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Chapter 1  

Introduction 

1.1 Investigation of Nanoparticle Uptake by Live Cells 

In recent years, nanoparticles (NPs) have emerged as important players in modern 

medicine. NPs intended for clinical use have to overcome the cell membrane barrier in 

order to enter their destined target cell. Mechanistic studies of cellular uptake of NPs 

are essential to their design for practical drug/imaging applications1–4. The cellular 

uptake of NPs is affected by many parameters including physicochemical properties of 

NPs, intracellular concentrations, duration of contact, subcellular distributions and 

interactions with biological molecules1. Still, how these particles interact with cells, in 

particular, how they bind to the membrane and are taken up by the cells remains unclear. 

It is important to point out that NPs typically use different entry routes in parallel, 

making it very difficult to identify a specific one. Most of the work suffers from poor 

NP characterization, and the use of inhibitors to block specific pathways often 

complicates the studies further. Inhibitors can introduce toxicity, artefacts and they need 

adequate controls that are often overlooked5.  

Mapping these processes requires a technique with both high spatial and temporal 

resolution due to the sub-diffraction nature of the membrane morphology and the fast 

dynamic interactions between NPs and their membrane receptors6. Such early stage 

knowledge is prerequisite information for any further development of these 

nanomaterials for their desired biomedical applications. Highly sensitive fluorescence 

microscopy imaging techniques are currently emerging as powerful approaches for 

probing cellular events in real time. However, despite rapid progress in recent years, in 

situ visualization of the fast entry process of NPs with nanoscale resolution remains 

challenging. Recent advancements in super-resolution fluorescence microscopy have 

extended the spatial resolution down to tens of nanometers7. These techniques have 

opened a whole new world to image the structural details of biological systems8.  

1.2 Mechanisms of Endocytosis 

Endocytosis is a fundamental cellular process that is used by cells to internalize 

environmental materials9. It involves deformation of the plasma membrane and 

generates membrane vesicle carriers with the help of adapter proteins. The ingested 

vesicles are transported to endosomes, from which they can either be sent to lysosomes 

for digestion or be recycled to the plasma membrane. The metabolites generated in the 
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lysosomes can be transferred into the cytosol, where they can be used by the cell. 

Endocytosis regulates the interaction between the cell and its environment. Thereby, it 

not only controls the uptake of nutrients, but also plays a critical role in cell adhesion 

and migration, receptor signaling, cell polarity, etc10.  

However, the mechanism by which the cell regulates endocytosis is still unclear. 

There are many difficulties for revealing the mechanisms of endocytosis: (i) a generally 

accepted inhibitor or marker is still needed5,9, (ii) technical limitations such as imaging 

resolution of conventional light microscopy and cell perturbation by high resolution 

electron microscopy11, (iii) overlap between the different pathways. Molecules can be 

taken up by cells through multiple pathways. Some associated proteins can also be 

found in different pathways.  

Historically, endocytosis has been divided into two categories, depending on the 

cargo size: phagocytosis (also called cell eating) and pinocytosis (also known as cell 

drinking) as shown in Figure 1.1. Phagocytosis is employed by only a few types of 

cells (i.e., dendritic cells, neutrophils, and macrophages12). Pinocytosis is more 

universal and occurs in almost every eukaryotic cell. It can be further subdivided into a 

number of different pathways, based on the proteins and lipids involved: clathrin-

mediated endocytosis (CME), caveolae-mediated endocytosis, clathrin/caveolae-

independent endocytosis, and micropinocytosis. It is believed that a deeper 

understanding of the mechanistic details of endocytosis will facilitate the development 

of NPs with precise targeting and enhanced therapeutic outcomes.  

 

Figure 1.1 Pathways of endocytosis and its size limitations. Image adopted from Ref. 

[13]. 
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1.2.1 Phagocytosis 

Phagocytosis is employed by only a few specialized cells, especially immune cells such 

as mast cells, macrophages, monocytes and neutrophils. They are called professional 

phagocytic cells. Their major role is to engulf disabled particles, dead cells and 

infectious bacteria and viruses14. Typically, phagocytosis is triggered by the interaction 

of cell-surface receptors and foreign agents with particular surface ligands or by 

specific cell membrane recognition of the particle through the recruitment of receptors 

(opsonisation). Opsonisation happens in immune cells with soluble receptors such as 

proteins of the complement system (i.e., CR315), antibodies (i.e., IgG16), acetylcholine 

and laminin17. Attractive forces, e.g., van der Waals interactions, electrostatic 

interactions, hydrophobic/hydrophilic effects, between the cells and the NP surfaces are 

involved in the internalization of NPs via phagocytosis. In addition, phagocytosis can 

also be triggered by opsonins adsorbed on the particle surface which can be recognized 

by the receptors on the cell membrane. Phagocytosis starts with a cup-shaped 

membrane distortion, and then the membrane gradually surrounds the particle/pathogen 

with the help of actin18. The contact angle between the membrane and the particle has 

a significant effect on the ability of macrophages to internalize particles. Some studies 

have demonstrated that elongated particles with higher aspect ratios are less prone to 

be internalized through phagocytosis19,20.  

1.2.2 Pinocytosis 

1.2.2.1 Clathrin-mediated Endocytosis 

CME is by far the most studied endocytosis process. It was first discovered by Roth 

and Porter in 1964 using thin-section electron microscopy21. CME has been reported to 

be one of the most important pathways that involves intercelluar signaling, membrane 

recycling, and uptake of nutrients22. CME starts with the participation of protein 

machinery to induce curvature in the membrane to form clathrin coated pits (CCPs) on 

the cytosolic side of the plasma membrane23. To form the clathrin cage assembly, 

adaptor proteins (APs) are needed24. APs coordinate formation of a putative nucleation 

site, where clathrin will be recruited and vesicles will bud25,26. The CCPs then 

invaginate and pinch off from the plasma membrane by activation of the GTPase 

dynamin, a protein that is assembled as a ring around the neck of the invagination site27. 

Live cell imaging studies have shown that actin is involved in the scission of the CCPs28. 

After the CCPs have detached from the plasma membrane, the clathrin coat is 

disassembled by the ATPase heat shock cognate 70 (HSC70) and its cofactor, auxilin23. 

The uncoated vesicles are then either recycled back to the plasma membrane or further 

guided to early endosomes. CME is a highly dynamic process. The lifetime of a CCP is 

between 20 s and 2 min9. CCPs can grow into clathrin coated vesicles (CCV) with a 

diameter as large as 200 nm29.  

CCPs are responsible for the uptake of many membrane receptors and their cargoes, 
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among which the uptake of transferrin-bound iron is one of the best understood 

processes in cell biology. Transferrin (Tf) is a single-chain glycoprotein which consists 

of ca. 700 amino acids with a molecular mass of ca. 80 kDa. The polypetide chain folds 

into two lobes with homologous N-terminal and C-terminal iron-binding domains. At 

the neutral pH of blood, two Fe(III) ions can be bound to transferrin with a dissociation 

constant of 10-23 M. Figure 1.2 shows a model of iron uptake through receptor-

mediated endocytosis. After loading iron, the di-ferric transferrin (holo-transferrin) 

binds to its receptor (transferrin receptor-1, TfR1) on the cell surface. The Tf-TfR1 

complex is rapidly internalized by receptor-mediated endocytosis through CCPs and 

routed into the endosomal compartment. At the low pH inside the endosome, the 

conformations of both transferrin-Fe(III) and TfR1 are changed, resulting in iron 

release from the protein. The free Fe(III) is reduced to Fe(II) in the endosome. Fe(II) is 

subsequently transported from the endosome to the cytosol by the divalent metal 

transporter1 (DMT1). After release of iron into the endosome, the resultant apo-Tf 

remains bound to TfR1 at acidic pH in the endosome and the complex is recycled 

through exocytic vesicles back to the cell surface. At the more neutral pH of the 

extracellular plasma, apo-Tf dissociates from its receptor and is released into the 

circulation and free to bind iron to initiate further rounds of uptake of Tf-bound iron.  

 

Figure 1.2 Transferrin and transferrin receptor mediated cellular uptake of iron. Fe(III) 

is bound to Tf with high affinity. The di-ferric Tf then binds to TfR1 and forms a Tf-

TfR1 complex on the cell surface. The resulting complex is internalized by CME. At 

low pH in the internalized vesicle (endosome), Fe(III) is released from Tf and converted 

to Fe(II) by the endosomal reductase STEAP3. Fe(II) is then transported into the cytosol 

by DMT1. Fe(II) can be utilized as a cofactor for heme to form haemoglobin or stored 

in ferritin. The Tf-TfR1 complex is exocytosed back to the cell surface. Image adopted 

from Ref. [30]. 
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Although CME is referred to as receptor-mediated endocytosis, the uptake of non-

targeted NPs may also occur through CME. For example, cationic poly(ethylene 

glycol)-polylactide NPs (around 100 nm) appeared to be internalized through CME as 

well as micropinocytosis in HeLa cells31. Modified poly(lactic-co-glycolic acid) 

(PLGA) NPs coated by poly(L-lysine) were found to be rapidly internalized via CME32. 

Mesoporous silica-based NPs33 and cationic chitosan NPs34 were also found to be 

internalized through CME.  

1.2.2.2 Caveolae-Mediated Endocytosis 

Caveolae-mediated endocytosis is the most studied clathrin-independent carrier (CLIC) 

pathway. It participates in many cellular processes including signal transduction, 

protein uptake, and cholesterol homeostasis35. Caveolae are flask-shaped invaginations 

of the plasma membrane with diameters of 50 – 80 nm36. They are abundant in many 

different types of cells, such as fibroblasts, smooth muscle cells, adipocytes and 

endothelial cells. Cells such as neurons and leukocytes were found to lack caveolae37. 

A caveola is coated predominately by hairpin-like caveolin (CAV1, CAV2 and CAV3)38. 

Cavins, which also coat the caveolae, are believed to cooperate with the caveolins to 

regulate the formation of caveolae39. Dynamin is also supposed to enable vesicle 

scission of caveolae40. The mechanism of caveolae-mediated endocytosis is still subject 

of study because the intracellular transport of caveolae still has to be elucidated.  

It has been reported that a number of non-enveloped viruses such as Simian Virus 

40 enter cells through caveolae-mediated endocytosis41. Several other pathogens also 

exploit this pathway to avoid lysosomal degradation. Therefore, it is also believed to be 

beneficial for cellular delivery of proteins and DNA42. Nanomaterial has also been 

reported to enter cells via caveloae. Polymeric micelles with cross-linked anionic core 

were found to be taken up predominately through caveolae-mediated endocytosis in 

cancer cells43. Amphiphilic polysiloxane NPs were shown to selectively target caveolae 

in human aortic endothelial cells44.  

1.2.2.3 Clathrin- and Caveolae-independent Endocytosis 

Endocytosis can also occur independently of clathrin and caveolae. However, relatively 

few endogenous proteins associated with this pathway have been reported to date, and 

of those that have been discovered, little is known about how they regulate the 

mechanism of endocytosis10. Based on the effectors, this pathway is presently classified 

as Arf6-dependent, flotillin-dependent, Cdc42-dependent and RhoA-dependent10. This 

pathway was initially discovered because a number of bacterial toxins and cell surface 

proteins entered cells devoid of both clathrin and caveolin45. In such cells, ca. 90 nm 

vesicles have been shown to carry cargoes including extracellular fluid, 

glycosylphosphatidylinositol (GPI)-linked proteins, interleukin-2, and growth 

hormones46. These vesicles do not require the presence of coat proteins; however, they 
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appear to require specific lipid compositions and are dependent on cholesterol. After 

leaving the plasma membrane, the vesicles are usually delivered to early endosomes, 

followed by transfer to late endosomes and lysosomes. In addition, their cargo can be 

routed to the trans-Golgi network or recycled back to the plasma membrane47.  

There are not many reports on nanomaterials entering cells via different subtypes 

of clathrin- and caveolae-independent endocytosis. The examples include polyplexes 

of self-branched and trisaccharide-substituted chitosan oligomer NPs (SBTCO) for the 

delivery of DNA48. SBTCO were primarily taken up by cells via clathrin independent 

endocytosis. Other examples are NPs and polymers modified with folate49. However, 

multiple pathways were reported to be involved in the uptake of folate by cells 

including CME in specific cell types10,50.  

1.2.2.4 Macropinocytosis 

Unlike the above discussed endocytosis mechanisms which are regulated by the direct 

action of receptor or cargo molecules, macropinocytosis is initiated by the transient 

activation of a tyrosine kinase receptor (such as the epidermal growth factor and the 

platelet-derived growth factor receptor)51. Receptor activation leads to an increase in 

actin polymerization and triggers formation of membrane ruffles52. These membrane 

ruffles engulf a large quantity of the surrounding fluid and nutrients, thus forming large 

(0.5 – 10 µm) organelles called macropinosomes. A variety of particles such as bacteria, 

apoptotic bodies, necrotic cells and viruses can also induce the ruffling behavior 

independently of the growth factors51–53. Macropinosomes are sensitive to the 

cytoplasmic pH and undergo acidification and fusion events54.  

Recently, lapatinib-loaded NPs formulated with a core of albumin and lipid corona 

formed by egg yolk lecithin were reported to be internalized by BT-474 cells through 

multiple pathways including clathrin-dependent pinocytosis and micropinocytosis55. 

1.3 Optical Nanoscopy 

The study of cellular processes such as endocytosis requires sensitive and non-invasive 

observation techniques. In 1665, Robert Hooke discovered the cell as the fundamental 

unit of life with the help of light microscopy, thus initiating one of the great revolutions 

of human science56. Because the traditional light microscopy suffers from low contrast 

in biological samples, fluorescence microscopy has become the most widely used 

technique in cellular biology for noninvasive, time-resolved imaging with high 

biochemical specificity. Fluorescent probes have become available in a variety of colors 

that span the whole visible spectrum. Various labeling techniques, such as immune 

labeling and in situ hybridization, allow biomolecules of interest to be specifically 

labeled, even enabling simultaneous visualization of multiple targets through 

multicolor imaging. Furthermore, the revolutionizing development of fluorescent 

proteins and other genetically encoded fluorescent labels has allowed specific proteins 
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in living cells to be observed in real time57. 

