 
(2001) 

Van 
Breedam 
(2002) 
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4.2 Problem Statement: Robust Parameter Settings in Meta-RaPS 

 

One of the goals of this dissertation is to find an efficient approach to the 

parameter setting problem of Meta-RaPS. Ideally the parameter selection method should 

be fast, efficient and should be capable of improving the performance of the heuristic 

method with respect to using a simpler parameter search.  

The amount of human effort, expertise (know-how) and experience required for 

the parameter setting procedure and the computational time used to set parameters is 

critical and better to be minimal in the parameter setting problem. If a complicated 

parameter setting procedure that requires extensive computation time and human effort is 

to be used for an application, the solution quality should outperform the solution quality 

that could be achieved by simpler trial-and-error parameter tests and/or random 

parameter settings. 

Ideally the parameter setting procedure suggested for Meta-RaPS in this 

dissertation should be applicable to other meta-heuristics. Another issue to be considered 

in parameter setting is a variety of different parameter setting methods may be required 

for both the degree of parameter sensitivity of different meta-heuristics’ solution 

performance and the degree of parameter sensitivity of a meta-heuristic for different 

applications may not be the same. In other words for some applications, the parameters 

may be set by some trial error samples but for others, the parameter search may need 

more complicated methods for complex interactions between different parameters may 

exist.  

An advantage of Meta-RaPS over many other meta-heuristics is that it relies on 

only four parameters. For further simplification of the parameter setting these four 
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parameters can be effectively reduced down to only two parameters that need to be set. It 

is clear that high values of the parameter I (number of iterations) will enable Meta-RaPS 

to use more sampling and make it have a higher probability of finding better solutions at 

the expense of computation time. Similar to I parameter, high settings of the parameter 

%I (Improvement percentage) will only enhance the solution quality of Meta-RaPS again 

at the expense of computation time. The values of I and %I are strongly dependent on the 

problem type considered, problem size and the embedded heuristic rule (complexity of 

the priority rule and number of steps in the algorithm). The values of I and %I should be 

determined in terms of the time available for solution for specific application.  The 

preceding discussion reduces the parameter set to %p (%priority) and %r (%restriction). 

%p and %r affect the construction stage of the Meta-RaPS by adjusting the randomness 

introduced into the priority rule. The parameter setting techniques developed in the next 

chapters will therefore be tested using the %p and %r parameters. 
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CHAPTER 5: PARAMETER SETTING PROCEDURES 
APPLICABLE TO Meta-RaPS 

 There are many parameter setting techniques available to meta-heuristics. A 

parameter setting procedure can be dynamic or static which is also called online or 

offline, and adaptive or non-adaptive. A dynamic parameter setting procedure merges the 

parameter setting and solution building phases for a meta-heuristic. Dynamic parameter 

setting methods sample different parameter setting levels and then they converge on the 

“best found” parameter setting level and ultimately report the best solution found by the 

meta-heuristic. Meta-heuristics using static, offline, or non-adaptive methods initially 

require a parameter setting phase in which the best parameter level is found and then the 

meta-heuristic is run again for the solution building phase using the best found parameter 

setting level. The flexibility and ease of use of dynamic parameter settings provides an 

advantage over the non-dynamic parameter setting techniques. Although it is application 

dependent, dynamic parameter setting techniques in literature provide more effective 

performance over non-dynamic methods (Agogino et al., 2000). 

This section provides a benchmark of parameter setting techniques set for the 

proposed method presented in Chapter 6. Both dynamic and static techniques are used in 

this chapter; starting from simple fast procedures to more complicated procedures. In 

total, five techniques are discussed and at the end of this chapter the methods are 

compared against each other. A comprehensive comparison of parameter setting 

techniques such as this was not found in the literature. The development of a new 

parameter setting technique in Chapter 6 builds on the findings of this chapter. 
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5.1 Simple Parameter Setting Technique 

 

From the discussion in Section 4.2, it is concluded that Meta-RaPS has mainly 

two parameters that need to be set. Parameter setting procedures do not guarantee that the 

optimal parameter settings will be found. In fact an optimal setting may not exist, but 

rather a range of good settings may be found. Therefore, a simple and straightforward 

parameter setting method will be adequate for some applications that are not extremely 

parameter sensitive.  

The procedure of this method is as follows: for a specific problem, a number of 

%priority and %restriction combinations are searched by making replicated trials 

covering the parameter domain at a specified number of iterations. The number of 

iterations should be large enough so that the randomness effect is reduced and the true 

effect of a parameter setting can be identified. Then, the %priority and %restriction 

combination that gives the best result is selected as the best setting found. 

Table 14 shows HP2 0-1 MKP test problem parameter settings. Each parameter 

combination is run for 1,000 iterations replicated 20 times. In Table 14 the average of 20 

replications, in which the best solution value out of the 1,000 trials is selected, is shown. 

As seen in Table 14, the best combination that maximizes the objective function is 10% 

priority and 20% restriction combination. However it is possible that there may be more 

than one parameter combinations or a wide region of parameter domain that maximize 

the 0-1 MKP problem.  

If robust parameters for a set of problems are needed then the parameter setting 

procedure needs to be able to choose the best parameter combination that give good 

performance in general rather than optimizing the performance of one specific problem. 
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To achieve this goal a mechanism to aggregate the solution quality of individual is 

necessary.  

 

Table 14: HP2 Test Problem Results (Best value for 1000 trials each) 
          % Restriction         
    10 20 30 40 50 60 70 80 90 
  10 3153.4 3163.4 3155.2 3154.4 3159.4 3155.2 3154.2 3122 3113 
  20 3151 3159.4 3157.8 3160.6 3148 3153 3148.2 3130 3137.2 
%Priority 30 3152.4 3157.4 3155.2 3157.6 3156 3157.6 3141.8 3140.4 3136.4 
  40 3150.8 3153.2 3154 3153.6 3153.2 3150.8 3156.2 3142.2 3142.4 
  50 3148.8 3152.4 3152.6 3153.2 3154.2 3148.4 3147.2 3155.4 3157.4 
  60 3149.2 3151.8 3150.2 3150 3150.2 3151.6 3150.4 3153 3152.8 
  70 3148.8 3152.8 3150 3150.8 3150.8 3151.6 3150.6 3153.2 3150 
  80 3148 3148 3150.2 3149.8 3150.4 3148.8 3151.4 3150 3152.4 
  90 3148 3148 3149 3149 3148 3150 3149 3149 3149.4 

 

 

Moraga (2002) uses the following procedure to tune parameters for a set of 

problems: 

1. Select a representative set of problems, preferably problem with known solution 

values, or lower/upper bounds known, from all of the problems that Meta-RaPS is 

going to be used on. It is important that the test sample chosen should have 

different sizes. 

2. Select parameter domain and increment over which the parameters are to be 

varied. %p and %r range over 0 to 100, this range may be divided into different 

increment sizes of, 10, 20, 30 or any user specified increments. 

3. For each problem in the sample problems, run Meta-RaPS over the entire 

parameter domain selected by increasing or decreasing the increments.  
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4. Find the best parameter setting by looking at an aggregate performance measure. 

The aggregate performance measure, for a specific setting, is best calculated as 

the solution deviation from optimal averaged over all test problems tested. 

 

5.2 Analytic Parameter Setting Techniques 

 

 Apart from simpler procedures, some techniques approach the parameter setting 

problem in a more systematic way. These procedures are explained and compared in this 

section. 

 

5.2.1 Response Surface Methodology  

 

5.2.1.1 Description of Response Surface Methodology 

 

Response surface methodology (RSM), or experimental design (ED) procedures, 

are the most frequently used parameter setting techniques because of their simplicity. 

