1,151 research outputs found

    Particle detection and tracking in fluorescence time-lapse imaging: a contrario approach

    Full text link
    This paper proposes a probabilistic approach for the detection and the tracking of particles in fluorescent time-lapse imaging. In the presence of a very noised and poor-quality data, particles and trajectories can be characterized by an a contrario model, that estimates the probability of observing the structures of interest in random data. This approach, first introduced in the modeling of human visual perception and then successfully applied in many image processing tasks, leads to algorithms that neither require a previous learning stage, nor a tedious parameter tuning and are very robust to noise. Comparative evaluations against a well-established baseline show that the proposed approach outperforms the state of the art.Comment: Published in Journal of Machine Vision and Application

    Quantitative analysis of microscopy

    Get PDF
    Particle tracking is an essential tool for the study of dynamics of biological processes. The dynamics of these processes happens in three-dimensional (3D) space as the biological structures themselves are 3D. The focus of this thesis is on the development of single particle tracking methods for analysis of the dynamics of biological processes through the use of image processing techniques. Firstly, introduced is a novel particle tracking method that works with two-dimensional (2D) image data. This method uses the theory of Haar-like features for particle detection and trajectory linking is achieved using a combination of three Kalman filters within an interacting multiple models framework. The trajectory linking process utilises an extended state space variable which better describe the morphology and intensity profiles of the particles under investigation at their current position. This tracking method is validated using both 2D synthetically generated images as well as 2D experimentally collected images. It is shown that this method outperforms 14 other stateof-the-art methods. Next this method is used to analyse the dynamics of fluorescently labelled particles using a live-cell fluorescence microscopy technique, specifically a variant of the super-resolution (SR) method PALM, spt-PALM. From this application, conclusions about the organisation of the proteins under investigation at the cell membrane are drawn. Introduced next is a second particle tracking method which is highly efficient and capable of working with both 2D and 3D image data. This method uses a novel Haar-inspired feature for particle detection, drawing inspiration from the type of particles to be detected which are typically circular in 2D space and spherical in 3D image space. Trajectory linking in this method utilises a global nearest neighbour methodology incorporating both motion models to describe the motion of the particles under investigation and a further extended state space variable describing many more aspects of the particles to be linked. This method is validated using a variety of both 2D and 3D synthetic image data. The methods performance is compared with 14 other state-of-the-art methods showing it to be one of the best overall performing methods. Finally, analysis tools to study a SR image restoration method developed by our research group, referred to as Translation Microscopy (TRAM) are investigated [1]. TRAM can be implemented on any standardised microscope and deliver an improvement in resolution of up to 7-fold. However, the results from TRAM and other SR imaging methods require specialised tools to validate and analyse them. Tools have been developed to validate that TRAM performs correctly using a specially designed ground truth. Furthermore, through analysis of results on a biological sample corroborate other published results based on the size of biological structures, showing again that TRAM performs as expected.EPSC

    Deep Learning Methods for Detection and Tracking of Particles in Fluorescence Microscopy Images

    Get PDF
    Studying the dynamics of sub-cellular structures such as receptors, filaments, and vesicles is a prerequisite for investigating cellular processes at the molecular level. In addition, it is important to characterize the dynamic behavior of virus structures to gain a better understanding of infection mechanisms and to develop novel drugs. To investigate the dynamics of fluorescently labeled sub-cellular and viral structures, time-lapse fluorescence microscopy is the most often used imaging technique. Due to the limited spatial resolution of microscopes caused by diffraction, these very small structures appear as bright, blurred spots, denoted as particles, in microscopy images. To draw statistically meaningful biological conclusions, a large number of such particles need to be analyzed. However, since manual analysis of fluorescent particles is very time consuming, fully automated computer-based methods are indispensable. We introduce novel deep learning methods for detection and tracking of multiple particles in fluorescence microscopy images. We propose a particle detection method based on a convolutional neural network which performs image-to-image mapping by density map regression and uses the adaptive wing loss. For particle tracking, we present a recurrent neural network that exploits past and future information in both forward and backward direction. Assignment probabilities across multiple detections as well as the probabilities for missing detections are computed jointly. To resolve tracking ambiguities using future information, several track hypotheses are propagated to later time points. In addition, we developed a novel probabilistic deep learning method for particle tracking, which is based on a recurrent neural network mimicking classical Bayesian filtering. The method includes both aleatoric and epistemic uncertainty, and provides valuable information about the reliability of the computed trajectories. Short and long-term temporal dependencies of individual object dynamics are exploited for state prediction, and assigned detections are used to update the predicted states. Moreover, we developed a convolutional Long Short-Term Memory neural network for combined particle tracking and colocalization analysis in two-channel microscopy image sequences. The network determines colocalization probabilities, and colocalization information is exploited to improve tracking. Short and long-term temporal dependencies of object motion as well as image intensities are taken into account to compute assignment probabilities jointly across multiple detections. We also introduce a deep learning method for probabilistic particle detection and tracking. For particle detection, temporal information is integrated to regress a density map and determine sub-pixel particle positions. For tracking, a fully Bayesian neural network is presented that mimics classical Bayesian filtering and takes into account both aleatoric and epistemic uncertainty. Uncertainty information of individual particle detections is considered. Network training for the developed deep learning-based particle tracking methods relies only on synthetic data, avoiding the need of time-consuming manual annotation. We performed an extensive evaluation of our methods based on image data of the Particle Tracking Challenge as well as on fluorescence microscopy images displaying virus proteins of HCV and HIV, chromatin structures, and cell-surface receptors. It turned out that the methods outperform previous methods

    Toward a morphodynamic model of the cell: Signal processing for cell modeling

    Get PDF
    From a systems biology perspective, the cell is the principal element of information integration. Therefore, understanding the cell in its spatiotemporal context is the key to unraveling many of the still unknown mechanisms of life and disease. This article reviews image processing aspects relevant to the quantification of cell morphology and dynamics. We cover both acquisition (hardware) and analysis (software) related issues, in a multiscale fashion, from the detection of cellular components to the description of the entire cell in relation to its extracellular environment. We then describe ongoing efforts to integrate all this vast and diverse information along with data about the biomechanics of the cell to create a credible model of cell morphology and behavior.Carlos Ortiz-de-Solorzano and Arrate Muñoz-Barrutia were supported by the Spanish Ministry of Economy and Competitiveness grants with reference DPI2012-38090-C03-02 and TEC2013-48552-C02, respectively. Michal Kozubek was supported by the Czech Science Foundation (302/12/G157)

    Probing Cellular Uptake of Nanoparticles, One at a Time

    Get PDF
    Advanced fluorescence microscopy is the method of choice to study cellular uptake of nanoparticles with molecular specificity and nanoscale resolution; yet, direct visualization of nanoparticles entry into cells poses severe technical challenges. Here, we have combined super-resolution photoactivation localization microscopy (PALM) with single particle tracking (SPT) to visualize clathrin-mediated endocytosis (CME) of polystyrene nanoparticles at very high spatial and temporal resolution

    Deep learning for intracellular particle tracking and motion analysis

    Get PDF
    corecore