Until recently, all live-cell analysis methods using light microscopy approaches 

suffered from the resolution limit set by the diffraction of light which states that two 

points can only be resolved if their distance is larger than ½ the wavelength used for 

imaging, i.e., ~200 nm for visible light, which is insufficient to visualize subcellular 

structures. As described in the famous publication of Ernst Abbe (1873)58, this limit 

was regarded to be insurmountable due to the diffraction theory of light. A very similar 

conclusion was obtained in 1903 by Lord Rayleigh59. In the past 20 years, so-called 

super-resolution fluorescence microscopy techniques have been developed that 

circumvent the diffraction limit and achieve resolution down to ~10 nm.  

1.3.1 Resolution Limit 

In real optical systems, the resolution that can be achieved depends on two factors: 1) 

the phenomenon of diffraction of light; 2) the numerical aperture of the objective in use. 

According to Abbe, the propagation of a ray from the object to the image involves two 

stages. The incident light first interacts with the specimen by diffraction and is deflected 

at an angle compatible with the diffraction theory. The lens will gather 0th-oder and 

higher order of the diffracted light from each specimen point, and a diffraction pattern 

is formed in the back focal plane of the objective. These diffracted rays will interfere 

with each other, producing an image at the image plane. The closer the features of the 

specimen are to each other, the larger are the diffraction angles. Therefore, the ability 

of a lens to resolve fine details of a specimen depends on its ability to gather the higher 

orders of the diffracted light at the periphery of the lens. If the specimen feature are so 

small that even first-order diffraction are excluded from the lens, an Airy pattern in 

which the size is independent of the size of the feature will be formed from the 0th-order 

wave. Thus, any feature smaller than about half the wavelength of the light will appear 

larger than it actually is.      

The resolution limit is usually obtained by considering two points in the object 

plane, and calculating the images in the imaging plane, to see whether or not the 

summed image still resolves the points. According to Fourier optics, the object appears 

as the Fourier spectrum of the sample in the back focal plane of the imaging lens and 

finally in the image plane, the various Fourier components passed by the lens are 

recombined to form a replica of the sample (Figure 1.3). However, the lens has only 

finite transverse dimensions. Only a certain portion of the diffracted components are 

intercepted by this finite pupil. The components not intercepted are precisely the high-

frequency components of the object amplitude transmittance. In Fourier space, the 

maximum spatial frequency is given by: 

 𝐹𝑚𝑎𝑥 = 𝑘𝑚𝑎𝑥 ∙
2𝜋

𝜆𝑓
= 𝑓𝑠𝑖𝑛𝛼𝑚𝑎𝑥 ∙

2𝜋

𝜆𝑓
=

2𝜋𝑁𝐴

𝜆
, (1.1) 

where f is the focal length, 𝜆 is the wavelength, NA is the numerical aperture of the 

lens, 𝑘𝑚𝑎𝑥 is the maximum radius of the image allowed by the objective in the focal 
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plane. Therefore, the lens can be used as a low-pass filter. Loss of high spatial frequency 

components causes blurring and loss of sharpness which is the fundamental reason for 

the resolution limit of a microscope. We can assume that, after passing the lens, the 

frequency domain is multiplied by a circle function for the circular back aperture of the 

lens: 

 
𝑐𝑖𝑟𝑐(𝑟) = 1 𝑟 ≤

2𝜋𝑁𝐴

𝜆

               = 0 𝑟 >
2𝜋𝑁𝐴

𝜆

 . (1.2) 

Since multiplication in the frequency domain will result in a convolution in the image 

domain, the image of one single point object after the lens (point spread function, PSF) 

can be written as 

 𝐹𝑇−1(𝑐𝑖𝑟𝑐(𝑟)) = 𝐴
𝐽1(

2𝜋𝑁𝐴

𝜆
𝑟)

2𝜋𝑁𝐴

𝜆
𝑟

, (1.3) 

where FT-1 is the inverse Fourier transformation,  𝐽1 is the first kind of Bessel function, 

A is a scaling factor. The intensity of the diffraction pattern of a single point is the so 

called Airy pattern. There are different methods for defining the resolving power of an 

optical system. One of the possibilities is the Rayleigh criterion, according to which 

two points are just resolved as long as the center of one of the Airy patterns does not 

coincide with the first zero of the other one. The first zeros of 𝐽1(𝑥) can be found at 

𝑥 ≈ 3.83, therefore, the first dark ring occurs (resolution limit) when 

 𝑟 =
3.83𝜆

2𝜋𝑁𝐴
=

0.61𝜆

𝑁𝐴
. (1.4) 

 

Figure 1.3 Fourier Optics and microscope resolution. 
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1.3.2 Far-field Fluorescence Nanoscopy Techniques 

Although electron microscopy and other ultra-structure imaging methods based on 

ionizing radiation have the great advantage of an unprecedented resolution, the use of 

electron-dense tags for molecule-specific labeling in electron microscopy has 

limitations such as low labeling efficiency and the small number of species that can be 

simultaneously observed, making it difficult to map out molecular interactions in 3 

dimensional (3D) intact cells, and rather difficult in living ones because electron 

microscopy requires ultra-high vacuum conditions60. Another way to overcome the 

diffraction barrier is to use near-field optics61, which, however, is surface-bound and 

hence difficult to apply to (the interior of) a cell. 

Since 1994, new optical fluorescence-based strategies have been developed that 

break the diffraction barrier in the far-field. These techniques prove that diffraction no 

longer poses a firm limit on the attainable resolution. The development of these 

fluorescence imaging techniques has pushed the boundaries of optical resolution to a 

few nanometers, so that an optical analysis of the nano-biostructures has become 

possible. 

1.3.2.1 STED: Stimulated Emission Depletion Microscopy 

Stimulated emission depletion microscopy uses the non-linear de-excitation of 

fluorescent dyes to overcome the resolution limit imposed by diffraction in standard 

confocal laser scanning microscopes and conventional far-field optical microscopes. 

The fluorescence excitation created by a focused beam of excitation light is narrowed 

down in space by simultaneously applying a second red-shifted spot of light featuring 

a central zero (e.g., a doughnut, see Figure 1.4) for de-excitation. The de-excitation 

(STED) beam is used to trigger stimulated emission of the excited fluorophores. This 

effectively confines the fluorescence emission to a small region at the center of the 

donut, thereby reducing the size of the PSF and increasing the resolution. 

 

Figure 1.4 Excitation laser spot (a), de-excitation laser spot (b), overlay of excitation 

and depletion beam (c). Fluorescence emission occurs only from the central area.  

Different implementations of STED have demonstrated resolutions as high as 5.8 

nm in the lateral directions62, and 40 – 45 nm in all three dimensions simultaneously 

when lateral and axial STED beams are combined in a 4Pi geometry for 3D super-

resolution imaging63. 
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1.3.2.2 SPEM/SSIM: Saturated Pattern Excitation Microscopy or Saturated 

Structured Illumination Microscopy 

As shown in Figure 1.3, there is a maximum spatial frequency that can be observed by 

the microscope. Information beyond the maximum frequency is fundamentally 

unobservable. When a sample is illuminated by wide-field, periodically patterned light, 

the excitation pattern mixes with the spatial information in the sample and shifts the 

high frequency structural information into the detection range of the microscope 

(Figure 1.5). To cover the field of view, the pattern is scanned across the specimen by 

phase-shifting the maxima of the interference pattern and reading out the fluorescence 

image onto a camera for each scanning step. Since resolution is improved only 

perpendicular to the line-shaped zeros, the pattern is tilted several times to cover all 

directions in the focal plane. For normal, linear, structured illumination microscopy, the 

maximum frequency shift cannot be larger than kmax. Therefore, its resolution can only 

be improved by a factor of 2. For SPEM/SSIM, higher frequencies are introduced by 

non-linear excitation of the fluorophores, which effectively expands the frequency 

space detectable by the microscope, thereby reducing the PSF size. Mathematical 

analysis of the data reveals super-resolved images. The experimental realization of 

SSIM attained ~50 nm in lateral resolution64. 

 

Figure 1.5 Concept of structured illumination. (a) Observable frequency region of 

conventional microscope with radius k0. (b) A new set of information becomes visible 

in the hatched circle when the excitation light contains the spatial frequency k1. The 

maximum detectable spatial frequency can reach k0 + k1. Image adopted from Ref. [64]. 

1.3.2.3 Localization Microscopy 

(Fluorescence) Photoactivation localization microscopy and stochastic optical 

reconstruction microscopy rely on photoactivatable fluorophores to sequentially and 

stochastically localize each fluorophore with high precision. It has long been known 

that a simple fitting procedure on the single molecule PSF image allows a precision of 

position determination that significantly exceeds the width of the PSF65,66, which 

governs the resolution limit of conventional fluorescence microscopy. However, most 

applications worked with well separated single molecules. In conventional fluorescence 
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microscopy, the sample has to be labeled with a high density of fluorescent markers to 

faithfully sample the structures. The PSFs of these fluorophores overlap and cannot be 

localized individually with high precision. This situation changed drastically when 

people realized that time could be used to separate the fluorophores in close proximity. 

By switching individual molecules stochastically and sparsely on by light-induced 

activation, fluorophores can be localized in densely labeled samples. The fundamental 

concept behind this technique is the controlled activation so that each fluorophore has 

a small probability of being photoactivated (‘on’ state) while the majority of the 

population is kept in the dark (‘off’ state). Therefore, the ‘on’ state fluorophores are 

well separated at each time instant. By calculating the centroid of the diffraction spot 

produced by each molecule, one can precisely determine the positions of the 

fluorophores. Then, the fluorophores are switched off and new ones are stochastically 

switched on. The process is repeated until all fluorophores have been localized. Up to 

105 images are collected and subsequently analyzed by specialized software to identify 

the positions of individual molecules. All positions are then plotted to construct a high 

resolution image (Figure 1.6).  

STORM has been initiated with pairs of photochromic cyanine dyes, one of which 

was used as an activation (switch-on) facilitator67, while photoactivatable fluorescent 

proteins (e.g., EosFP, paGFP) were used in the original PALM and (F)PALM 

papers68,69. Variations of this method have also been published by numerous groups 

using a variety of excitation schemes and induced dark states with synthetic dyes and 

fluorescent proteins. Direct STORM (dSTORM)70 and ground state depletion and 

individual molecule return (GSDIM)71 utilize the reversible photoswitching of organic 

fluorochromes to a metastable dark state (e.g., a triplet or redox state), which extends 

this method in principle to any conventional dye. PALM with independently running 

acquisition (PALMIRA)72 allows the digital camera to run at high speed without 

synchronization to the activation laser or the switching cycles of the fluorophores.  

The resolution of localization microscopy is no longer limited by the diffraction of 

light, but rather governed by how precise one can localize the diffraction limited PSF. 

The precision of this localization process is given by 𝑠/√𝑁, where s is the standard 

deviation of the PSF, N is the number of photons detected65. Additionally, the resolution 

is affected by the density of the labels (Nyquist criterion) in the structure. The Nyquist 

resolution is given by 2/(localization density)1/D according to Shroff et al. [73]. Here, 

D is the dimension of the structure. PALM, STORM and other concepts using a 

stochastic readout have achieved remarkable resolutions of <20 nm in the lateral 

dimensions. They are probably the simplest far-field nanoscopy approaches to 

implement because they require just uniform laser illumination, a freely running camera 

and appropriate software7. Another important aspect of localization microscopy is the 

requirement of specialized fluorophores which can be photoactivated by lasers so that 

only a few fluorophores are on at a certain time point.  
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Figure 1.6 Schematic depiction of localization microscopy. Only a subset of fluorescent 

proteins is activated and localized with a precision of a few ten nanometers, depending 

on the brightness of the fluorophores. This process is repeated up to several thousand 

frames so that a large number of fluorophores can be localized. The final super-

resolution image is a superposition of all individual. Image adopted from Ref. [74]. 

1.3.2.3.1 Limitations of Localization Microscopy 

The main principle of localization microscopy is to sequentially image sparse subsets 

of photoactivatable molecules. Positions of individual molecules are precisely 

computed from low resolution molecular Airy patterns with subdiffraction accuracy. 

Unlike conventional fluorescence microscopy images, the raw data of these sparse 

patterns cannot be visualized directly. Instead, an additional data processing step is 

needed. In the beginning, the computational step took from several hours to days for a 

single dataset75. Real time visualization of super-resolution images was impossible.  

Owing to the intrinsic trade-off between spatial and temporal resolution, the 

temporal resolution is limited by the number of images needed for reconstructing a 

structure with a desired resolution. Although video-rate localization microscopy has 

been reported recently76, such techniques are still limited by the brightness and fast 

blinking of the fluorophores due to the inherent nature of localization microscopy for 

collecting enough individual locations to reconstruct the structure. For most cases, the 

temporal resolution of this technique is in the range of seconds to tens of seconds 

depending on the complexity of the structure.  