RSM tries to find ways to collect as few data points as possible and get most information 

out of the data points using a statistical model. In RSM parameter setting application 

literature, Coy (2000) used gradient descent technique to find effective parameters for the 

Vehicle Routing Problem. His procedure which is applicable for any given type of 

combinatorial problem is as follows: 

A subset of problems from the entire problem set is selected and high-quality 

parameter settings for each type of problem are found. The parameters found for different 

type or size of example problems are combined to yield the parameters that work well on 
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any type and/or example of problems being selected. For the parameter search with RSM, 

the starting level of each parameter, the range over which the parameter is varied and the 

increment used are needed. This is usually accomplished using a small pilot study which 

is done by taking a small number of problems and running some trial solutions to 

intuitively get a feel for the parameter domain.  

Depending on the number of parameters two designs are considered: two-level 

full factorial designs, if the number of parameters is small, or partial  two-level factorial 

design such as Taguchi design might be used to provide efficiency when there are more 

than a few parameters. For both the full factorial and partial factorial designs, it is 

recommended to test both the extreme minimum and maximum parameter settings (often 

coded as-1 and +1) as well as a mid-point setting (coded as 0) to test for curvature. After 

the experiment is conducted, linear regression is applied to the response surface and the 

path of steepest descent is calculated. Next in the direction of the steepest descent data 

points are taken by making small steps, along the path. The procedure is continued until 

the limit of the experimental region is reached or the best solution found has not changed 

for a specified number of steps. The linear regression may not always give optimal 

parameters, and this method does not provide exact optimization but a good 

approximation. To make the method more accurate at the expense of computation time, 

instead a quadratic model can be fit.  

Because meta-heuristics give stochastic outputs, when evaluating design points it 

is important to take more than one trial run for each point. To find general good 

parameter settings independent of the problem, Coy (2000) recommends averaging the 

best parameters values found for different problems or different subsets of problems. This 

procedure could lead to some poor performance possibilities, because the problems being 
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studied may be too broad for one set of parameters and the class of problems may be 

divided into two or more subclasses. This division should be done in terms of the 

significant differences among the problems such as matrix density ratio, size of instance, 

computed generated of real world data problems, etc. 

To summarize the main steps of this approach, Coy’s (2000) procedure is as 

follows: 

1. Select a subset of problems to analyze from the entire set of problems  

2. Select the starting level of each parameter, the range over which each parameter is 

to be varied and the amount of increment to each parameter. 

3. Find good parameter settings for each subsets, using design of experiments (DOE) 

and RSM optimization by gradient descent. 

4. Average the parameter values found in Step 3 to find robust parameters for the 

entire class of problems. 

The shortcoming of this approach is that even if optimal parameters have been set 

for each subset of problems, averaging those parameters will give equal importance to 

different types of problems. Golden(1998) proposed weighing the different examples in 

terms of their size by taking the natural logarithm of the size of examples and then 

normalizing this value for all the subsets to find the weights for each subset.  

 

5.2.1.2 RSM Application to Meta-Raps 

 
For the RSM the design center is chosen to be 40% priority and 40% restriction. 

The model for the HP2 0-1 MKP test problem is shown in Table 15. At α level of 0.05, 

apart from Priority*Restriction (the interaction term) all other terms are significant. The 
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model has and R2 value of 90.3%  and R2 adjusted value of 83.3%, indicating a good fit. 

Table 16 shows the ANOVA table for the model. Figure 5 shows the response surface of 

the model, in this plot one can see that the parameter combinations for which the 0-1 

MKP test problem is maximized. The response surface in Figure 5, is maximized at lower 

levels of %priority and %restriction. 

 

Table 15: Estimated Regression Coefficients and Significance of Terms 
Term Coefficient SE Coef T P 
Constant 3169.47 17.4794 181.326 0.000 
Priority -0.58 0.5453 -1.073 0.319 
Restriction -0.53 0.5453 -0.980 0.360 
Priority2 0.00 0.0056 0.021 0.984 
Restriction2 -0.1 0.0056 -2.307 0.054 
Priority*Restriction 0.02 0.0074 3.089 0.018 

 
 
 
Table 16: ANOVA for the Model 
Source DF      Seq SS Adj SS Adj MS F P 
Regression 5 2252.12 2252.12 450.42 12.98 0.002 
Linear 2 1732.42 53.26 26.43 0.77 0.500 
Square 2 188.45 188.45 94.23 2.71 0.134 
Interaction 1 331.24 331.24 331.24 9.54 0.018 
Residual Error 7 242.99 242.99 34.71   
Lack-of-Fit 3 196.16 196.16 65.39 5.28 0.065 
Pure Error 4 46.83 46.83 11.71   
Total 12 2495.12     

 

 

After the model is fitted, the normality assumption is checked by looking at the 

plot of the residuals, and the model fit parameters. The next step is to find the stationary 

point using the eigenvalue analysis. The stationary point is the plane tangent to the 

surface, that is parallel to the XY plane (in 3D). Another definition of the stationary point 

is where the derivative of the function equals zero. The stationary point is important 
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because depending on the eigenvalues the response surface has the point of maximum 

response if all eigenvalues are negative, or the point of minimum if all eigenvalues are 

positive or the sadde point (point of inflection) if the eigenvalues are mixed in sign. The 

stationary point is found as 5.55% priority and 2.9% restriction and it is a saddle point 

because the eigenvalues are mixed in sign.  
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Figure 5: Surface Plot of Knapsack Problem Solution Value 
 

Based on the surface and the contour plots, the direction of gradient ascent is 

found and another model with a different base is fitted in the region where the 0-1 MKP 

problem is maximized.  

The secondary model has the base at the 10% priority and 10% restriction point. 

An identical procedure is carried out on this model to determine the validity of the model. 

The new model has R2 = 92.8%, R2 adjusted = 87.7% values and except for the square 

terms, all other terms are significant. After the eigenvalue analysis, the stationary point 
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(maxima) is found as 9.5% priority and 5.5% restriction values which is the final 

parameter setting the model proposes. 

5.2.2 Genetic Algorithms  

 

 In addition to being a meta-heuristic to solve combinatorial problems, genetic 

algorithms (GA), can also be used to set parameters for other meta-heuristics. 

(Grefenstette, 1986) 

 

5.2.2.1 Description of Genetic Algorithms 

 

Description of the GA procedure has been given in section 2.2.1. Genetic 

algorithms as a parameter search method has many advantages over statistical parameter 

setting techniques. The parameters of the meta-heuristics may heavily influence both 

computation time and the quality of the solution. One of the reasons that setting robust 

parameters is difficult is that there may be complex interactions among different 

parameters (Golden et al., 1998). Grefenstette (1986) points out that if the response 

surface is fairly simple, conventional nonlinear optimization or control theory techniques 

may be suitable, however, for many applications the response surface may be difficult to 

search, e.g., a high-dimensional, multimodal, discontinuous, or noisy function of 

parameters.  

One main advantage of GA over RSM type of methods is GA can be executed 

with much less information about the parameter space and the type of problem. Another 

difference between these methods is the RSM methods require the user to specify a 

design center which requires the user to have prior information about the solution quality. 
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Specification of the design center can prevent the exploration of the full parameter space. 

On the other hand although the RSM procedure is cumbersome, it is a more 

straightforward procedure which can be applied in the same way to any type of problem. 

GA parameter search has to be modified for different applications. The analyst has to 

apply GA in an efficient way for a satisfying performance (Golden et al., 1998). 

 

5.2.2.2 Genetic Algorithms application to Meta-RaPS 

 

GA parameter setting is applied to all large set 0-1 MKP problems. Real-coded 

GA is used for the parameters of Meta-RaPS, %priority and %restriction, which are 

continuous over the [0,100] interval. Blend crossover and random mutation is used as 

described by Deb (2001), for the reproduction, binary tournament selection with an elitist 

strategy is used in which the individuals in the top 10% of the population’s best 

performance is transferred to the next generation.  

For this application the following GA parameter values are used; population size 

30, crossover rate 0.9, mutation Rate: 0.5. These parameters are taken from literature 

(Deb, 2001) and they are verified/tuned by experimentation. For this application, the 

starting population is randomly selected. If a better population with higher fitness values 

is selected, it is expected that average fitness value will convergence at an earlier number 

generations.  