1.3.2.3.2 Photoactivatable Fluorescent Proteins (PA-FPs) 

Fluorescent proteins of the green fluorescent protein (GFP) family consist of ~230 

amino acids. They fold into a so-called beta-barrel. Its chromophore is formed from 

three amino acids, e.g., serine, tyrosine and glycine for the GFP. One of the most 

interesting developments of fluorescent protein research has been the discovery of 

photoactivatable fluorescent proteins, which change color or emission intensity after 

external photon stimulation. EosFP, from the stony coral (Lobophyllia hemprichii), was 

used for super-resolution imaging in the present work. The fluorescence of the green 

form of EosFP stems from the chromophore formed by tyrosine, glycine and histidine 

PALM: Structure labeled with PALM: Structure labeled with photoconvertiblephotoconvertible FPsFPs

only subset of only subset of FPsFPs activatedactivated localization of single localization of single FPsFPs PALM imagePALM image

This procedure is repeatedThis procedure is repeated using a different subset of using a different subset of 

FPsFPs until most molecules are bleached.until most molecules are bleached.

conv

2/

supersuper--

PSFPSF positionposition

FP density mapFP density map

exc

PALM: Structure labeled with PALM: Structure labeled with photoconvertiblephotoconvertible FPsFPs

only subset of only subset of FPsFPs activatedactivated localization of single localization of single FPsFPs PALM imagePALM image

This procedure is repeatedThis procedure is repeated using a different subset of using a different subset of 

FPsFPs until most molecules are bleached.until most molecules are bleached.

conv

2/

supersuper--

PSFPSF positionposition

FP density mapFP density map

exc



1.4 Outline of this Work  

13 

 

(Figure 1.7). After exposure to 405 nm light, an irreversible spectral shift of the 

excitation is induced from 506 nm to 569 nm while the emission is shifted from a green 

state (516 nm) to an orange state (581 nm) by the cleavage of peptide backbone between 

Nα and Cα of the histidine77. It is the most commonly used PA-FP for super-resolution 

imaging as it has the highest contrast to the background and has been engineered into 

monomeric forms that are suitable for fusion constructs78.  

 

Figure 1.7 Mechanism of shifting the emission of the EosFP chromophore from green 

to red. Photoinduced cleavage of histidine extended the emission maximum from 516 

nm to 581 nm. Image adopted from Ref. [79]. 

1.4 Outline of this Work 

Interactions between NPs and cells are difficult to explore. Both high spatial and 

temporal resolution are needed to observe these processes in living cells. To realize this 

goal, we have started by further advancing super-resolution and high time resolution 

microscopy techniques and applied these methods to cellular experiments. This work 

involves the implementation of advanced algorithms to speed up the analysis software, 

the implementation of novel hardware components including 3D multicolor super-

resolution microscopy, fast scanning devices and suitable control software in our 

existing experimental systems. The advanced techniques were then employed in 

systematic studies of NP-cell interactions. 

In the cell imaging experiments, we have investigated the uptake of fluorescent 

NPs. We have used both bare NPs and NPs coated with Tf to enhance the interaction 

with the membrane bound TfR. The TfR regulates cell growth and cellular uptake of 

iron from Tf. Although TfR is probably expressed in all cells, it is overexpressed in 

many types of cancer cells. About 100-fold higher expression levels in cancer cells than 

the normal cells have been reported80. Therefore, Tf has been used as one of the most 

promising cancer-targeting agents in various delivery systems. Many Tf conjugated 

NPs have been evaluated in clinical trials. Examples include: CALAA-01 (Tf-

conjugated cyclodextrin polymer-based NPs was in a Phase I clinical trial), MBP-426 

(Tf-bound liposome containing the cytotoxic platinum-based drug oxaliplatin is already 

in Phase II clinical trials), SGT-53 (a TfRscFv-conjugated liposome for delivery of p53 

plasmid DNA is in Phase Ib clinical trials)81. To monitor endocytosis, clathrin was fused 

with mEos2. Therefore, the CCPs that are most likely involved in NP uptake could be 
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identified, based on the emission of mEos2.We have investigated the uptake of bare 

NPs and also of transferrin coated NPs to elucidate their affinity towards the transferrin 

receptor. 
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Chapter 2  

Software Development of Localization Based 

Super Resolution Microscopy 

In general, there are three steps involved in image analysis for localization microscopy: 

1) molecule detection, where molecule candidates are identified and extracted from the 

raw image stack; 2) molecule localization, where cropped molecule candidates are 

localized to extract their physical parameters, most importantly, the centers of gravity 

of the PSF patterns; and finally 3) image reconstruction, where localized molecules are 

plotted as a density map depicting the spatial distribution of all emitters with a 

resolution well below the diffraction limit of visible light (in the range of a few tens of 

nanometers).  

Recently, much work has been devoted to improve step 2), the localization of the 

individual markers, to achieve significant improvements in the precision and speed to 

get the center of gravity of individual molecules82–86. An important aspect, which has 

often been overlooked in the successful application of any localization microscopy 

analysis is the efficiency and reliability of the identification of molecules out of the raw 

image for later fitting. Once molecules can be precisely localized by these advanced 

algorithms, the final image quality of the localization-based super-resolution 

microscopy critically depends on the efficiency of molecule detection, where the 

number of true positive molecules should be maximized while that of false positive 

molecules should be minimized. However, far less attention has been paid to improve 

the initial molecule detection step, perhaps based on the assumption that falsely 

identified molecules can be excluded later by rejecting badly fitted parameters (total 

signal counts, width of the point spread function, background, and localization 

precision). 

Although little attention has been paid to molecule detection in the super-resolution 

community, molecule detection has been extensively studied in the broader image-

processing field87,88. In all cases, the performance of any detection algorithm critically 

depends on the signal-to-noise ratio (SNR)89 and the signal-to-background ratio 

(SBR)90. Setting the proper threshold for signal detection becomes a major challenge 

when working with biological samples, where the SNR and SBR can fluctuate during 

the data acquisition time and are often heterogeneous even within the same imaging 

area. This temporal and spatial heterogeneity in SNR and SBR distributions arises from 

the inherent nature of the biological sample, photobleaching of the fluorophores, or 
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from common technical problems, such as fluctuations of the laser intensity and 

inhomogeneous illumination of the sample. Typically, a molecule detection algorithm 

utilizes a single set of initial parameters, such as intensity count and SNR, for 

distinguishing the molecule pixels from the background, but often suffers from either 

over- or under-detecting molecules. Consequently, there is a clear need to develop a 

more robust approach to setting a threshold for molecule detection. In the following 

software development part, we will focus on algorithms for molecule detection and 

present our latest implementation. This work has been published in Ref. [91]. 

2.1  Fluorescence Image Formation and Noise Models 

In fluorescence microscopy, images are generated from the fluorescence of the labels. 

After imaging by the objective lens, individual fluorophores which behave as point 

source emitters appear in the final image plane as blurred spots. Such blurred spots are 

relatively small and compact and have no clear borders. Classically, they can be 

characterized by the PSF of the system (Figure 2.1).  

 

Figure 2.1 Object viewed through a microscope equipped with a camera. The image 

will be the convolution of the PSF and the object. During the process of recording the 

image in the detector array, the image quality is further deteriorated by additional noise 

from different sources. 

There are many different models which are used to describe the PSF, accounting 

for the properties of the light and the optical components (i.e., Richards-Wolf model92 

and Gibson-Lanni model93). However, the mathematical description of such models is 

often complicated. Therefore, many researchers approximate the PSF with simple 

model functions. The Airy function and the Gaussian function are two approximations 

which are most frequently used. Assuming unit magnification and that the point source 

is located at the origin of the object space in which it resides, the Airy profile is given 

by94 

 𝑃𝑆𝐹(𝑥, 𝑦) =
𝐽1
2(
2𝜋𝑁𝐴

𝜆
√𝑥2+𝑦2)

𝜋(𝑥2+𝑦2)
, (𝑥, 𝑦) ∈ 𝑅2 , (2.1) 
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where NA is the numerical aperture of the microscope objective, λ is the wavelength of 

the emitted photons,  𝐽1 is the first order Bessel function of the first kind and 𝑅𝑛, n = 

1, 2, …, is the n-dimensional Euclidean space. For many practical calculations, even 

the Airy PSF is still too complicated. For further simplification, the 2D Gaussian profile 

is used95, 

 𝑃𝑆𝐹(𝑥, 𝑦) =
1

2𝜋𝜎2
exp (−

𝑥2+𝑦2

2𝜎2
) , (𝑥, 𝑦) ∈ 𝑅2. (2.2) 

The fluorescence is normally collected and recorded by a photosensitive detector 

(electron multiplying charge-coupled device (EMCCD) and scientific complementary 

metal-oxide-semiconductor (sCMOS) for wide field illumination, photomultiplier tube 

(PMT) and avalanche photodiode (APD) for point scanning). For wide-field 

localization microscopy, EMCCD and sCMOS cameras are normally used. The optical 

signal is converted eventually to electrical and digital signals. During conversion of 

detected photons to an electronic signal, the ideal PSF will be deteriorated by the 

detectors (Figure 2.2). First, the image is pixelated, which substantially lowers the 

resolution. The ideal PSF that appears in the pixelated image is considered as an integral 

over finite pixels given by 

 𝑢𝑘(𝑥, 𝑦) = 𝐼0 ∫ 𝑃𝑆𝐹(𝜇, 𝜈)𝑑µ𝑑𝜈 +
𝐴𝑘

𝐼𝑏𝑔, (2.3) 

where 𝑢𝑘(𝑥, 𝑦) denotes the expected value in the kth pixel, 𝐼0 is the total number of 

photons, 𝐼𝑏𝑔 is the background noise from autofluorescence and inactive fluorescent 

molecules. The integral is over the finite pixel area 𝐴𝑘 in the image plane, which is 

centered on (x, y).  

 

Figure 2.2 Schematic diagram of noise sources during the detection of photons. 

Emission of photons, 𝑢𝑘, from a light source following the Poissonian process is the 

first noise source. When a photon hits the detector array, there is a chance (𝜙) that it 

creates a photoelectron. This stochastic process adds the second kind of noise. The third 

noise source originates from spurious charge. For an EMCCD camera, the 

photoelectrons and spurious charges are further multiplied by the EM register, which 

introduces excess noise. The output electrons, 𝑛𝑜𝑒, from the EM register are converted 

to the digital count, 𝑛𝑖𝑐, by the A/D converter which introduces readout noise.  
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A lot of additional noise is introduced during the conversion of photons to electrons. 

The most common problem is shot noise. Even for constant illumination, the number 

of photons emitted in a given time interval is a random variable following a Poisson 

distribution96. The probability that 𝑛𝑝ℎ photons hit the detector pixel k is given by: 

 𝑝𝑘(𝑛𝑝ℎ ; 𝑢𝑘) =
exp(−𝑢𝑘)𝑢𝑘

𝑛𝑝ℎ

(𝑛𝑝ℎ)!
= 𝑃(𝑛𝑝ℎ; 𝑢𝑘), (2.4) 

where 𝑢𝑘 is given by Eq. 2.3, 𝑃(𝑥) is the Poisson distribution with mean or rate 𝑥. 

Each photon that hits the detector has a probability to generate a photoelectron. The 

probability of this event is described by the quantum efficiency, 𝜙, which depends on 

the material of the detector and the wavelength of the incident light. The probability of 

obtaining 𝑛𝑝𝑒 photoelectrons from 𝑛𝑝ℎ incident photons with quantum efficiency 𝜙 

is given by a binomial distribution97, 

 𝑝(𝑛𝑝𝑒; 𝑛𝑝ℎ,𝜙) =
𝑛𝑝ℎ!

𝑛𝑝𝑒!(𝑛𝑝ℎ−𝑛𝑝𝑒)!
𝜙𝑛𝑝𝑒(1 −𝜙)

𝑛𝑝ℎ−𝑛𝑝𝑒 = 𝐵(𝑛𝑝𝑒; 𝑛𝑝ℎ, 𝜙), (2.5) 

where 𝐵(𝑛, 𝑝)  is the binomial distribution of n trials with probability p. The 

probability of getting 𝑛𝑝𝑒  photoelectrons from a light source is hence given by a 

combination of mutually exclusive events of joint probabilities of the Poisson 

distribution and the binomial distribution. The probability of obtaining 𝑛𝑝𝑒 

photoelectrons at pixel k is given by 

 𝑝𝑘(𝑛𝑝𝑒; 𝑢𝑘 , 𝜙) = ∑ 𝑃(𝑛𝑝ℎ; 𝑢𝑘)𝐵(𝑛𝑝𝑒; 𝑛𝑝ℎ, 𝜙)
∞
𝑛𝑝ℎ = 𝑃(𝑛𝑝𝑒; 𝑢𝑘𝜙). (2.6) 

The emission of a thermal and clock induced charge (CIC) is also governed by a Poisson 

distribution with emission rate c, which can be written as  

 𝑐 = 𝑡�̇�𝑑𝑎𝑟𝑘 + 𝑐𝐶𝐼𝐶, (2.7) 

where t is the exposure time. Therefore, an electron that enters the EM register can be 

either a photoelectron or a spurious charge. The probability density function (PDF) of 

the input electrons, 𝑛𝑖𝑒 , is the convolution of the two Poisson distributions for the 

photoelectrons and the spurious charge: 

 𝑝𝑘(𝑛𝑖𝑒;𝑢𝑘,𝜙𝑘, 𝑐) = ∑ 𝑃(𝑛𝑝𝑒;𝑢𝑘𝜙)𝑃(𝑛𝑖𝑒 − 𝑛𝑝𝑒; 𝑐)
𝑛𝑖𝑒
𝑛𝑝𝑒=0

= 𝑃(𝑛𝑖𝑒;𝑢𝑘𝜙+ 𝑐). (2.8) 

For the sCMOS and the CCD camera, the input electrons are directly converted to 

digital counts by analog-to-digital converters (ADCs). This process will introduce 

readout noise. This noise can be modelled by a normal distribution with variance 𝑟𝑘. 