Figure 6 shows the convergence of GA algorithm. After about 30th generation the 

average solution value, for 30 individuals, of the HP2 0-1 MKP Test Problem becomes 

stable.  
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Figure 6: GA Convergence  
 

 

Table 17 shows the %priority and %restriction values and the corresponding 0-1 MKP 

solution values (fitness values) of all the 30 individuals in the 30th generation. The best 

solution value comes from the 26th individual that has a %priority of 13.3 and 

%restriction 6.6. 
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Table 17: The %Priority and the %Restriction values of the 30th Generation 
Individual Number %Priority  %Restriction Solution Value 

1 19.5 6.7 3150.6 
2 19.5 81.1 3097.6 
3 19.5 48.5 3118.8 
4 22.4 89.7 2991.6 
5 22.4 74.9 3069.2 
6 26.0 86.0 2952.8 
7 26.0 51.8 3116.0 
8 39.2 63.7 3085.2 
9 29.0 37.1 3137.6 

10 30.2 17.4 3156.0 
11 34.9 45.1 3092.6 
12 21.7 40.3 3114.0 
13 48.8 89.0 3120.2 
14 41.0 68.2 3117.0 
15 27.9 2.5 3150.6 
16 55.8 8.9 3057.2 
17 26.0 86.0 3025.0 
18 15.3 15.9 3037.0 
19 69.1 73.5 3078.2 
20 64.9 98.6 3100.0 
21 17.0 48.5 3093.4 
22 13.4 50.9 3104.0 
23 69.9 81.1 3026.6 
24 6.1 10.0 3126.6 
25 44.9 64.4 3077.8 
26 13.3 6.6 3159.8 
27 13.4 93.8 3031.8 
28 40.8 8.3 3113.0 
29 67.7 78.2 3028.4 
30 67.7 46.5 3049.8 

 

 

5.2.3 Reactive Search 

 

 Reactive parameter setting methods have a major advantage over other methods 

in that they eliminate a separate parameter setting phase and incorporate parameter 

setting and solution building.  
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5.2.3.1 Description of Reactive Search 

 

The reactive search (RS) method uses the feedback from the meta-heuristic to set 

the parameters. RS aims to eliminate the parameter setting problems of meta-heuristics 

and make them robust. RS incorporates a history-based adaptive procedure in meta-

heuristic search for online determination of the parameters. History-based learning 

gradually sets parameter values to better performing parameter combinations. After a 

given number of iterations or predefined time, the parameters having higher probabilities 

are determined to be better parameters in terms of solution performance. The online 

setting of parameters eliminates the need for a parameter setting procedure and sets the 

parameters as the meta-heuristic is run. The RS procedure has been applied to GRASP 

meta-heuristics (Gomes, 2001) and TS (Rayward-Smith, 1996; Delmaire, 1999).  

In the RS procedure, one parameter setting combination is randomly selected 

from a candidate set of parameter setting combinations at each iteration and the meta-

heuristic is run with the selected parameter combination. At the end of a predefined fixed 

number of iterations the probability of selecting a particular parameter setting is 

calculated based on the performance (the solution value) of that parameter setting with 

respect to the best parameter setting performance found so far. The RS procedure stops 

when there is no improvement (change in the values of probabilities) for a number of 

iterations.  

For a given parameter setting Delmaire (1999) measures the effectiveness in two 

dimensions: 

1. Quality of solution by determining the average deviation from the best solution 

known so far. 
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2. Variability of solution which is the ability to generate many different solutions. 

This is measured by the proportion of different solutions obtained at a setting by 

total number of iterations for which the setting is used. 

Both dimensions are aggregated as the utility of the parameter setting. 

 

Gomes (2001) reports that the RS procedure gives better results than the GRASP 

heuristic alone because it is able to determine appropriate values of parameter(s). 

Delmaire (1999) reports that for some test problems of Single Source Capacited Plant 

Location Problem, RS incorporated GRASP reduced the average deviation from the value 

of best solution obtained with GRASP by at least 50%. For a specific set of test problems, 

the RS applied GRASP average mean deviation never exceeds 0.5% while pure GRASP 

is always above 1% deviation. 

The RS procedure applied to Meta-RaPS is as follows:  

1. Candidate parameter selection: 9 levels of %p and 9 levels of %r 

parameters,both starting from 10 to 90 with 10 increments. 81 %p and %r 

combinations in total. 

C={c1,  …, c81}                          (6) 

2. Each parameter setting combination in set C is set to have equal probability of 

being selected 

 

3. Meta-RaPS is run for 200 iterations. At each iteration parameters are 

randomly selected from set C based on their probabilities (pi) and the best 
 67



solution value for all the parameter combinations that are run are stored in 

array 

Ā= {a1, …, an}                          (8) 

4. After every 200 iterations qi, values are updated according to Eq. 9. 

 

5. The probabilities are updated at the last step by Eq. 10. 

 

6. Procedure is terminated at 1000 iterations. It may also be terminated when 

there is no change in pi values for predefined number of iterations. 

 

5.2.3.2 Application to Meta-RaPS 

 

The reactive search is applied to 0-1 MKP. The problem used for the application 

is HP2. Table 18 shows the probabilities after 5000 trials for the HP2 test problem. 

Higher probability values for a particular parameter combination indicates better solution 

performance. The %priority and %restriction parameters are searched with the 

increments of 10 within 10% to 90% domain for both parameters. 

As the results of the parameter setting techniques suggests, there is more than one 

parameter combinations that give good results. In Table 18, the 10% priority and 10% 

restriction combination gives the best solution performance as it is the parameter setting 

with the largest probability. It should be noted that while using RS to generate the values 
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in Table 18 to determine the best parameter setting, Meta-RaPS is simultaneously 

arriving at the final solution value for the MKP problem HP2. 
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Table 18: Reactive Search Results 

%Priority %Restriction Probability 
Times 
used 

 
%Priority %Restriction Probability 

Times 
used 

10 10 0.01816 16  50 60 0.01162 12 
10 20 0.01736 12  50 70 0.00784 11 
10 30 0.01575 13  50 80 0.00762 11 
10 40 0.01308 14  50 90 0.00707 5 
10 50 0.01029 19  60 10 0.01412 16 
10 60 0.01146 9  60 20 0.01669 19 
10 70 0.00731 11  60 30 0.01581 13 
10 80 0.00438 5  60 40 0.01599 15 
10 90 0.00057 6  60 50 0.01307 9 
20 10 0.01620 18  60 60 0.01152 13 
20 20 0.01728 16  60 70 0.01132 12 
20 30 0.01469 14  60 80 0.01015 12 
20 40 0.01225 9  60 90 0.00886 17 
20 50 0.01054 9  70 10 0.01324 6 
20 60 0.01096 13  70 20 0.01513 12 
20 70 0.00593 12  70 30 0.01559 17 
20 80 0.00365 5  70 40 0.01510 17 
20 90 0.00213 5  70 50 0.01564 13 
30 10 0.01555 15  70 60 0.01423 13 
30 20 0.01589 12  70 70 0.01303 15 
30 30 0.01479 14  70 80 0.01186 13 
30 40 0.01291 12  70 90 0.01208 13 
30 50 0.01047 12  80 10 0.01298 6 
30 60 0.01004 13  80 20 0.01497 15 
30 70 0.00620 4  80 30 0.01574 19 
30 80 0.00458 6  80 40 0.01598 15 
30 90 0.00413 8  80 50 0.01655 11 
40 10 0.01618 10  80 60 0.01457 13 
40 20 0.01744 9  80 70 0.01302 16 
40 30 0.01542 14  80 80 0.01553 12 
40 40 0.01166 19  80 90 0.01493 12 
40 50 0.01266 15  90 10 0.01231 8 
40 60 0.01012 10  90 20 0.01314 15 
40 70 0.00748 10  90 30 0.01399 7 
40 80 0.00547 17  90 40 0.01403 12 
40 90 0.00502 13  90 50 0.01606 12 
50 10 0.01501 16  90 60 0.01481 15 
50 20 0.01613 13  90 70 0.01488 18 
50 30 0.01538 16  90 80 0.01369 13 
50 40 0.01417 13  90 90 0.01477 10 
50 50 0.01175 12      
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5.2.4 Ranking and Selection Techniques 

 

 The ranking and selection (R&S) method is a very common statistical parameter 

selection method for different settings. This methods is based on systematically 

eliminating inferior parameter settings. 

 

5.2.4.1 Description of Ranking and Selection Technique 

 

Moraga (2002) proposed solving the parameter setting problem of Meta-RaPS by 

ranking and selection procedures for simulation. Ranking and Selection methods are 

techniques in simulation to find the best of k treatments or the subset of size m containing 

the best of k treatments or m best of k treatments (Moraga, 2002).  

Since the goal of the parameter setting problem is to find the best possible 

parameter settings the R&S technique of selecting the best of k treatments can be applied. 

In this case, the goal is to select the setting with the maximum response, because 0-1 

MKP is a maximization problem, but the procedure can also be applied to set the 

minimum response without any modifications. Due to randomness preserved in the Meta-

RaPS procedure, R&S technique requires a large number of replications to overcome the 

problem of finding an inferior parameter setting.  

To make sure that one setting is better than another, the R&S technique uses two 

parameters which are to be determined by the analyst. If A is the correct parameter 

combination and B is the inferior parameter combination which yields close solutions to 

A, then P(CS) ≥ P*, the probability of making the correct selection(P(CS)) is more than 

P*. P* the parameter determined by analyst should be greater than 1/k where k is the 
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number of systems compred.. Also A-B ≥ d*, the indifference amount d*>0 should be 

specified by the analyst which is the minimal difference of A and B so that A will be 

regarded as a better solution than B (Law and Kelton, 2000).  

The procedure for selecting best of k parameter combinations is as follows: 

1. In the first stage sampling, make n0≥2 replications for each k settings and compute 

the mean and standard deviation.  

2. In the second stage, the total required sample size for setting i, Ni is calculated 

using the formula: 

 

where  is the smallest integer that is greater than or equal to real number x, 

and h1 (k,P*,n0) is the Rinott’s constant obtained from tables (Mendenhall and 

Sincich, 1994).  

3. Run Ni-n0 more replications of treatment i and the average for this stage is 

computed. 

4. Compute the weights to needed to combine first and second stage results using the 

following formula: 

 

 

5. Compute the sample means as follows: 
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6. Select the smallest as the best of k treatments (Moraga, 2002) 

5.2.4.2 Application to Meta-RaPS 

 

As done for the other methods, the R&S procedure is applied to %priority and 

%restriction values between [10,90] with 10 increments except 95% percent last data 

point is used for both parameters which is used as an additional point to have a higher P* 

value. For each of ten %priority settings, the best of ten %restriction value will be 

selected. For example, for p=10, the best out of 10 settings will be found: (10,10), 

(10,20), (10,30),…, (10,90), (10,95). Then from the best 10 %priority settings, whose 

best %restriction values are already set, the best setting for the entire parameter range 

will be selected (Moraga, 2002). 

The parameters selected for the procedure are as follows P*=0.90, n0=20, k=10 

and constant h1=3.182. The R&S procedure demonstrated using 0-1 MKP test problem 

HP2 would proceed as follows. 

Stage 1: Selection of the best %restriction values for each of the %priority values.  In 

Table 19, which is the first screening, the best ten combinations (given a %priority value 

the %restriction with largest Xt value is selected), are selected for the second and final 

screening. The ten best value are the highest ten Xt values from the Table 19. 

Table 19 Shows the best %restriction setting for each %priority.  
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Table 19: Selection of best %restriction value for a given %priority (Stage 1) 
%Priority %Restriction X Std. Ni Ni-no Y(ni-no) Wi1 Wi2 Xt 

10 10 2977.72 99.88 1010 910 2956.93 0.100 0.9 2959 
10 20 2972.25 87.57 777 677 2968.01 0.136 0.863 2968.6 
10 30 2941.48 109.2 1208 1108 2932.95 0.087 0.913 2933.7 
10 40 2890.36 127.5 1647 1547 2875.95 0.064 0.935 2876.9 
10 50 2837.06 158.9 2558 2458 2846.98 0.040 0.96 2846.6 
10 60 2859.36 164.2 2730 2630 2838.42 0.039 0.96 2839.3 
10 70 2780.02 169.9 2923 2823 2767.3 0.036 0.963 2767.8 
10 80 2723.86 198.3 3980 3880 2700.62 0.026 0.974 2701.2 
10 90 2650.97 198.2 3979 3879 2658.28 0.026 0.973 2658.1 
10 95 2598.42 232 5452 5352 2648.14 0.019 0.981 2647.2 
20 10 2950.18 98.82 989 889 2950.27 0.105 0.895 2950.3 
20 20 2970.72 104.6 1108 1008 2966.51 0.093 0.906 2966.9 
20 30 2921.2 118.7 1426 1326 2930.41 0.074 0.926 2929.7 
20 40 2874.53 116.1 1366 1266 2873.55 0.078 0.922 2873.6 
20 50 2841.78 149.5 2264 2164 2838.86 0.045 0.955 2839 
20 60 2849.74 157.6 2516 2416 2819.46 0.04 0.958 2820.7 
20 70 2753.6 169.7 2918 2818 2757.2 0.036 0.963 2757.1 
20 80 2709.95 192.6 3757 3657 2707.51 0.02 0.973 2707.6 
20 90 2680.82 203.6 4198 4098 2680.84 0.025 0.974 2680.8 
20 95 2656.2 197.9 3966 3866 2678.04 0.026 0.973 2677.5 
30 10 2937.77 94.02 896 796 2945.29 0.121 0.878 2944.4 
30 20 2944.23 100.2 1016 916 2970.33 0.101 0.899 2967.7 
30 30 2923.13 119.3 1441 1341 2936.2 0.070 0.929 2935.3 
30 40 2887.18 129.8 1706 1606 2878.11 0.059 0.94 2878.7 
30 50 2840.44 157.6 2517 2417 2850.47 0.043 0.957 2850 
30 60 2832.25 165.7 2782 2682 2811.7 0.03 0.962 2812.5 
30 70 2758.72 170.7 2950 2850 2762.76 0.037 0.963 2762.6 
30 80 2727.67 186.4 3518 3418 2732.53 0.030 0.969 2732.4 
30 90 2719.11 204.8 4247 4147 2711.72 0.024 0.975 2711.9 
30 95 2706.84 208.9 4420 4320 2698.84 0.024 0.975 2699 
40 10 2949.84 103.7 1090 990 2934.45 0.097 0.902 2936 
40 20 2973.84 105.9 1137 1037 2964.04 0.094 0.906 2965 
40 30 2935.12 103.1 1076 976 2935.41 0.096 0.903 2935.4 
40 40 2863.31 135.5 1861 1761 2887.82 0.058 0.942 2886.4 
40 50 2882.41 137.3 1910 1810 2858.75 0.055 0.944 2860.1 
40 60 2833.73 174.5 3084 2984 2857.02 0.035 0.965 2856.2 
40 70 2783.24 157.3 2506 2406 2784.85 0.042 0.957 2784.8 
40 80 2744.68 186.9 3536 3436 2756 0.029 0.97 2755.7 
40 90 2736.04 198.6 3993 3893 2738.25 0.027 0.973 2738.2 
40 95 2727.2 210.1 4470 4370 2736.47 0.023 0.976 2736.3 
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Continued  
%Priority %Restriction X Std. Ni Ni-no Y(ni-no) Wi1 Wi2 Xt 