The image count can take negative values because of the readout noise, hence is 

normally offset by a factory-set positive constant, 𝑜𝑘, at the k-th pixel. Therefore, this 

noise can be modeled by 𝑁(𝑓(𝑛𝑖𝑐 − 𝑜𝑘); 𝑛𝑖𝑒 , 𝑟𝑘) at the k-th pixel. 𝑛𝑖𝑐 is the image 

count, f is the A/D factor which indicates the number of electrons per image value. The 

PDF of the final image values is the convolution of the Poisson distribution with a 
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Gaussian distribution which can be described by: 

 𝑝𝑘(𝑓𝑘(𝑛𝑖𝑐 − 𝑜𝑘); 𝑢𝑘, 𝜙, 𝑐, 𝑟𝑘, 𝑓𝑘 , 𝑜𝑘) 

 = ∑
1

𝑛𝑖𝑒!
𝑒𝑢𝑘𝜙+𝑐(𝑢𝑘𝜙 + 𝑐)

𝑛𝑖𝑒
1

√2𝜋𝑟𝑘
𝑒
[𝑓𝑘(𝑛𝑖𝑐−𝑜𝑘)−𝑛𝑖𝑒]

2

2𝑟𝑘∞
𝑛𝑖𝑒=0

.  (2.9) 

For the sCMOS camera, 𝑜𝑘 and 𝑟𝑘 are different from pixel to pixel while they 

are the same for all pixels of the CCD camera, since all pixels are read through the same 

chip level output amplifier. In the EMCCD camera, extra electron multiplying (EM) 

processes, which can be considered as Bernoulli processes, are involved98. Therefore, 

the model should be modified accordingly. EM occurs in the EM register by applying 

high voltages once the electrons have entered the register. The EM register contains 

many hundreds of cells, and the amplification process occurs in each cell via high 

voltage clocks. A given electron has a very tiny but finite probability to knock out 

another electron by a process known as ‘impact ionization’. Assuming that the 

probability to generate an additional electron is a and the probability of remaining 

unchanged is 1-a, the total EM gain value is (1 + 𝑎)𝑁 after N consecutive steps. 

When the photon input level is relatively small and the gain is large, the probability 

to get 𝑛𝑜𝑒 output electrons from 𝑛𝑖𝑒 input electrons after an EM register with gain g 

follows the Gamma distribution, 

 𝑝𝑘(𝑛𝑜𝑒; 𝑛𝑖𝑒 , 𝑔) = 𝛾(𝑛𝑜𝑒; 𝑛𝑖𝑒 , 𝑔) = 𝑛𝑜𝑒
𝑛𝑖𝑒−1

exp(−
𝑛𝑜𝑒
𝑔
)

𝛤(𝑛𝑖𝑒)𝑔
𝑛𝑖𝑒

. (2.10) 

where 𝛤(𝑥) is the gamma function. Therefore, after the EM process, the PDF of each 

pixel of the EMCCD camera is the composition of the Poisson distribution and the 

gamma distribution,  

 𝑝𝑘(𝑛𝑜𝑒; 𝑢𝑘, 𝜙, 𝑐, 𝑔) = {

∑ 𝑃(𝑚; 𝜆𝑘)𝛾(𝑛𝑜𝑒; 𝑚, 𝑔)
𝑛𝑜𝑒
𝑚=1 𝑛𝑜𝑒 > 0

exp(−𝜆𝑘) 𝑛𝑜𝑒 = 0
0 𝑛𝑜𝑒 < 0

, (2.11) 

where 𝜆𝑘 = 𝑢𝑘𝜙 + 𝑐. Here, it is assumed that at least as many electrons are leaving 

the EM register as were entering the EM register. Therefore, the sum runs to 𝑚 = 𝑛𝑜𝑒.  

For high gain, the composition can be approximated by  
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𝑝𝑘(𝑛𝑜𝑒; 𝑢𝑘 , 𝜙, 𝑐, 𝑔)                                                     

=

{
 
 

 
 ∑ 𝑃(𝑚; 𝜆𝑘)𝛾(𝑛𝑜𝑒;𝑚, 𝑔)

∞

𝑚=1

𝑛𝑜𝑒 > 0

exp(−𝜆𝑘) 𝑛𝑜𝑒 = 0
0 𝑛𝑜𝑒 < 0

=

{
 
 

 
 
√
𝜆𝑘
𝑛𝑜𝑒𝑔

exp (−
𝑛𝑜𝑒
𝑔
− 𝜆𝑘) 𝐼1 (2√

𝑛𝑜𝑒
𝑔
𝜆𝑘) 𝑛𝑜𝑒 > 0

exp(−𝜆𝑘) 𝑛𝑜𝑒 = 0
0 𝑛𝑜𝑒 < 0

=exp(−𝜆𝑘) 𝛿(𝑛𝑜𝑒) + √
𝜆𝑘
𝑛𝑜𝑒𝑔

exp (−
𝑛𝑜𝑒
𝑔
− 𝜆𝑘) 𝐼1 (2√

𝑛𝑜𝑒𝜆𝑘
𝑔

), 

 (2.12) 

where 𝐼1 is the modified Bessel function of the first kind of order one, 𝛿(𝑥) is the 

Dirac delta function. This equation appeared in a similar form in Ref. [99]. Similar for 

sCMOS and CCD cameras, the readout noise is added when the electrons are converted 

to digital counts by the A/D converter. The PDF of the sum of two independent variables 

is the convolution of their separate density functions. Therefore, the PDF of the 

measured image value 𝑛𝑖𝑐 in the k-th pixel can be written as: 

𝑝𝑘(𝑓𝑘𝑛𝑖𝑐; 𝑢𝑘 , 𝜙, 𝑐, 𝑔, 𝑟𝑘, 𝑓𝑘, 𝑜𝑘)

= ∑ [e−𝜆𝑘𝛿(𝑛𝑜𝑒) + √
𝜆𝑘
𝑛𝑜𝑒𝑔

e
−
𝑛𝑜𝑒
𝑔
−𝜆𝑘𝐼1(2√

𝑛𝑜𝑒𝜆𝑘
𝑔

)]
𝑒
−(
𝑓𝑘𝑛𝑖𝑐−𝑜𝑘−𝑛𝑜𝑒

2𝑟𝑘
)2

√2𝜋𝑟𝑘

∞

𝑛𝑜𝑒=0

=

𝑒−𝜆𝑘 [𝑒
−(
𝑓𝑘𝑛𝑖𝑐−𝑜𝑘

2𝑟𝑘
)
2

+ ∑ 𝑒
−(
𝑓𝑘𝑛𝑖𝑐−𝑜𝑘−𝑛𝑜𝑒

2𝑟𝑘
)
2

−
𝑛𝑜𝑒
𝑔∞

𝑛𝑜𝑒=0
√
𝜆𝑘
𝑛𝑜𝑒𝑔

𝐼1 (2√
𝑛𝑜𝑒𝜆𝑘
𝑔 )]

√2𝜋𝑟𝑘
. 

 (2.13) 

A similar form of this equation was used in Ref. [97,100]. In practice, the noise of 

the EMCCD camera is often modeled using Poisson statistics only, usually achieving 

excellent precision86. Such models are only an approximation of the real noise model. 

Only a few existing algorithms explicitly account for multiplication noise (excess 

noise)99,100. However, Ref. [100] shows that the localization accuracy of an ultra-high 

accuracy imaging modality (UAIM), which considered both the excess noise and 

readout noise, could be improved by >200% for low-light imaging compared to 

conventional EMCCD modeling.  
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2.2  General Molecule Detection Framework 

In general, the framework of molecule detection can be split into three subsequent steps: 

1, noise reduction; 2, signal enhancement; and 3, signal thresholding (Figure 2.3). In 

practice, some of the steps can be combined or are optional88.  

 

Figure 2.3 General molecule detection framework. The noise of the original image (a) 

is suppressed by noise reduction techniques. The resulting image (b) normally sits on a 

non-uniform background. A signal enhancement technique is applied to amplify the 

signal above the background (c). The image (c) is finally thresholded to find molecule 

candidates (d) and (e). Scheme adopted from Ref. [88]. 

1) Noise Reduction: As described in the previous section, the image quality can be 

degraded by various noise sources, resulting in a noisy observation of the 

underlying object. To reduce the effect of these errors, the image is preprocessed 

using noise reduction techniques. In most cases, a low pass filter for noise 

suppression can be applied, i.e., Gaussian smoothing. Other noise reduction 

methods include wavelet based filtering101, median filtering, and path-based 

denoising102.  

2) Signal Enhancement: Since the objects of interest are often embedded in a non-

uniform background, a signal enhancement technique is used to make the 

objects more easily detectable than they are in the original image. Signal 

enhancement is the most characteristic feature of any detection method. Many 

methods have been developed to enhance the signal. Two types of methods can 

be distinguished, unsupervised and supervised signal enhancement. For 

unsupervised signal enhancement, frequently used methods include wavelet 

analysis103, Top-Hat filter104, spot-enhancing filter105, H-dome based 

detection106. Machine learning techniques are used for supervised signal 

enhancement, i.e., the AdaBoost algorithm107, Fisher discriminant analysis108.  

3) Signal Threshold: Finally, the object is obtained by thresholding the enhanced 

image. Normally, local maxima are isolated from the thresholded image. Pixels 

surrounding the local maxima are extracted and considered as object. 
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2.3  Description of the a-livePALM Algorithm 

As the data analysis for image reconstruction is based on post-processing of thousands 

of acquired images, early versions of data analysis software for localization-based 

super-resolution microscopy were laborious and took many hours to analyze even one 

stack of images. Obviously, this made optimization of the imaging conditions (laser 

intensity, acquisition time, etc.) impossible during the experiment. Therefore, it is of 

utmost importance that the analysis algorithm can run at high speed to keep up with the 

image acquisition. As mentioned above, numerous algorithms have been developed to 

accelerate the analysis of super-resolution microscopy data, however, mostly in the 

molecule localization step75,85,86,109,110. Relatively basic, hence fast, algorithms have 

been used for the molecule detection step, however, without a quantitative comparison. 

In the broader image-processing field, various molecule detection algorithms have been 

proposed to deal with images with a heterogeneous background87,88. Naturally, an 

advanced molecule detection algorithm comes at the expense of added computational 

complexity. We have developed a fast yet efficient molecule detection algorithm termed 

a-livePALM for data analysis. 

There are three steps to identify molecule candidates within the a-livePALM 

algorithm: noise reduction, local background estimation and the selection of 

appropriate local maxima according to the local background condition. The general 

outline of this process is shown in Figure 2.4. 

For noise reduction, we convolute the raw images with a Gaussian kernel89, which 

is a low-pass filter. The effect of Gaussian smoothing is to suppress the high frequency 

noise spikes, thus improving the SNR of the image. The degree of smoothing is 

determined by the standard deviation, σ, of the Gaussian (Figure 2.5). The σ of the 

Gaussian kernel depends on the dataset. Typically, we use a Gaussian kernel with σ = 1 

pixel for 2D localization images and σ = 1.5 pixels for 3D astigmatic localization 

images.  
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Figure 2.4 Work flow and software implementation of data processing. The green and 

red frames denote procedures run in central processing unit (CPU) and graphics 

processing unit (GPU), respectively. The images are first loaded into memory. The raw 

images are smoothed in the GPU, and the local background condition of the raw images 

is estimated in the CPU in parallel. With the smoothed raw data and local background 

information, the P value for each pixel is calculated and thresholded in the GPU. Then, 

the local maxima are determined from the pixels with P value below the threshold. The 

final selected molecules are localized in the GPU. 
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Figure 2.5 Convolution of a single molecule image with a Gaussian kernel of different 

σ. (a) and (b) are 3D and 2D representations of a single molecule with 500 signal 

photons and 10 background photons, respectively. Only Poisson noise and Gaussian 

noise with sigma 3 photons were added. (c), (d) and (e) depict Gaussian kernels with σ   

0.5, 1 and 2 pixels. (f), (g) and (h) show the result of the convolution of the single 

molecule image and the Gaussian kernels in (c), (d) and (e), respectively.  

To estimate the local background, each image is first subdivided into small local 

areas (11 × 11 pixels). The background of each local area is evaluated by the mean 

value and the standard deviation of its larger surrounding area (31 × 31 pixels). Using 

the local mean background and standard deviation, the normal cumulative distribution 

function (CDF) of each pixel value is calculated. The normal CDF stands for the 

probability of a pixel that it belongs to the molecule. Only pixels with a normal CDF 

above a user-defined threshold are selected, and local maxima (within 7 × 7 pixels) 

among these pixels are identified as molecule candidates. Small sub-images (7 × 7 

pixels) around these local maxima are extracted for single molecule localization. For 

pixels on the boundaries, for which a 31 × 31 pixels surrounding area does not exist 

for background calculation, the background parameters were transferred from the 

nearest non-boundary pixels. Different P values were tested for the synthesized data 

(Figure 2.6). A P value (P = 1 – normal CDF) of 0.08 produced the best results for 

identifying molecules. Lower P values yield high precision, but lower recall (see 

Section 2.7). On the contrary, a too high P value yields a high recall, but a lower 
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precision. In practice, one can check for an appropriate P value by minimizing the 

number of molecules identified from areas void of cells (background).  

 

Figure 2.6 Performance of a-livePALM with different P values91. Reproduced with 

permission from the American Chemical Society.  

After extracting the candidate sub-regions from the raw image as single molecules, 

those images are fitted with a model function. A two-dimensional Gaussian (plus a 

constant background) model was used. Many methods have been developed for 

molecule localization in the past years111. Those localization algorithms can generally 

be divided into two types: numerical fitting (e.g., least squares criteria65, maximum 

likelihood criteria112) and non-fitting methods (e.g., fluoroBancroft algorithm82, radial 

symmetry84). In general, fitting methods are preferred since they offer the best 

localization accuracy. Though the non-fitting methods are computationally simple, the 

bottleneck for localization microscopy often lies on the molecule detection but not the 

molecule localization. We employed the GPU-based maximum likelihood estimator 

(MLE) algorithm for single molecule localization which can fit more than 200 

molecules/ms86. It also achieves theoretically minimum uncertainty (Crámer-Rao lower 

bound, CRLB). The molecule localization only consumed ~10% of the overall 

analyzing time. Therefore, the speed of the molecule localization algorithm is currently 

not the limitation of the software development.  