50 10 2927.35 105 1118 1018 2926.69 0.096 0.903 2926.8 
50 20 2948.72 100 1013 913 2965.16 0.104 0.895 2963.4 
50 30 2934.52 114.8 1336 1236 2942.86 0.080 0.919 2942.2 
50 40 2911.27 138.3 1936 1836 2903.74 0.054 0.945 2904.2 
50 50 2864.93 171.1 2965 2865 2870.37 0.036 0.964 2870.2 
50 60 2862.53 160.5 2608 2508 2842.56 0.041 0.959 2843.4 
50 70 2790.15 191.6 3716 3616 2807.31 0.02 0.972 2806.8 
50 80 2785.95 195.2 3857 3757 2791.15 0.028 0.972 2791 
50 90 2775.38 191.1 3698 3598 2778.4 0.028 0.971 2778.3 
50 95 2800.17 203.3 4184 4084 2769.25 0.025 0.975 2770 
60 10 2910.39 100 1013 913 2908.67 0.105 0.895 2908.9 
60 20 2959.57 108.9 1202 1102 2955.64 0.089 0.91 2956 
60 30 2942.68 118.8 1429 1329 2949.73 0.074 0.926 2949.2 
60 40 2946.07 116.4 1371 1271 2924.64 0.07 0.924 2926.3 
60 50 2890.17 153.2 2378 2278 2891.64 0.045 0.955 2891.6 
60 60 2860.61 168.3 2868 2768 2869.87 0.03 0.964 2869.5 
60 70 2856.62 160 2592 2492 2843.08 0.04 0.959 2843.6 
60 80 2834.24 175.4 3114 3014 2838.82 0.034 0.966 2838.7 
60 90 2809.59 193.4 3789 3689 2824.37 0.026 0.973 2824 
60 95 2800.63 188 3580 3480 2825.93 0.029 0.971 2825.2 
70 10 2893.45 96.13 936 836 2901.39 0.113 0.887 2900.5 
70 20 2929.58 112 1272 1172 2950.58 0.085 0.915 2948.8 
70 30 2938.49 101.3 1039 939 2948.73 0.097 0.903 2947.7 
70 40 2929.07 138.4 1939 1839 2934.52 0.053 0.947 2934.2 
70 50 2939.41 130 1712 1612 2919.64 0.063 0.936 2920.9 
70 60 2912.39 130.4 1722 1622 2900.33 0.062 0.937 2901.1 
70 70 2889.39 142.6 2059 1959 2884.79 0.050 0.949 2885 
70 80 2867.04 167 2823 2723 2880.02 0.037 0.963 2879.5 
70 90 2871.24 157.9 2524 2424 2871.75 0.043 0.957 2871.7 
70 95 2855.38 169.3 2904 2804 2865.24 0.037 0.963 2864.9 
80 10 2888.44 97.43 962 862 2875.16 0.113 0.887 2876.7 
80 20 2926.6 114.2 1320 1220 2931.08 0.077 0.923 2930.7 
80 30 2941.41 121.9 1506 1406 2940.9 0.07 0.928 2940.9 
80 40 2946 116 1364 1264 2938.01 0.078 0.922 2938.6 
80 50 2956.76 117.5 1397 1297 2940.72 0.072 0.927 2941.9 
80 60 2918.99 134.2 1823 1723 2926.46 0.057 0.943 2926 
80 70 2889.23 133.9 1817 1717 2923.73 0.060 0.94 2921.7 
80 80 2937.25 124 1558 1458 2920.49 0.06 0.934 2921.6 
80 90 2925.9 123.5 1545 1445 2913.32 0.06 0.934 2914.2 
80 95 2902.49 152.7 2363 2263 2910.36 0.045 0.954 2910 
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Continued  
%Priority %Restriction X Std. Ni Ni-no Y(ni-no) Wi1 Wi2 Xt 

90 10 2875.61 102 1053 953 2853.66 0.101 0.899 2855.9 
90 20 2891.51 104.8 1113 1013 2896.27 0.097 0.902 2895.8 
90 30 2907.73 119.3 1442 1342 2910.98 0.074 0.926 2910.7 
90 40 2908.55 120.4 1468 1368 2928.41 0.074 0.926 2926.9 
90 50 2947.41 131 1738 1638 2930.89 0.063 0.937 2931.9 
90 60 2923.6 117 1386 1286 2920.85 0.07 0.924 2921.1 
90 70 2924.93 126.7 1625 1525 2930.07 0.066 0.933 2929.7 
90 80 2942.17 120.7 1475 1375 2934.33 0.071 0.929 2934.9 
90 90 2922.7 125.8 1604 1504 2928.79 0.06 0.932 2928.4 
90 95 2926.2 123.5 1544 1444 2935.65 0.070 0.93 2935 
95 10 2846.42 70.95 510 410 2837.31 0.206 0.794 2839.2 
95 20 2873.76 101.1 1036 936 2869.75 0.100 0.899 2870.2 
95 30 2876.39 97.58 965 865 2876.85 0.113 0.887 2876.8 
95 40 2908.75 118 1410 1310 2893.58 0.076 0.923 2894.7 
95 50 2889.04 105.3 1124 1024 2895.64 0.094 0.905 2895 
95 60 2897.84 108.8 1200 1100 2904.6 0.088 0.911 2904 
95 70 2896.75 110.2 1230 1130 2906.77 0.088 0.912 2905.9 
95 80 2907.72 120.7 1476 1376 2908.24 0.073 0.926 2908.2 
95 90 2908.91 125.4 1592 1492 2907.61 0.066 0.934 2907.7 
95 95 2911.47 122.6 1521 1421 2906.01 0.068 0.931 2906.4 

 

 

Stage 2: The same procedure in Stage 1 is applied to all the selected %priority 

values with the best %restriction values. The experiment is run again for the parameters 

of the second stage. Results are shown at table Table 20. The best parameter combination 

has the the largest Xt value which is the 20% priority and 20% restriction.  

 

Table 20: Selection of the best parameter setting (Stage 2) 
%Priority %Restriction X Std. Ni Ni-no Y(ni-no) Wi1 Wi2 Xt 
          
10 20 2973.0 102 1057 957 2965.4 0.1014 0.898 2966.2 
20 20 2984.5 85 744 644 2968.4 0.1359 0.864 2970.7 
30 20 2963.1 105 1134 1034 2964.8 0.0922 0.907 2964.7 
40 20 2969.0 95 916 816 2966.9 0.1176 0.882 2967.2 
50 20 2960.9 106 1153 1053 2960.4 0.0925 0.907 2960.5 
60 20 2960.8 104 1117 1017 2952.0 0.0971 0.902 2952.9 
70 20 2944.1 116 1386 1286 2941.8 0.0782 0.921 2942 
80 50 2940.6 121 1487 1387 2936.3 0.0699 0.930 2936.6 
90 80 2931.4 121 1504 1404 2930.5 0.0701 0.929 2930.6 
95 80 2903.0 128 1678 1578 2903.8 0.0651 0.934 2903.8 

 

 76



5.2.5 Summary of Techniques for 0-1 MKP and ETP 

 

The four analytical parameter setting techniques discussed in this chapter are also 

applied to ETP. Table 21 shows the results of all the parameter setting techniques applied 

to one sample 0-1 MKP and ETP (5th problem of 25 Job high setting set) problems.  

 

Table 21: Final Parameter Setting Suggestions for 0-1 MKP and ETP  
Problem  RSM GA RS R&S 
0-1 MKP 9% Priority 

5% Restriction 
13% Priority 
6% Restriction 

10% Priority 
10% Restriction 

20% Priority 
20% Restriction 

ETP 62% Priority 
33% Restriction 

45% Priority 
34% Restriction 

50% Priority 
40% Restriction 

40% Priority 
40% Restriction 

 

 

 The different techniques usually result in consistent parameter settings but there 

may be occasions where alternative parameter settings could be found by different 

parameter setting techniques. The results in Table 21 show that the best parameter found 

by different techniques are within a small region of the parameter domain ( e.g., in Table 

21 the parameter settings of different techniques for the ETP problem are all close to 45% 

priority and 35% restriction). 

 The drawbacks of the reactive search (RS) and ranking and selection (R&S) 

procedures are that they are both dependent on the initial set of candidate parameters 

which are defined by the user. The principal concern with the response surface method 

(RSM) procedure is that it does not guarantee optimality. This leaves with genetic 

algorithms (GA) as the only technique that can globally optimize the parameters. Both 

R&S and RSM require extensive human effort each time the procedure is repeated. Once 

the code is completed both GA and RS can be repeated without any human effort.  
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 In summary, aside from issues of initial choice of parameters and being able to 

find global best parameters, GA appears to be the best in terms of solution quality, and 

the most robust setting technique. The major strength of RS is its ability to 

simultaneously set parameters while generating the final result. However, this can be 

achieved with GA keeping the best solution from all the individuals. Any GA procedure 

using elitism, which carries the fittest individual to next generation without any genetic 

operations, is able to keep the best found solution till the end of the procedure. 

 For its flexibility in application, ease of use, repeatability, global optimization 

performance, reactiveness, and freedom from user defined candidate parameter settings, 

the GA appears to be the best parameter setting technique of those considered. A more in 

depth comparison of different parameter setting techniques is continued in Chapter 6, 

where the techniques introduced in this chapter are compared to the technique developed 

in this research effort. 

 

5.3 Setting Robust Parameters For a Set of Problems 

 

Section 5.2 discussed methods to find the best setting or preferred settings for 

%priority and %restriction for one problem. However most of the time the Meta-RaPS 

application (or the application of another meta-heuristic) is used for a number of 

problems and due to time restrictions it is not always possible to set parameters for each 

problem and run each problem with its best setting.  

To overcome this problem, researchers have studied procedures that find 

parameters that yield good solutions for a set of problems. If the number of problems in 

the set is big, it is recommended that instead of using all the problems for parameter 
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setting, a small subset of problems should be selected. The sample subset problems are 

selected so that the sample is representative of the problem set in terms of the size and the 

structure of the problem. The structure of the problem depends on the problem’s 

specifications. For some problem types, the complexity of the problems may also be 

various. The matrices in the problems that represent distance, flow, capacity may be 

binary values or integers even though problems may have the same size. Also the density 

of the matrix (ratio of non-zero element of the matrix to the number of entries in the 

matrix) may differ in similar problem sizes and this may require a different set of 

parameter values.  

After a representative sample is selected, Coy (2000) proposes setting the best 

parameters for each of these problems and then averaging the parameter values for the 

final parameter settings. Golden et al. (1998) combines the parameter settings for each 

problem by linearly weighting them. Averaging parameter values give equal weight for 

each test problem. Golden et al. (1998) set the weights equal to the natural logarithm of 

the size of the test problem for example, number of nodes in the VRP problem. The GA 

that Golden et al. (1998) implemented searches through the best settings available using 

the function of tour length for VRP which combines different problems by using the 

weights. Moraga (2002) used the average of all the %deviation from the best known or 

optimal solution of the problems in the subset as the aggregate performance measure to 

find out which parameter settings average %deviation performs best.  

Although the parameter setting techniques discussed in this chapter are effective 

procedures, none of the techniques is initially designed specifically for the parameter 

setting context. Also some of these techniques (i.e. R&S for ranking of simulation 

models, both RSM and GA as a general optimization algorithm) are not specifically 

 79



tailored to include features to fit the parameter setting context. They are used for 

parameter setting purpose without any modification to their procedure. Chapter 6 initially 

discusses how parameter setting methods compare and select parameter settings, and then 

tries to design a new parameter setting technique that will outperform current parameter 

setting techniques found in the literature. 
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CHAPTER 6: PARAMETER SETTING WITH NON-PARAMETERIC 
BASED GENETIC ALGORITMS 

 A new parameter setting technique, non-parametric based genetic algorithms 

(NPGA), is introduced in this chapter as well as the motivation for its development. A 

comparison of NPGA with the other known techniques discussed in Chapter 5 is also 

presented. 

 

6.1 Analysis of the best solution behavior 

 

Some of the parameter setting methods (RSM and R&S) used in Chapter 5 

assume that the distribution of the best solution from a given number of iterations is 

normal. It is the nature of any combinatorial optimization problem that the distribution of 

the best solution values form a number of iterations of a randomized meta-heuristic, taken 

from a number of iterations will be a discrete distribution. The feasible region of a 

combinatorial optimization problem will have discontinuous points in the solution space. 

Additionally the best solution distribution will be bounded by the optimal solution value. 

The trials made with both Meta-RaPS 0-1 MKP and ETP applications show that 

the best solution distribution does not follow any particular distribution. Both the 

Kolmogorov-Smirnov and chi-square goodness of fit tests reject the fit of a normal 

distribution. The distribution is dependent on the problem used, type of application and 

type of algorithm used. In fact it is desired for a well designed meta-heuristic to give non-

symmetrical solution distribution. For a maximization problem it is better for the meta-

heuristic’s solution distribution to be skewed to the left near the optimal solution value. 

For the minimization problems a solution distribution skewed to the right is preferred.  
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Figures 7 and 8 show examples of the best solution distributions for the ETP and 

0-1 MKP problems. In Figure 7, the distribution for the 7th 25 job high setting problem’s 

best solution (for 100 iterations) is shown. Since ETP is a minimization, the right-skew is 

expected. While Figure 7 is the distribution for one specific problem, the same general 

shape distributions are present for all the ETP data sets. 
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Figure 7: Meta-RaPS ETP 25-7-high Problem Solution Distribution 
 
 
 

 Table 22 shows that only 15.4% of the ETP Problems solutions are normally 

distributed and even if the solution distribution is normal, 53% of the time normal 

distribution is not the best parametric distribution that represents the data. The 

experimentation showed that most of the best fits come from a beta distribution, followed 

by triangular and Erlang distributions. 
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Table 22: Summary of Normal Distribution Fit to ETP Solution Distribution  
Normal Distribution is: Number of Problems Percentage of Problems in 

all ETP Problems 
Rejected 208 86.6% 
Failed to Reject and not found as best fit 17 8.2% 
Failed to Reject and found as best fit  15 7.2% 
Total 240 100% 

 
 

Figure 8 shows the distribution of best solutions (from 100 iterations) for the first 

0-1 MKP problem of 5 constraint, 100 item test problem set.  As summarized in Table 

23, almost all the problems in 0-1 MKP set show a similar shaped distribution as Figure 8 

which is skewed to the left. Normal distribution rarely represents the best solution 

distribution from a large number of iterations for the OR-Library (Chu & Beasley 1999) 

problems. In most cases (93.7% of the problems), normality is rejected based on 

statistical tests (i.e. chi-square and Kolmogorov-Smirnov). 
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Figure 8: Meta-RaPS 0-1 MKP 5-100-1 Problem Solution Distribution  
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Table 23: Summary of Normal Distribution Fit to 0-1 MKP Solution Distribution  
Normal Distribution is: Number of Problems Percentage of Problems in 

all ETP Problems 
Rejected 253 93.7% 
Failed to Reject and not found as best fit 7 2.6% 
Failed to Reject and found as best fit  10 3.7% 
Total 270 100% 

 
 
 

Because the solution distributions are not normally distributed, as discussed 

above, parameter setting techniques that rely on normality assumption to fail or to give 

inconsistent results. Because the best solution distribution is not normal and dependent on 

the application and/or problem, the use of techniques involving parametric techniques 

may not be appropriate for parameter setting purposes. Therefore a robust parameter 

setting method should make a comparison between parameter setting performances with 

a distribution-free or non-parametric method. Although normality assuming techniques 

may work and be able to suggest good parameter settings for some cases, in general they 

are not the right techniques to represent, or model, the solution distribution of a parameter 

setting of a meta-heuristic. 