It is worth pointing out that the noise model employed in Ref. [86 models the noise 

only with Poisson statistics. A more accurate model which accounts for multiplication 

noise (excess noise) for EMCCD has also been proposed97,100 (Eq. 2.13). However, such 

models are normally very difficult to implement into GPU. The simplified noise model 

which only accounts for Poisson noise has also been widely used85,86. For the sCMOS 

camera, Gaussian readout noise should be added76. As shown in Eq. 2.9, the PDF of the 

image value is the convolution of a Poisson distribution and a Gaussian distribution. 

By adding a pixel-dependent constant, 𝑟𝑘, the PDF can be rewritten as 
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 𝑝𝑘 (𝑓𝑘(𝑛𝑖𝑐 − 𝑜𝑘) + 𝑟𝑘; 𝑢𝑘, 𝜙, 𝑐, 𝑟𝑘, 𝑓𝑘 , 𝑜𝑘) 

 = 𝑃(𝜙𝑢𝑘 + 𝑐)⊗ 𝑁(𝑟𝑘, 𝑟𝑘). (2.14) 

The normal distribution 𝑁(𝑟𝑘, 𝑟𝑘) can be further approximated by 𝑃(𝑟𝑘). Therefore, 

since the convolution of two Poisson distributions with expected values a and b is still 

a Poisson distribution with expected values a+b, we could approximate the PDF of the 

image values as  

 𝑝𝑘(𝑓𝑘(𝑛𝑖𝑐 − 𝑜𝑘) + 𝑟𝑘; 𝑢𝑘 , 𝜙, 𝑐, 𝑟𝑘, 𝑓𝑘, 𝑜𝑘) ≈ 𝑃(𝜙𝑢𝑘 + 𝑐)⊗ 𝑃(𝑟𝑘) 

                               = 𝑃(𝜙𝑢𝑘 + 𝑐 + 𝑟𝑘). (2.15) 

Therefore, by using the analytical approximation of the PDF of the full likelihood 

function for the sCMOS camera as described by Eq. 2.9, one can greatly simplify the 

calculation while providing optimal accuracy and precision at the theoretical limit76.  

The final super-resolution image is reconstructed from fitted positions of the 

detected molecules. However, many fluorophores may have non-negligible light-

induced fluorescence recovery and may be in the on state for many frames113. 

Photoblinking or light-induced reactivation of a single molecule may be erroneously 

interpreted as biological clusters114. As an example, we have plotted the PALM image 

of signalosomes115 formed by LRP6 molecules fused to mEosFPthermo116 (Figure 2.7). 

Figure 2.7a is the map of all localized events, and the color identifies the temporal 

instant of the molecular localization. We found that several molecules seemed to cluster 

in both space and time, which is an indication of events from the same molecule. If we 

group these events (Figure 2.7b), temporal clusters disappeared, yielding only a big 

cluster in space. 

 

Figure 2.7 Plot of a PALM image of LRP6-mEosFPthermo with and without grouping. 

(a) Map of localized emission centers for all events detected. The color scale identifies 

the temporal instant. (b) Map of the same data after grouping with a dark time of 2 s 

and 100 nm distance between events.  
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Therefore, before plotting the localized molecules in the final reconstructed super-

resolution image, we first grouped the events which were temporally and spatially close. 

In practice, molecules that appear in n successive frames and are spatially close (<100 

nm) are considered to be identical, but not stationary. In the final super-resolution image, 

the molecule is plotted n times with the weighted value 1/n so that the intensity of the 

reconstructed image represents the real density of the molecules. 

2.4  Comparison of a-livePALM and DAOFIND 

Although there are many (F)PALM/STORM analysis programs available in the field, 

“DAOFIND” has been the most frequently used algorithm for molecule 

detection67,68,75,85,117,118. In order to directly compare the “DAOFIND” algorithm and a-

livePALM, we show the schematic workflow of both algorithms in Figure 2.8. In both 

approaches, the raw image (Figure 2.12) is first convoluted by a Gaussian kernel for 

noise reduction89 (Figure 2.8a). DAOFIND directly identifies molecule candidates in 

the convoluted image by setting a threshold based on the SNR for each pixel upon its 

local background (Figure 2.8b). This step is time consuming since this process is 

performed for each pixel and cannot be parallelized. Instead of setting a threshold to 

the SNR, a-livePALM performs the adaptive histogram equalization technique for each 

pixel. We calculate a P value (Figure 2.8f) for each pixel using the standard deviation 

(Figure 2.8d) and the mean background of its surrounding region (Figure 2.8e). In 

practice, the image is divided into different blocks and the background is assumed to 

be constant in each block. After estimation of the background for each block, the P 

value calculation can be parallelized to speed up the analyzing process. The P value 

represents the probability of the pixel to be part of the surrounding background. Local 

maxima with a P value below the threshold are assigned to molecule candidates (Figure 

2.8g). Squares and white dots in Figure 2.8c and g represent coordinates of molecule 

candidates identified by the algorithm and the actual coordinates of simulated 

molecules, respectively. 

Another advantage of a-livePALM is that the P value is insensitive to changes of 

the SNR and the SBR, and significantly enhances the signal contrast without 

introducing noise peaks. In order to show the performance of the signal enhancement 

methods used by DAOFIND and a-livePALM, we generated an image of five molecules 

placed over a linearly increasing background and processed it by the DAOFIND and a-

livePALM algorithms separately (Figure 2.9). The intensity profile of the molecules in 

the absence of noise is shown in Figure 2.9a. By adding linearly increasing background 

and Poisson noise to the molecules, a significant decrease of contrast is generated in 

the intensity profile (Figure 2.9b). The DAOFIND algorithm takes the Gaussian-

convoluted image from Figure 2.9b and generates the SNR map for each pixel. A top-

hat filter with grayscale opening was used to generate the SNR map (Figure 2.9c). 

However, background features are also stochastically enhanced in a way that resembles 
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signals from actual molecules. This could lead to registration of false positive molecules. 

For comparison, the P value map from the a-livePALM adaptive histogram equalization 

algorithm and its corresponding intensity profile are shown in Figure 2.9d. The contrast 

of the molecule signals is evenly enhanced over the entire image, and their intensity 

profile is easily distinguishable from the background. 

 

Figure 2.8 DAOFIND and a-livePALM molecule detection algorithms for localization 

microscopy. The red and blue arrows denote procedures run in DAOFIND and a-

livePALM, respectively. In DAOFIND, the raw image is first convoluted with a 

Gaussian filter (a). The SNR for each pixel is calculated (b) and a threshold is set to 

identify molecule candidates (c). In a-livePALM, the local background parameters 

(standard deviation (d) and mean (e)) are computed from the raw image (Figure 2.12). 

A P value is calculated for every pixel (f). Molecule candidates are identified as local 

maxima with the P value below the chosen threshold (g)91. Reproduced with permission 

from the American Chemical Society. 
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Figure 2.9 (a) Simulated image of five molecules without background (top). This 

intensity profile (bottom) serves as a reference. (b) Image after adding a linearly 

increasing background and Poisson noise (top) and its intensity profile (bottom). (c) 

SNR map of DAOFIND (top) and its intensity profile (bottom). (d) P value map of a-

livePALM algorithm (top) and its intensity profile (bottom). The color scale of the P 

value map (d top) has been inverted in order to directly compare it with the other SNR 

maps91. Reproduced with permission from the American Chemical Society. 

2.5  Software and Hardware Implementation 

To avoid slowing of the analysis while maintaining performance, we have coded our 

algorithm so that it utilizes the parallel processing power of GPU for the molecule 

detection step. As a result, the software can achieve comparable processing speed to 

state-of-the-art fast software even with the additional background estimation (Figure 

2.10). 
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Figure 2.10 Benchmarking comparison of the a-livePALM algorithm implemented in 

Matlab, C and CUDA (GPU processing)91. Reproduced with permission from the 

American Chemical Society. 

The data processing procedures were run in MATLAB R2010b (The Mathworks, 

Natick, MA, USA) environment. The workflow of the program is shown in Figure 2.11. 

Both the CPU based C-code (green boxes) and the GPU based C-code (red boxes, 

Nvidia CUDA, http://www.nvidia.com/object/cuda_home.html) are compiled to 

MATLAB mex files. The local background estimation (CPU) and the Gaussian noise 

filtering of the image (GPU) are run in parallel since those computations are totally 

independent of each other. On the basis of the background parameters and the denoised 

image, the normal CDF of each pixel is calculated in the GPU. Pixels with P values 

below a certain threshold are selected, and the local maxima among these pixels are 

determined as molecule candidates. The arrays around the candidates are extracted and 

finally passed into the GPU global device memory for single molecule localization.  

The software is currently run on a personal computer using an Intel(R) Core(TM) 

i7-2600 processor clocked at 3.40 GHz with 8.0 GB memory. A NVIDIA GeForce GTX 

560Ti graphics card with 1.0 GB memory was used for GPU based computation. For a 

typical image size of 512 × 512 pixels, acquired by the electron-multiplying charge-

coupled device (EMCCD) camera, the processing time is 15 – 30 ms per image, 

depending on its complexity. The speed is comparable to the maximum full frame rate 

of current EMCCD cameras and, therefore, allows real-time data processing. 

 

Figure 2.11 Software and Hardware Implementation. In this flow chart, procedures run 

in CPU and GPU are depicted by green and red boxes, respectively91. Reproduced with 

permission from the American Chemical Society. 
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2.6  Image Simulation 

To evaluate the performance of super-resolution algorithms, synthesized test images are 

routinely used13,14. Therefore, we simulated single fluorescence emitters with varying 

SNR and background to assess the performance of the search algorithm. Considering 

the finite pixel size, the final simulated signal is given by 

 𝐹𝑖,𝑗 = 𝑃𝑜𝑖𝑠(𝐼0 ∫ 𝑃𝑆𝐹(𝜇, 𝜈)𝑑𝜇𝑑𝜐
𝐴

+ 𝑏𝑔𝑖,𝑗) (2.16) 

Here, Pois(x) is a Poisson random number with a mean value of x. I0 is the number of 

photons emitted by a given fluorophore. The integral extends over the area of each pixel, 

A. The point spread function, PSF(x, y), is approximated by a two-dimensional 

Gaussian function, Eq. 2.2. The background noise in each pixel (e.g., from diffusing 

impurity molecules or thermal noise), 

 𝑏𝑔𝑖,𝑗 = 𝑁𝑏𝑔 + 𝑁𝑖,𝑗(𝛿)  (2.17) 

is modeled by a constant background or a linearly increasing background, Nbg, and is 

additionally varied by Gaussian noise, Ni,j(δ), with standard deviation, δ. All simulated 

images were generated by using MATLAB. 

Molecules with different SNR and SBR were synthesized within the same image 

to model heterogeneous background. We generated 1,000 images (200 × 100 pixels) 

with simulated molecules (150 – 250 photons per molecule) randomly placed on a 

linearly increasing background (1 – 25 photons). This is the raw simulated image used 

to show the analysis procedures in Figure 2.8. We varied the molecule density from 0.1 

to 1 molecule/μm2 (16 – 160 molecules/image). Figure 2.12 is an example image with 

0.5 molecule/μm2
. 

 

Figure 2.12 Raw image of simulated randomly distributed molecules91. Reproduced 

with permission from the American Chemical Society. 

In order to quantify the performance of the software under different background 

conditions, we also simulated molecules with different SNR and SBR in the same image 

(Figure 2.13). Each molecule was randomly plotted in the center (10 × 10 pixels) of a 

block (30 × 30 pixels). Three types of molecules (I0 = 150, 200 or 250 photons) were 

used for the evaluation. For each molecule, the background level (Nbg) was varied from 

2 – 20 photons with the standard deviation of the additional Gaussian noise, δ, of 1, 2 
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or 3 photons. The resulting SNR of the final image ranges from 1.3 to 3.3; the SBR 

ranges from 0.4 – 6.8. The SNR of a molecule is defined as SNR = (I-bg)/σ119, where I 

and bg are the maximum intensity of the single molecule signal and the background, 

respectively; σ is the standard deviation of the background. 

 

Figure 2.13 The upper row states the background level, Nbg (Eq. 2.17), of each column. 

The left column denotes the number of photons contributing to the signal of the 

molecules in the corresponding row. The right column indicates the standard deviation, 

, of the Gaussian background noise in the corresponding row. Each sub-block has a 

size of 30 × 30 pixels, and the molecule is plotted randomly within the center 10 × 10 

pixels to exclude overlap. The width of the point spread function of the simulated 

molecules (Eq. 2.2) is fixed at σ = 1.69 pixels, which corresponds to the theoretical 

value of a molecule with a fluorescence emission at 581 nm, imaged by an objective 

lens with a numerical aperture of 1.4691. Reproduced with permission from the 

American Chemical Society. 

2.7  Performance Assessment  

2.7.1 Recall and Precision 

There are two types of errors for molecule detection algorithms: false negative 

molecules and false positive molecules (Figure 2.14). Correctly detected molecules are 

defined as true positive molecules with returned coordinates within a certain distance 

(D) of the actual coordinates. Molecules outside of D are classified as false positive 
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molecules. Actual molecules without any returned coordinates within D are called false 

negative molecules. Two parameters, recall and precision, are employed to evaluate the 

performance of the search algorithm. They are defined as: 

 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (2.18) 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑣𝑖𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (2.19) 

The theoretical optimum for the detection algorithm is that both recall and precision are 

equal to 1. For comparison of different algorithms, the F-measure, which combines 

both precision and recall, was introduced: 

 𝐹 = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) (2.20) 

Low values of F indicate both bad recall and precision while values approaching the 

theoretical optimum, 1, correspond to good recall and precision.  