 

6.2 Non-Parametric Tests 

 

When the performance of different parameter values is compared, there can be 

two comparison cases: two different parameter’s solutions can be compared, or a group 

of parameter’s solution values can be compared.  

The parametric techniques for these kind of comparisons are t-test for comparing 

two parameter setting samples and a one-way ANOVA for comparing three or more 

parameter setting samples. Both parametric techniques assume that the populations come 

from normal frequency distributions. The non-parametric equivalents of these techniques 
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are Mann-Whitney (also called Wilcoxon rank sum test) for two samples and Kruskal-

Wallis Test for more than two samples. The following description of the Mann-Whitney 

and Kruskal-Wallis, non-parametric tests are taken from Hollander (1999). 

 The steps of the Mann-Whitney Test is: 

1. Rank two combined samples in ascending order. 

2. If there is a tie between two or more the observations then average rank is 

assigned.  

3. Sum of the ranks for first sample (the larger sample if sample sizes are different) 

is summed and this value is called T1. 

4. Calculate the test statistics 

 

5. Reject H0: equality of population medians if 

 

In Equation 15, m refers to the sizes of the 2 populations, N is the combined 

sample size which is n+m and Ri stands for the rank of observations. The z value can be 

used if both n and m are greater than or equal to 20. Otherwise a t value with N-1 degrees 

of freedom at specified alpha level should be used.  

 The steps of the Kruskal-Wallis Test are: 

1. Rank combined samples in ascending order. 

2. If there is a tie between two or more the observations then average rank is 

assigned.  
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3. The sum of ranks for all sample groups are calculated. (Ri)  

4. Calculate the test statistic 

5. 

 

6. Reject H0: mean ranks of k groups do not differ if 

 

 

 In Steps 4 and 5, ni stands for the ith sample size for k samples, N stands for the 

total number of observations which is the sum of all ni’s from 1 to k, Rij is the rank of 

individual observations and Ri is the sum of ranks of the observations within a group.  

 When comparing a number of different parameter values, the Kruskal-Wallis test 

may arrive at the conclusion that all the sampled populations are not identical. However 

Kruskal-Wallis does not answer the question of which populations are different than the 

others. In order to answer this question multiple comparisons can be performed. However 

there exists a problem in keeping the stated significance level (α), used in Kruskal-Wallis, 

while making C independent comparisons. Because the number of multiple comparisons 

made (C) effects the overall probability of making only correct decisions at 1-α, when the 

null hypothesis of no difference among populations is true, in order to adjust this problem 

Dunn’s (Snell, 1983) procedure is used.  

 The Dunn’s comparison formula uses the z-table and each pairwise comparison is 

performed according to following formula: 
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For samples i and j of like size; k is the number of samples (different parameter 

settings),  is the mean of the ranks of a sample and N is the total number of 

observations. In Equation 16 if the difference of mean of ranks are larger than the right-

hand-side of the inequality, then test is significant at α level. 

 It should be noted here that instead of Kruskal Wallis test, Mood's median test 

could also have been used. Mood’s median test is more robust than is the Kruskal-Wallis 

test against outliers, but is less powerful for data from many distributions. 

 

6.3 Non-Parametric Based Genetic Algorithm 

 

The Non-Parametric Based Genetic Algorithm (NPGA) uses similar genetic 

operation and coding as the GA used in section 5.2.2. The difference between the NPGA 

developed here and GA developed in section 5.2.2 is during the selection of parents for 

reproduction which is done by tournament selection. In NPGA, when two different 

individuals representing two parameter settings are compared to be parents in tournament 

selection, the winner is selected by looking at the distribution of fitness values, which is 

the solution value of the combinatorial optimization problem, instead of comparing one 

fitness value from each individual as done in the GA described in section 5.2.2. NPGA 

compares parameter settings with each other to determine if they are statistically better 

than one another by using the non-parametric methods described in section 6.2. The 

comparison Mann-Whitney test is used to compare two individuals (parameter settings) 

from 10 best solutions selected out of 100 iterations. After the tournament selection, the 
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NPGA continues to the regular GA’s genetic operations as described in section 5.2.2. 

NPGA also uses blend crossover and random mutation for these two procedures since 

they are common and effective procedures for the real-coded (chromosomes represented 

with real values as opposed to binary coding procedure which uses binary strings)) GAs. 

Although the GA does not assume normality within its procedure, during parent 

selection, it compares two different parameter settings and does not use a non-parametric 

comparison. Therefore NPGA enhances and modifies the GA procedure to use non-

parametric comparisons. The flowchart of the NPGA procedure is given in Figure 9.  

 

 

 Random 30 Individuals: real valued  
%p and %r pairs 

 Meta-RaPS is run for fitness values

Elitism: Top 10% individuals to next 
generation 

Binary Tournament Selection of Parents: 
Parents’ Fitness Distribution is compared 

Genetic Operations: 
Blend Crossover & Random Mutation  

Figure 9: Flowchart of NPGA 
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For the experimentation in this chapter, the NPGA uses 30 individuals for the 

population with 90% crossover and 50% mutation rates. These parameters are taken from 

the literature on GA (Deb, 2002) and verified by experimentation. Based on 

experimentation, the performance of the NPGA parameter tuned Meta-RaPS is robust to 

the small changes in the NPGA parameters’ values used. In other words, NPGA yields 

consistent results even if NPGA parameters used are varied in a narrow range from the 

literature.   

 It should be noted that the importance of this new non-parametric GA method 

(NPGA) comes from both the performance of the parameter setting methods. As well as 

it is sound, the NPGA is the correct procedure to use since the distribution of the best 

solution values is rarely normally distributed. 

 NPGA can be used for any type of meta-heuristic method. It is not specific to 

Meta-RaPS. The method can be extended to more than two parameters and the parameter 

ranges do not have to be percentage values. The flexibility of GA enables different types 

of parameters to be set by NPGA for any meta-heuristic procedure that requires 

parameter tuning.   

 

6.4 NPGA Results 

 

 Similar to the parameter setting methods mentioned in Chapter 5, NPGA is tested 

for both 0-1 MKP and ETP. Tables 24 and 25 compare the results of different parameter 

techniques for 0-1 MKP and ETP problems respectively. The comparison between 

different methods is done using Kruskal-Wallis (K-W) and multiple comparison tests as 

described in Section 6.2. If K-W test is found significant, then multiple pairwise 
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comparisons are performed using Dunn’s method. For these comparisons a significance 

level of 0.05 is selected.  

The numbers shown in Tables 24 and 25 are the counts of problems for a 

parameter setting technique that gives statistically better distribution of solution values 

(solution performance) than others. For each problem set all 30 problems are tested. In 

some cases Kruskal-Wallis (K-W) test may not be significant, meaning that all the 

parameter setting methods had similar performance. The far right column in Table 24 

shows the number of problems from the set of 30 in which the K-W test is significant (i.e. 

when at least one parameter setting method’s solution performance is better). When the 

K-W test is significant, there are cases when the solution performance is optimized by 

more than one parameter setting techniques. In other words, a subset of parameter setting 

methods provide the best performance and their performance is indifferent when 

compared within each other. In Tables 24 and 25 compare all five parameter setting 

techniques discussed in Chapter 5 (including trail-and-error, labeled as TE) to NPGA. 