 

Figure 2.14 Typical detection errors for molecule detection algorithms. Red dots are 

actual simulated molecules, blue crosses are detected candidate molecules, and dashed 

circles indicate the defined threshold distance D, which is the maximum allowed 

distance between true positive molecules and actual molecules.  

2.7.2 Software Comparison 

In order to assess the efficiency and accuracy of the molecule detection, we compared 

a-livePALM against our previously published algorithm, livePALM110, and several 

publically available fast programs: QuickPALM75, MaLiang85 and rapidSTORM109. 

1000 images (100 × 200 pixels) with molecules randomly placed over a linearly 

increasing background (Figure 2.12) were simulated using the method described in 

section 2.6. This was repeated for different molecule densities (0.1 – 1 molecule/µm2). 
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2.7.2.1 Parameter optimization for the different softwares 

In order to get the best overall performance, different parameters were tested for the 

three publicly available algorithms, QuickPALM, MaLiang and rapidSTORM. The 

tested dataset was the same as the one used in Figure 2.12, with a molecule density of 

0.5 molecules/μm2. Recall and precision performance for different parameter values are 

shown in Figure 2.15.  

 

Figure 2.15 Parameter optimization for QuickPALM, MaLiang and rapidSTORM, (a) 

and (b) recall and precision as a function of local threshold for QuickPALM, (c) and (d) 

recall and precision as a function of shot noise factor for Maliang, (e) and (f) recall and 

precision as a function of signal-to-noise ratio for rapidSTORM91. Reproduced with 

permission from the American Chemical Society. 

For QuickPALM, the result did not vary much with a change of the minimum SNR 

as long as an adequate SNR was selected (Figure S1). Therefore, we varied another 

parameter, the local threshold. The recall and the precision results are shown in Figure 

2.15(a) and (b). We finally selected a local threshold of 40, which showed the highest 

F value. 

For MaLiang, we kept the photon threshold relatively low, and assessed the 

performance of the algorithm by changing the shot noise factor (Figure S2). Thus, most 

of the molecules that exceeded the user-defined shot noise factor were taken as 
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molecule candidates. The recall and the precision results are shown in Figure 2.15c and 

d. Even though the highest F value was reached at a shot noise factor of 3 for this dataset, 

this setting did not perform well for the dataset with a molecule density of 0.1 

molecules/μm2 (the precision was only 0.65). There seems to be a slightly different 

optimal setting for each dataset for this program. We finally decided to use a value of 

3.5 as the shot noise factor.  

For rapidSTORM, the performance was optimized by varying the signal-to-noise 

ratio parameter. The recall and precision results are shown in Figure 2.15e and f. They 

changed in an anti-correlated manner with small differences in F values (average 0.34 

± 0.02). We, therefore, chose a default value of the signal-to-noise ratio of 30. Other 

parameters used for rapidSTORM may be found in Figure S3. 

2.7.2.2 Threshold Distance Selection 

Different D values were also tried since different softwares have different sensitivities 

to the D value. Recall and precision performance results using D = 1 pixel (Figure 

2.16a and b) and 0.5 pixel (Figure 2.16c and d) are shown. Both the recall and precision 

deteriorated when D was set to a lower value. However, different algorithms showed 

different sensitivities to a change in D value. In comparison to D =1.5 pixel (Figure 

2.17), the precision performance was nearly the same when D = 1.0 pixel was used. 

However, the precision of QuickPALM was outperformed by MaLiang, livePALM and 

a-livePALM when D was decreased to 0.5 pixel. This is most likely due to the fact that 

different molecule localization methods were utilized for different algorithms. For 

MaLiang, livePALM and a-livePALM, maximum likelihood estimation is used. 

QuickPALM only uses an algebraic solution for the final single molecule localization 

without any numerical fitting. Higher localization precision makes the software less 

sensitive to the D value. 
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Figure 2.16 Algorithm performance with different D values. (a) and (b) Recall and 

precision for D = 1.0 pixel. (c) and (d) Recall and precision for D = 0.5 pixel91. 

Reproduced with permission from the American Chemical Society. 

2.7.2.3  Recall and Precision Performance 

To account for the fact that the different algorithms compared in this work use different 

molecule localization methods, we chose a rather large value of 1.5 pixels for D to 

minimize the influence of this variable on recall and precision. Recall and precision 

results are plotted as a function of molecule density (Figure 2.17a and b). The 

optimized parameters were used for each software as described before. The selected 

parameters used for the performance evaluation on our data are shown in Figure S1 – 

3. In general, except for rapidSTORM, the precision was high over the entire range of 

the molecule density, while the recall rapidly dropped as the density increased. Among 

all, our new algorithm, a-livePALM, showed the highest efficiency (recall) in 

identifying molecule candidates while maintaining a high precision.  
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Figure 2.17 A set of simulated data images with varying molecule densities has been 

analyzed by the QuickPALM, RapidSTORM, MaLiang, livePALM and a-livePALM 

algorithms. Performances of these algorithms were evaluated by analyzing their 

precision (a) and recall (b)91. Reproduced with permission from the American Chemical 

Society.  

To directly quantify the molecule detection performance of the algorithm, we tested 

two of the best algorithms from the first evaluation, livePALM and a-livePALM, on a 

different set of simulated molecules (intensity, I0, of 150, 200 or 250 photons) that are 

well separated from each other, placed over a range of background conditions (Gaussian 

noise, Ni,j(δ), and background (BG) level, Nbg) within the same image. A sample image 

is shown in Figure 2.12. To allow for a meaningful comparison of the molecule 

detection algorithm between livePALM and a-livePALM, we used the same molecule 

localization algorithm, the maximum likelihood estimation method86. We conducted the 

molecule search on simulated images using two different thresholding methods for 

livePALM. The search parameters (low photon threshold and SNR) of livePALM were 

adjusted to either yield a high precision (precision >0.90 for over 50% of molecules, 

precision optimized, PO, Figure 2.18b and e) or to yield the high recall efficiency 

(maximum recall, recall optimized, RO, Figure 2.18c and f). a-livePALM (Figure 

2.18d) and livePALM PO (Figure 2.18e) showed a comparable result for the precision, 

but a markedly lower recall for livePALM PO as the background level increased 

(Figure 2.18b). The recall also deteriorated as the number of photons decreased and the 

Gaussian noise increased. For livePALM, the recall of molecules with only 150 photons 

was low, especially at high background. The precision values computed from these few 

molecules were more prone to fluctuations and could result in non-incremental changes 
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in the precision with varying BG levels (Figure 2.18e). a-livePALM showed a high 

level of recall for the entire range of imaging condition. In real experiments, the recall 

should be maximized to improve the final image quality of the biological structure of 

interest. The recall can be improved by using the livePALM RO condition (Figure 

2.18c), however, only at the expense of its precision performance (Figure 2.18f). These 

comparisons demonstrate the overall high efficiency and reliability of a-livePALM over 

wide ranges of SNR and SBR while using only a single thresholding parameter.   

 

Figure 2.18 Recall and precision performances of the molecule detection algorithms. 

Three different sets of molecules (intensity of 150, 200 or 250 photons) synthesized 

over different background (BG) levels (2 to 20 photons) with additional standard 

deviation (δ) of Gaussian noise (1, 2 or 3 photons) were tested by a-livePALM and 

livePALM. The molecule detection performance evaluated by recall and precision 

values from a-livePALM (a, d), livePALM based on PO threshold condition (b, e) and 

livePALM based on RO threshold condition (c, f) are shown91. Reproduced with 

permission from the American Chemical Society. 

2.7.2.4 Molecule Rejection by Post-filtering 

One assumption is that the overall precision of the coarsely selected molecule data set 

can still be improved if false positive molecules can be efficiently filtered. Molecule 

filtration is routinely done by rejecting molecules with bad returned fit parameters120. 

However, the efficiency of molecule rejection has not been discussed in the literature. 

Therefore, we took the data set which yielded ~50% precision using livePALM analysis 

from Figure 2.18 with the following image condition: intensity 150 photons, Nbg = 12 

photons and  = 1 photon.  

The distribution of returned fit parameters for the number of photons per molecule 

(Figure 2.19a), background photons (Figure 2.19b), width of the point spread function, 

σ (Figure 2.19c), and localization precision (Figure 2.19d) are shown. Red and blue 
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bars represent false positives and true positives, respectively. The strongly overlapping 

distributions imply that false positives cannot be identified unambiguously. The number 

of photons of true positive molecules (Figure 2.19a) has a distribution centered at ~150 

photons. In contrast, for false positive molecules, the distribution of photons peaks at 

lower photon numbers (~50) but has a long tail, so there is significant overlap (30%) 

between the two distributions. The distribution of background levels peaks at ~12 

photons for true positive molecules, in close agreement with the background parameter 

used to generate the data image. The maximum is slightly lower, at ~11 photons, for 

false positives. The distribution of the PSF width parameter 𝜎 (Figure 2.19c) mainly 

covers the range between 1.1 and 1.9 pixels for true positives, whereas a large fraction 

of false positive molecules has 𝜎 < 1  pixel. There is, however, 44% overlap. The 

distribution of the localization precision (Figure 2.19d) is located at lower values for 

true than for false positive, but there is still 38% overlap. 

Since the single fit parameters show strong overlap with each other for the true 

positive and false positive molecules, we still found 20% of livePALM-identified 

molecules to be false positive molecules, whereas only 1% of a-livePALM-identified 

molecules were false positive. There were 26% more total molecules detected by a-

livePALM even with stringent thresholding conditions. These results underscore the 

importance of properly identifying molecules from the raw images in the first place and 

not to rely on post-filtering.  
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Figure 2.19 Histograms of parameter distributions of false positive and true positive 

molecules found in simulated data with livePALM. Simulated images were generated 

with 150 photons for each molecule, background, Nbg = 12 photons and  = 1 photon 

standard deviation of Gaussian noise. The distributions of returned fit parameters for 

(a) the number of photons per molecule, (b) background photons, (c) width of the point 

spread function, σ, and (d) localization precision are shown. Red and blue bars represent 

false positive and true positive molecules, respectively91. Reproduced with permission 

from the American Chemical Society. 
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Figure 2.20 2D/3D plots of fitted parameters (photons, localization precision and 𝜎) 

from livePALM (RO) and a-livePALM on simulated data (Figure 2.13). 2D plots of 

fitted parameters of livePALM and a-livePALM are shown in (a) and (b). We filtered 

the data with 100 – 500 photons, <50 nm localization precision and 1 – 2 pixels σ 

(shown by dotted lines). (c) and (d) are the corresponding 3D plots of (a) and (b). Red 

and blue dots represent false positive and true positive molecules, respectively91. 

Reproduced with permission from the American Chemical Society. 

Table 2. 1 Summary of the post-filtered data 
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2.7.2.5 Speed Comparison 

 

Figure 2.21 Processing time comparison91. Reproduced with permission from the 

American Chemical Society. 

The image processing time of the a-livePALMa algorithm was compared against 

QuickPALM, MaLiang and rapidSTORM (Figure 2.21). The same sets of simulated 

images used for the recall and the precision performance tests were used. The 

processing times for QuickPALM, MaLiang and rapidSTORM were manually 

measured by using a stopwatch and were given an error of 1 s for the human response 

time variation. The error for a-livePALM was calculated from the reported processing 

time from MATLAB. As a result, our software can achieve a processing speed that is 

comparable to state-of-the-art fast software even with the additional background 

estimation. 

2.7.2.6 Performance on Experimental Data 

Finally, the software was applied to experimental data. A RITA-mcavRFP fusion 

construct was transiently transfected into HeLa cells. RITA is a tubulin binding protein, 

and was fused with the green-to-red photoconvertible fluorescent protein, mcavRFP121. 

PALM image acquisition was performed at 24 °C on a modified inverted microscope 

(Axiovert 200, Zeiss, Jena, Germany) equipped with a high NA oil immersion objective 

(Plapon 60x, 1.45-NA oil immersion, Olympus, Hamburg, Germany). The fluorescent 

proteins were converted from their green to their red emitting forms using 405-nm light 

of low intensity (0 – 10 W/cm²) and subsequently imaged by 561-nm illumination (200 

– 400 W/cm²) with an EMCCD camera (iXon DV887ECS-BV, Andor, Belfast, 

Northern Ireland) at 100 ms time resolution. The overall fluorescence intensity varied 

in time due to power adjustment of the 405-nm laser and photobleaching of molecules 

(Figure 2.22). The raw wide field image also showed considerable SNR heterogeneity 

within the image (Figure 2.23).  
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Figure 2.22 Intensity variation during PALM image acquisition. The overall 

fluorescence intensity was observed to change with time due to power adjustment of 

the 405-nm laser during the measurement as well as photobleaching of fluorescent 

molecules91. Reproduced with permission from the American Chemical Society. 

 

Figure 2.23 Widefield image of RITA-mcavRFP labeled microtubules in a live HeLa 

cell. Scale bar: 5 µm91. Reproduced with permission from the American Chemical 

Society. 

Comparison of the two algorithms on the experimental data further highlighted the 

strengths of the new software, a-livePALM. Figure 2.24 shows PALM images 

reconstructed from 1,600 frames of raw data of the fusion protein RITA-mcavRFP in 

live HeLa cells analyzed by livePALM RO and a-livePALM. We could observe a 
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significantly higher molecule detection efficiency using the new algorithm, in 

agreement with the findings on simulated data. A total of 273,751 and 474,385 

molecules were identified by livePALM RO and a-livePALM, respectively (Figure 

2.24e). livePALM PO detected even less molecules: 98,013. We plotted these molecules 

with the same brightness and contrast setting for a direct comparison (Figure 2.24a-d). 

In regions with high SNR, livePALM performed equally well as a-livePALM. In 

regions with lower SNR, livePALM performed poorly, as we already saw with 

simulated images (Figure 2.18). As a result, some structures were missing from the 

image (indicated by arrows). In particular, for livePALM, the microtubules located in 

the upper third of the reconstructed image were missing due to high background 

(Figure 2.23). 

 

Figure 2.24 Performance of livePALM and a-livePALM molecule detection algorithms 

applied to experimental data. PALM images of microtubules in live HeLa cells, labeled 

with the fusion protein RITA-mcavRFP, were reconstructed by using the livePALM RO 

(a, c) and a-livePALM (b,d) algorithms. Arrows indicate structures reconstructed by a-

livePALM, but missed by livePALM. Scale bar 5 µm (a, b) and 1 µm (c, d). (e) 

Accumulated number of molecules identified by the livePALM PO, livePALM RO and 

a-livePALM search algorithms during processing of 1,600 image frames91. Reproduced 

with permission from the American Chemical Society. 
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2.8 ISBI Localization Microscopy Challenge 

In 2013, the IEEE International Symposium on Biomedical Imaging (ISBI) conference 

organized the localization microscopy challenge. The challenge has also been turned 

into a permanent online challenge (http://bigwww.epfl.ch/smlm/challenge2013/). 

About 30 programs from groups all over the world have been examined, mostly by the 

authors of the software. The a-livePALM software has been one of the earliest 

participant programs in 2013.  

The goal of the challenge is to have a better view and understanding of available 

algorithms. This is achieved by benchmarking them using the same set to data. The 

general framework of dataset simulation and software assessment is shown in Figure 

2.25. Synthetic datasets with ground truth (i.e., images with known molecule 

localizations) that contain biologically-inspired structures, such as tubulins were 

generated. A continuous-spatial structure and associated fluorophore markers with 

random positions on its surface was defined. Then, sparse activation-excitation cycles 

at each time instant were simulated. Once excited, a single fluorophore was imaged by 

a realistic PSF while taking the average nature of the EMCCD detector into account. 

The noise sources included were non-homogenous excitation intensity over the field of 

view, background scatter noise, auto-fluorescence, EMCCD multiplicative noise, read-

out noise and dark pixels. The challenge datasets were categorized into two groups: low 

density data and high density data, and it provided training datasets and tests datasets 

for each category. The same dataset was then evaluated by different analysis software. 

The main criteria for assessing the performance include detection rate, localization 

accuracy, computation time, usability, and accessibility for the end-user. 

 

Figure 2.25 General framework of data simulation and software evaluation. Image 

adopted from Ref. [122]. 
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In this challenge, we evaluated our software using the low density dataset. There 

are three different datasets in this category which have different SNR for each set of 

data. For simplification, we used the mean value of F and the mean computational time 

for these three datasets for comparison (Figure 2.26 and Figure 2.27). Programs 

without any value (Figure 2.26) did not submit full results or only evaluated the high 

density dataset.  

 

Figure 2.26 F value performance of 29 analysis programs from different groups 

worldwide. 

 

Figure 2.27 Computational time of 29 analysis programs from different groups 

worldwide. 

In a recent publication, a revised comprehensive evaluation of localization software 

packages was published122. The number of the overall software packages evaluated had 

increased and the performance of some old programs had also improved compared to 

the initial report from 2013. In the latest paper, a number of criteria were employed to 

evaluate the output results from different programs: detection rate, accuracy, quality of 

image reconstruction, resolution, software usability and computational resources. The 

cumulative grades from these six aspects for the low density data sets were shown in 

Figure 2.28. Higher cumulative grade shows better performance. Various tradeoff of 

the analysis software packages were shown by these metrics (i.e., accuracy and 

detection rate tend to change in an anti-correlated manner). Therefore, It could help 

users to choose the program which fit their needs best. 
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Figure 2.28 Cumulative grades for the three synthetic low density data sets. The grades 

of the three data sets were measured by the detection rate (Jaccard index), JAC1 – JAC3; 

localization accuracy, ACC1 – ACC3; image quality assessment, SNR1 – SNR3; and 

image resolution, FRC1 – FRC3. The subjective parameters of computational time 

(TIME) and usability (USA) are shown in light gray bars. The Red arrow indicates the 

rank of a-livePALM.  
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Chapter 3  

Experimental Setup for 3D Localization 

Microscopy 

In this chapter, we will introduce the microscope used for the experiments. Based on 

this apparatus, we have built a 3D-astigmatism super-resolution imaging setup for 

localization microscopy.  

3.1 The TIRF Microscope 

Total internal reflection fluorescence microscopy (TIRFM) is the most used microscope 

configuration for single molecule super-resolution imaging since it can offer a very 

good SNR of single molecule fluorescence. It exploits the physical phenomenon of total 

internal reflection, which appears when light propagating within a dense medium 

reaches an interface with a less dense medium at large incident angles. According to 

Snell’s law, the critical angle, 𝜃𝑐𝑟𝑖𝑡, is given by  

 𝑠𝑖𝑛𝜃𝑐𝑟𝑖𝑡 =
𝑛2

𝑛1
, (3.1) 

where n1 is the refractive index of the microscope slide or coverslip (i.e., glass slide, n 

= 1.518). n2 is the refractive index of the sample medium (i.e., aqueous medium, n = 

1.33 – 1.37). Total internal reflection is achieved at all angles greater than 𝜃𝑐𝑟𝑖𝑡, where 

all the light is reflected. Even though the light no longer propagates into the sample 

medium, the reflected light generates a highly restricted electromagnetic field adjacent 

to the interface in the lower-index medium. This field is parallel to the surface and 

termed evanescent field. It only extends a few hundred nanometers into the specimen 

in axial direction and decays exponentially in intensity with the distance, d, from the 

interface, 

 𝐼(𝑧) = 𝐼0exp (−𝑧/𝑑), (3.2) 

where I(z) is the intensity at the distance z perpendicular from the interface, and I0 is 

the intensity at the interface. d defines the penetration depth and is dependent on the 

wavelength of the incident light, λ, the angle of incidence, θ, and the refractive indices 

of the interface, n1, and the medium, n2, according to: 
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 𝑑 =  
4𝜋𝑛2√𝑛12𝑠𝑖𝑛2𝜃−𝑛22

𝜆
. (3.3) 

The penetration depth usually ranges from 30 – 300 nanometers. Thus, only 

fluorophores within this region are excited.  

Generally, there are two types of TIRF microscopes: (1) Prism-based TIRF, and (2) 

Objective-based TIRF as shown in Figure 3.1a and b. The prism TIRFM is easily 

accomplished since it requires only an additional prism compared to the normal 

microscope equipped with an objective lens. However, the drawback is that the sample 

is placed between the prism and the microscope objective. The fluorescence emitted 

from the top surface of the sample has to go through the sample before being collected 

by the objective which leads to wavefront aberrations. Also, sample handling is more 

difficult in prism-based TIRF since the position of the prism has to be adjusted each 

time after changing the sample. The more frequently used objective-type TIRFM 

greatly benefits from an objective with a high numerical aperture (NA > 1.4). Due to 

the high NA of the objective, the incident angle of the excitation laser can be larger than 

the critical angle when the light is directed into the objective off center. The 

fluorescence excited by this configuration can directly be collected by the objective.  

 

Figure 3.1 Two types of TIRFM configuration. (a) Prism-based TIRFM. (b) Objective-

based TIRFM. In a prism-based TIRFM, the excitation and emission paths are 

decoupled. The sample is placed between prism and objective. In an objective-based 

TIRFM, the specimen is excited and the fluorescence is collected via the same objective 

lens.  
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3.2 Experimental Setup 

A custom-built TIRF/epi fluorescence microscope was used. It was based on a modified 

inverted Zeiss Axio ObserverZ1 microscope equipped with a high NA oil immersion 

objective (Zeiss alpha Plan-Apochromat 63x/1.46 Oil). Four diode-pumped solid-state 

lasers with wavelengths 640 nm (OXX-LBX, Laser 2000, Wessling, Germany), 561 nm 

(GCL-150-561, CrystaLaser, Reno, USA), 473 nm (LSR473-200-T00, Laserlight, 

Berlin, Germany) and 405 nm (CLASII 405-50, Blue Sky Research, Milpitas, USA) 

were employed for excitation and photoactivation of the fluorophores. The laser sources 

were combined via appropriate dichroic mirrors (AHF, Tübingen, Germany) and guided 

through an AOTF (AOTFnC-400.650, A-A, Opto-Electronic, Orsay Cedex, France) to 

control the laser intensity at the sample. After passing the AOTF, the laser beam was 

expanded (3.75×) by a telescope (L1 and L2 in Figure 3.2). If a smaller EMCCD 

camera (iXon 860, 128 × 128 pixels, field of view 15 × 15 µm2, Andor, Belfast, UK) 

was used, the telescope was removed from the excitation path. Lens L3 focused the 

parallel beam into the back focal plane of the objective lens, providing wide field 

illumination of the sample. By tilting the mirror M1, TIRF or highly inclined and thin 

beam (highly inclined and laminated optical sheet, HILO)123 excitation could be 

achieved. The emission fluorescence was first collected by the same objective lens. 

After passing a quad band dichroic mirror (HC Quadband Emitter 446/523/600/677, 

AHF), an additional filter could be added (F1) before imaging through the tube lens L4. 

The fluorescence was either guided to an iXon DV 897 or an iXon 860 EMCCD camera. 

In the iXon DV 897 path, a commercial beam splitting device (OptoSplit II unit, Cairn 

Research, Kent, UK) was used. The fluorescence was split into two color channels by 

a 640 nm short pass dichroic or a 555 nm long pass dichroic mirror depending on the 

application. Additional filters could also be used in each channel (HC 525/50 for green 

channel, center wavelength 525 nm with a FWHM 50 nm; HC610/75 for red channel; 

HC697/75 for far red channel; HC 523/610 for both green and red channel; all of the 

filters are from AHF). The image was magnified two-fold by a set of relay lenses in this 

device so that the final pixel size was 110 nm. Alternatively, the fluorescence was 

directed to the iXon 860 EMCCD by a flip mirror. In this optical path, the image formed 

by tube lens L4 was additionally magnified (2×) by a single lens L5. A cylindrical lens 

L6 (LJ1516L1-A, f = 100 cm, Thorlabs, New Jersey) was added before the camera to 

modify the PSF enabling 3D astigmatism super-resolution imaging.  

The signals to control all shutters and the AOTF were generated by a data 

acquisition card (NI USB-6229 BNC, National Instruments, Austin, USA) and 

controlled by a custom written software in LabVIEW (National Instruments). To avoid 

photobleaching between camera frames, the camera fire pulse was connected to the 

AOTF blanking pin. Image acquisition was done by the Solis software provided by the 

camera manufacturer (Andor Technologies). An incubator (XL-5 DARK, Pecon, 

Erbach, Germany) covering the microscope stage was used to control the sample 

temperature. 
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Figure 3.2 Schematic of the microscope setup. Laser light from four lasers is combined 

and guided through an AOTF. A telescope (lenses L1 and L2) is added in the excitation 

beam path to change the size of the illuminated area in the sample. The emitted 

fluorescence is collected by the objective and passes filter F1. After traversing a tube 

lens L4, the fluorescence is collected either by the iXon897 or the iXon860 EMCCD 

depending on the application. 

3.3 3D Super-resolution Imaging 

Various strategies have been proposed to localize fluorescent molecules in three 

dimensions in 3D super resolution imaging. All the methods are based on engineering 

the shape of a molecule’s PSF as a function of its distance from the focal plane. These 

methods include simultaneous imaging at two different focal planes124 and altering the 

PSF so that its shape encodes the axial position. For instance, with a spatial light 

modulator in the imaging path125, a double-helix PSF can be produced.  

3.3.1 3D Astigmatism Super-resolution Imaging 

We have used an approach that introduces astigmatism to the PSF by adding a weak 

cylindrical lens to the imaging path126–128. The scheme of this method can be seen in 

Figure 3.3. The weak cylindrical lens creates two slightly different focal planes for the 

x and y directions. Therefore, the ellipticity of the PSF varies as the position changes in 
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z. If the fluorophore is in the averaged plane of the x and y focal planes, the PSF shows 

equal widths in the x and y directions (round). When the fluorophore is moved out of 

the averaged focal plane, the image will be more focused in either x or y direction and 

thus appears ellipsoidal with a long x axis or y axis. By determining the width of the 

PSF along the x and the y directions, we can estimate the z coordinate of the fluorophore 

with very high precision. This astigmatic approach requires only minimal changes of 

both the optical setup and the analysis software. Thus it is the most frequently used 

approach in the field.  

 

Figure 3.3 The scheme of 3D PALM. After introducing a cylindrical lens in front of the 

camera, a fluorescent particle shows different ellipticity in the imaging plane at 

different z coordinates (right panels). By measuring the ellipticity of the PSF, we can 

determine the z coordinate of the fluorescent object. 

The PSF modified by a cylindrical lens can be modeled as an elliptical Gaussian 

function, 

 𝑃𝑆𝐹(𝑥, 𝑦) =
1

2𝜋𝜎𝑥𝜎𝑦
exp (−

𝑥2

2𝜎𝑥2
−

𝑦2

2𝜎𝑦2
) , (𝑥, 𝑦) ∈ 𝑅2, (3.4) 

where 𝜎𝑥 and 𝜎𝑦 are the widths of the PSF in the x and y directions, respectively. The 

combination of 𝜎𝑥 and 𝜎𝑦 encodes the axial position z. A calibration is necessary to 

derive the z coordinates.  

To experimentally generate a calibration curve showing 𝜎𝑥 and 𝜎𝑦 as a function 

of z, dye molecules or small fluorescent beads are attached to the coverslip and imaged 

at different z positions. Here, a bead sample was prepared by adsorbing a dilute solution 

of ~100 nm Tetraspeck fluorescent beads (~0.3 pM, Invitrogen, Grand Island, USA) on 

glass cover slips. The beads were imaged in deionized water. The bead density was 

chosen so that about 7 – 12 beads were visible in the field of view (128 × 128 pixels) 

when imaging. Images were recorded with an acquisition time of 50 ms at 50 nm axial 
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piezo steps over a z range of 1.2 µm (600 nm above and below the averaged focal plane) 

by moving the objective automatically using the piezo stage (PD72z1x PIFOC® lens 

scanning system, Physik Instrumente, Karlsruhe, Germany). 100 frames were taken for 

each step. Only the center 50 frames of each set were analyzed to exclude images 

recorded during movement of the objective between two positions.  