Table 24 shows for 54 problems of the 270 MKP problems compared, at least one 

parameter setting method yielded a significantly different solution value than other 

parameter setting techniques. For these 54 problems, the Meta-RaPS results using the 

NPGA parameter setting technique are statistically better or similar to the other parameter 

setting techniques in most (50) of these problems.  
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Table 24: Comparison of Parameter Setting Methods for 0-1 MKP 
Problem Set Technique is in the Best Techniques List 
m n TE RS RSM R&S GA NPGA 

K-W Test 
significant 

5 100 3 4 5 3 6 6 6 
5 250 2 5 6 2 7 8 10 
5 500 2 6 4 2 3 7 9 
10 100 2 5 5 2 5 7 7 
10 250 2 1 4 5 5 5 5 
10 500 0 2 2 3 3 4 4 
30 100 2 2 3 0 1 3 3 
30 250 0 0 1 0 1 2 2 
30 500 2 5 8 3 8 8 8 
Total Count 15 30 38 20 39 50 54 

 

 

Similar to the 0-1 MKP results shown in Table 24, Table 25 suggests that NPGA 

is consistently able to set the best parameters for ETP as well. For 41 problems of the 240 

ETP problems compared, at least one parameter setting method yielded a significantly 

different solution value than other parameter setting techniques. It is observed in Table 25 

the 10 and 15 Job ETP problems are not parameter sensitive and their parameters can be 

set with simple parameter setting methods such as running small experiments. However 

for the larger size problems, the problems get harder for Meta-RaPS to solve and the 

parameter tuning for Meta-RaPS gains more importance. 
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Table 25: Comparison of Parameter Setting Methods for ETP 
Problem Set Technique is in the Best Techniques List 
n Level TE RS RSM R&S GA NPGA 

K-W Test 
significant 

10 Low 0 0 0 0 0 0 0 
10 Medium 0 0 0 0 0 0 0 
10 High 0 1 0 1 1 1 1 
15 Low 0 0 0 0 0 0 0 
15 Medium 0 0 1 0 1 0 0 
15 High 2 1 2 2 1 2 2 
20 Low 2 3 3 3 3 3 3 
20 Medium 0 1 1 1 1 2 2 
20 High 2 1 2 2 2 3 3 
25 Low 2 2 4 1 3 4 5 
25 Medium 2 2 2 2 4 4 4 
25 High 1 1 2 2 1 2 3 
40 Low 3 2 4 2 3 4 5 
40 High 1 3 3 1 3 3 3 
50 Low 2 1 3 5 3 4 4 
50 High 3 4 5 4 5 6 6 
Total Count 20 22 32 26 31 38 41 
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CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH  

This dissertation offers a comprehensive comparative study of several established 

meta-heuristic parameter setting techniques as well as developing a new parameter 

setting method. Although parameter setting is required for most meta-heuristics, it has not 

been addressed extensively in literature. 

Although the proposed parameter setting technique, NPGA, is tested on Meta-

RaPS, it is applicable to any meta-heuristic that has parameters. The experimentation 

from several different combinatorial problems reveals that the distribution of a best 

solution of a meta-heuristic taken from a large number of iterations rarely follows a 

mound-shaped and/or normal distribution. The distribution of best solution, from a given 

number of iterations, for 87% of the 240 ETP test problems and 94% of the 270 0-1 MKP 

test problems are found not to be normally distributed. Therefore when using a parameter 

setting technique, that compare different parameter setting levels, a distribution-free 

method should be used, hence the development of NPGA.  

The proposed method, NPGA, integrates GA with non-parametric tests and is able 

to set efficient parameters. NPGA is compared to five existing parameter setting methods 

for both ETP and 0-1 MKP problems. In the vast majority of the problems, NPGA 

method consistently proposed the best parameters found by any of the parameter setting 

studied. For ETP, NPGA provided best 38 parameter settings out of the 41 problems in 

which there is a statistical performance difference between the parameter setting 

techniques and for the 0-1 MKP, NPGA provided best 50 parameter settings out of the 54 

problems in which there is a statistical performance difference between the parameter 

setting techniques. In some cases the problems are not parameter sensitive and all of the 
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parameter setting techniques considered are able to devise similar parameter settings 

Apart from these problems, for most of the problems the NPGA is able to suggest 

parameter settings whose solution performance is statistically better than the performance 

of parameter settings found by other parameter setting techniques. From all the parameter 

setting techniques investigated, NPGA set parameters give the best solution performance 

for Meta-RAPS. 

In addition to the parameter setting work done within this dissertation, advances 

were also made on solution algorithms for the two combinatorial optimization problems 

used to demonstrate the parameter setting techniques; 0-1 Multidimensional Knapsack (0-

1 MKP) and the Early/Tardy Single Machine Scheduling Problem with a Common Due 

Date and Sequence Dependent Setup Times(ETP). 

 The first combinatorial optimization problem studied in this dissertation is 0-1 

MKP which is one of the most studied problems in literature. The Meta-RaPS application 

of 0-1 MKP uses a new heuristic based on the idea of Cho (2004). The Meta-RaPS 0-1 

MKP application yields better solution performance than the other pre-existing Meta-

RaPS 0-1 MKP(Moraga, 2005). The application in this research also gives comparable 

solution performance against other meta-heuristics in the literature except GA (Chu and 

Beasley, 1998) and ADP (Bertsimas, 2002). The Meta-RaPS gives 0.75% average 

percent deviation, from best known solutions for the 270 0-1 MKP test problems, where 

other Meta-RaPS, GA, ADP and second GA application for 0-1 MKP by Haul and Voss 

(1997), yields 0.77%, 0.53%, 0.74% and 0.93% respectively. 

The second combinatorial optimization problem studied in this research effort is 

ETP which is a special case of single machine scheduling problem. Meta-RaPS utilizes 

SAPT (Rabadi, 1999) heuristic and enhances its solution quality by introducing 
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randomness. The ETP Meta-RaPS is compared against the simulated annealing (SA) 

meta-heuristic by Rabadi (2004) and is able to give better solution performance on 

comparable CPU time. Out of 60 larger size (40 and 50 job size problems) ETP problems 

compared, Meta-RaPS provided better solution performance than SA for 55 of the 

problems. For the smaller set, up to 25 job problem size, in all four different problem 

sets, each of which have 15 problems generated, the Meta-RaPS solution performance 

outperformed SA and SA-SAPT algorithms. 

While conducting this research several areas of future work were identified. 

During the parameter setting techniques comparison, it is identified that most problems 

are either not parameter sensitive or their parameters does not need any sophisticated 

parameters setting methods, meaning their parameters can be set by simple trial error 

methods. Future research can be directed to analysis of the parameter sensitivity of the 

problems by investigating their structure (e.g., correlation structure of a problem, size of 

problem). Apart from the problem challenged in this dissertation another gap found in 

literature of heuristics and / or meta-heuristics is how to combine the different parameter 

settings for different problems and come up with parameters that yield good performance 

independent of the problem. Another future research topic comes from a practical 

application point of view, given a limited amount of time, the discussion of how much of 

this time should be spend on parameter selection and how much time should be spared to 

run the Meta-RaPS with the setting found, should be made. Another potential area of 

parameter setting research is whether to use a single combination of parameter settings, 

or multiple combinations. Given a number of iterations, is the best strategy to solve a 

problem to use all the iterations with the best setting found from a parameter setting 

technique or to partition the number of iteration to n best parameter setting combinations. 
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In addition to parameter setting related research topics, additional modification to Meta-

RaPS itself should be considered. Because of its simplicity, Meta-RaPS is open to 

modifications in its procedure and is able to use some of the strategies that other meta-

heuristics use. Currently the parameters %restriction and %priority are kept constant 

during each iteration. Similar to simulated annealing (see section 2.2.2), Meta-RaPS 

could modify the degree of randomness within an iteration. The underlying idea used by 

SA is that during the initial stages of the iteration, the algorithm is allowed to explore the 

solution space and do a random search. However, when the iteration is close to the end 

stages of constructing a solution, the greedy rule may dominate and the algorithm may 

limit randomness. Meta-RaPS procedure can make use of this idea SA uses and guide the 

search to have a varied level of randomness during different parts of the search. 

Introduction of updating parameter settings during an iteration is valuable for Meta-RaPS 

because this makes Meta-RaPS a dynamic procedure. In other words dynamic parameter 

driven Meta-RaPS will not require any pre-parameter setting phase and thus Meta-RaPS 

procedure will be a holistic procedure that modifies, sets and guides its own parameters. 
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