For each z position, the 𝜎𝑥 and 𝜎𝑦 values were then fitted to a modified equation 

describing a typical defocusing curve: 

 𝜎𝑥 = 𝜎𝑥0√1 + (
𝑧−𝑟𝑥

𝑑𝑥
)
2

+ 𝐴𝑥 (
𝑧−𝑟𝑥

𝑑𝑥
)
3

+ 𝐵𝑥 (
𝑧−𝑟𝑥

𝑑𝑥
)
4

, (3.5) 

 𝜎𝑦 = 𝜎𝑦0√1 + (
𝑧−𝑟𝑦

𝑑𝑦
)
2

+ 𝐴𝑦 (
𝑧−𝑟𝑦

𝑑𝑦
)
3

+ 𝐵𝑦 (
𝑧−𝑟𝑦

𝑑𝑦
)
4

, (3.6) 

where 𝜎𝑥0 and 𝜎𝑦0 are the widths of the PSF at the focal plane, 𝑟𝑥 and 𝑟𝑦 are the 

offsets of the x and y focal planes from the average focal plane. 𝑑𝑥 and 𝑑𝑦 indicate 

the focus depth of the microscope and were included as a fit parameter. 𝐴𝑥, 𝐴𝑦, 𝐵𝑥 

and 𝐵𝑦  are coefficients of higher order terms to correct for the non-ideality of the 

imaging optics. The obtained calibration curves in 𝑧 − 𝜎𝑥  and  𝑧 − 𝜎𝑦  space and 

𝜎𝑥–𝜎𝑦 space are shown in Figure 3.4 and Figure 3.5. 

 

Figure 3.4 Calibration curve of the image widths 𝜎𝑥  and 𝜎𝑦  as a function of z, 

obtained from a single fluorescent bead. Each data point is the average value obtained 

from 7 beads. The data were fitted to the defocusing functions, Eqs. 3.5 and 3.6.  
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Figure 3.5 Calibration curve in 𝜎𝑥-𝜎𝑦 space. The color represents the z position.  

In all actual experiments, the 𝜎𝑥  and 𝜎𝑦  values were determined for each 

molecule. These parameters were used to find the axial position of the molecule that 

best matched the calibration curve. This was done by minimizing the distance in the 

𝜎𝑥
1/2 − 𝜎𝑦

1/2 space: 

 𝐷 = √(𝜎𝑥1/2 − 𝜎𝑥,𝑐𝑎𝑙𝑖1/2)
2
+ (𝜎𝑦1/2 − 𝜎𝑦,𝑐𝑎𝑙𝑖1/2)

2
. (3.7) 

To evaluate the range and accuracy of the z localization, the multicolor beads were 

imaged on the coverslip while moving the piezo-driven sample stage. The stage was 

moved by 50 nm every 50 frames. Localization analysis of the astigmatic images 

reproduced the z-direction movement very accurately (Figure 3.6). The standard 

deviation of the z position near the focal plane (distance <200 nm) was ~5 – 7 nm, while 

the standard deviation of the z positions far away from the focal plane (400 – 600 nm) 

was ~8 – 13 nm.  
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Figure 3.6 Axial localization of a 100 nm diameter fluorescent bead. A fluorescent bead 

was imaged on the coverslip with the piezo stage being axially translated by 50 nm 

every 50 frames. The axial postion was then determined from the regular astigmatism 

3D PSF calibration data. The figure shows the resulting returned axial positions. The 

determined positions are remarkably close to the piezo positions. The inset shows a 

close-up of the region marked by the blue box. 

3.3.2 Experimental Note on Calibration Curve Generation 

The shape of the elliptical PSF on the image plane is usually determined by the focal 

length of the cylindrical lens and the distance d between the cylindrical lens and the 

camera. The focal length of the cylindrical lens in front of the EMCCD camera (Figure 

3.2) was 1 m. The value d will affect the 𝜎𝑥  and 𝜎𝑦  range that is covered before 

defocusing of the PSF occurs. If d is too small, 𝜎𝑥  and 𝜎𝑦  will not change much 

before defocusing. Small changes of the calibration curve while changing the axial 

position will result in a low axial resolution. If d is too large, the PSF will change too 

fast and defocus already at a short distance away from the averaged focal plane. 

Therefore, the cylindrical lens is placed in a position that maximizes the 𝜎𝑥 and 𝜎𝑦 

range while keeping the PSF focused over a wide range. A typical range for 𝜎𝑥 and 

𝜎𝑦 in our setup is from 100 to 600 nm, and the working distance before defocusing is 

± 600 nm.  

Asymmetry of the 𝜎𝑥 and 𝜎𝑦 curves was observed rather often (Figure 3.7). This 
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may result in a relatively poor axial position on one side of the averaged focal plane. It 

is probably due to spherical aberrations which are introduced by the refractive index 

mismatch when imaging with an oil immersion objective into an aqueous sample129. 

Adjusting the objective correction collar (Figure 3.8) could compensate for this error. 

The correction collar is supposed to correct for aberration artifacts caused by the 

thickness of the glass slide. To demonstrate the effect of the different collar positions 

on the PSF shape at different axial positions, we adjusted the collar to 3 different 

correction collar positions and recorded the PSF while changing the objective’s axial 

position (Figure 3.9). Figure 3.9a shows the PSF when the red mark on the collar was 

at the smallest value (0.14, Figure 3.8). The PSF shows a ring structure at –300 nm and 

below which cannot be fitted well by the elliptical Gaussian function. The PSF above 

the focal plane defocused and faded very fast, resulting in a smaller 𝜎𝑦 above the focal 

plane. Figure 3.9b shows the PSF when the red mark of the collar was set to ~0.18. At 

this collar position, the PSF shape did not diverge in a relatively long range both below 

and above the focal plane (from –600 nm to 600 nm). The PSF could be well fitted by 

the elliptical Gaussian function and returned a symmetric calibration curve as shown in 

Figure 3.4. Figure 3.9c shows the PSF when the red mark of the collar was at the 

largest value (0.19, Figure 3.8). The PSF behaved opposite to Figure 3.9a. The PSF 

appeared as a ring shape at 300 nm and above and faded fast below the focus plane. 

The returned 𝜎𝑥 was relatively small below the focal plane in this case.  

 

Figure 3.7 Asymmetric calibration curve of the PSF widths 𝜎𝑥 and 𝜎𝑦 as a function 

of z obtained from single fluorescent beads. Each data point is the average value 

obtained from 5 beads.  
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Figure 3.8 Alpha Plan-Apochromat 63×/1.46 Oil Corr M27. Image adopted from Ref. 

[130]. 

 

Figure 3.9 The PSF shape changes with different collar settings (red mark). (a) Collar 

value 0.14. (b) Collar value 0.18. (c) Collar value 0.19. From left to right, the objective 

was moved from –600 nm to 600 nm, with the focal plane at 0 nm. 

Besides the width of the PSF, the lateral positions of the PSF upon changing the z 

position also need to be considered. Since most microscope applications are only 

interested in images at the focal plane, it is often overlooked how the PSF drifts out of 

focus. We realized that the lateral positions of the PSFs also shifted at different axial 

positions as shown in Figure 3.10a and c. The standard deviation of the x and y 

positions was 66 nm and 11 nm when moving the objective from 600 nm below the 

focus plane to 600 nm above the focus plane, respectively. The x position changed 
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linearly from ~ –125 nm to ~100 nm. The variation was much larger than the 

localization precision. Figure 3.10b and d shows the lateral positions at different axial 

positions after the objective was corrected by the vendor. The standard deviations for 

the x and y directions were comparable: 16 nm and 11 nm, respectively. The shift in x 

direction had improved dramatically. 

   

Figure 3.10 Lateral shift of PSFs when changing the axial position. (a) and (c) show 

the x and y positions as a function of z position before objective correction by the 

manufacturer. (b) and (d) are the x and y position as a function of z position after 

correction by the manufacturer.  

After obtaining a suitable calibration curve, the final step of the 3D reconstruction 

of PALM images is to convert the 𝜎𝑥 and 𝜎𝑦 of the sample molecules into z positions. 

As described in Eq. 3. 8, this is done by minimizing the distance of the molecule’s 𝜎𝑥 

and 𝜎𝑦 to the calibration curve in the 𝜎𝑥
1/2 − 𝜎𝑦

1/2 space. However, the 𝜎𝑥 and 𝜎𝑦 

distributions were often quite broad in biological samples due to the fact that many 

background fluorophores were excited during 3D imaging (Figure 3.11a). To estimate 

how the algorithm assigns a molecule with 𝜎𝑥 and 𝜎𝑦 far off the calibration curve, 

20,000 molecules were simulated with 𝜎𝑥  and 𝜎𝑦  evenly distributed in the range 

from 0.5 to 6 pixels. These molecules returned by the software were then plotted with 

color coding of the axial positions (Figure 3.11b). As we can see from Figure 3.11b, 

slight changes of 𝜎 in the region marked by the circle result in changes of the assigned 

z position of hundreds of nanometers. This makes the returned axial position 

distribution very broad, which will reduce the image quality. Therefore, the molecules 
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were often filtered based on the distance to the calibration curve before assigning z 

positions to them.  

 

Figure 3.11 𝜎𝑥， 𝜎𝑦 and corresponding z position. (a) Scatter plot of the 𝜎𝑥 and 𝜎𝑦 

from a typical biological sample. The dashed red line represents the calibration curve. 

(b) Simulated molecules and their corresponding z position encoded by color.  

3.3.3 Dual Channel 3D Astigmatism Super-resolution Imaging 

By inserting an additional cylindrical lens between F1 and objective lens (Figure 3.2), 

it is also possible to image the beads in two color channels with 3D super resolution. 

Due to the fact that the filter slot inside the microscope body is fixed, the position of 

the cylindrical lens could not be varied much. Therefore, the focal length of the 

cylindrical lens is important for the final shape of the PSF. A cylindrical lens with 10 m 

focal length (SCX cylindrical lens 10 m focal length, CVI Melles Griot, Rochester, 

USA) was used. Calibration curves of multi-color beads in the 582/50 nm channel and 

the 697/75 nm channel are shown in Figure 3.12. 

 

Figure 3.12 Calibration curves of the same multi-color beads in two channels: (a) far 

red (697/75) channel; (b) red channel (582/50).  
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By using the OptoSplit, the PSFs from the same beads could be displayed with 

astigmatism in both channels. It was possible to image in two color and with 3D super-

resolution simultaneously using this setup. However, a focal shift of ~200 nm was 

observed between the two channels (Figure 3.12) because the focal length of the 

cylindrical lens changes as a function of the wavelength. Therefore, one should 

compensate this chromatic aberration in the final data when merging the two channels. 
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Chapter 4  

Combination of Single Particle Tracking and 

Localization Microscopy 

Since a PALM image is a sum up of all molecules acquired in many individual frames 

during data acquisition, the temporal resolution is limited by the number of frames 

needed to reconstruct the biological structure. A typical CME process happens on the 

time scale of tens of seconds28, and it also typically takes ten of seconds to reconstruct 

a PALM image73. Thus, the uptake process appears blurred in the final reconstructed 

PALM image. Although researchers have attempted to push the temporal resolution of 

localization microscopy to the sub-second range76,131, such techniques are still limited 

by the brightness and fast blinking of the fluorophores due to the inherent requirement 

of collecting enough individual locations to reconstruct the structure. Therefore, we 

have combined localization microscopy with single particle tracking (SPT) to image 

the cellular uptake of NPs with both high temporal and spatial resolution.  

4.1 Combination of PALM and SPT 

SPT allows imaging single NPs with high temporal resolution. However, it only 

monitors individual particles with high precision and lacks the ability to provide 

structural information of the membrane receptors. Here, we have combined PALM and 

SPT to image the interactions between membrane carriers and single NPs, so that both 

high spatial and temporal resolution are achieved. A schematic view of this method is 

shown in Figure 4.1. NPs and CCPs were imaged simultaneously in two color channels 

using only one camera to speed up the measurement. The positions of the NPs in the 

individual frames recorded in the far red channel (697/70) were linked to create NP 

trajectories. In the red channel (582/50), a PALM image of the receptor was 

reconstructed. The trajectories and the PALM image were then overlaid with high 

precision. With the high temporal resolution of the trajectories and the high spatial 

resolution of the PALM image, mapping the interaction between NPs and membrane 

receptors with both high spatial and temporal resolution was possible.  

Overlaying of fluorescence images in different channels is commonly used in cell 

biology. Since the resolution limit of conventional optical microscopy is on the order 

of ~250 nm, there has been no need for accurate image registration. However, with the 

advent of super-resolution techniques, the precision of the image overlay also needs to 



4.1 Combination of PALM and SPT  

65 

 

be improved. In the following, we introduce an image registration method using fiducial 

beads to achieve a colocalization precision of at least 20 nm.  

 

Figure 4.1 Schematic of the experimental set-up. The fluorescence emission from 

particles and membrane receptors was split into two channels and imaged 

simultaneously onto one camera. The SPT trajectories were obtained in the particle 

channel, while the PALM image was reconstructed in the receptor channel. By applying 

a locally weighted image registration procedure, the two images were overlaid with 

registration errors smaller than the localization precision. 

A bead sample was prepared by adsorbing a dilute solution of ~100 nm Tetraspeck 

fluorescent beads (~0.3 pM, Invitrogen) on poly-L-lysine coated glass cover slips. The 

beads were imaged in deionized water. The bead density was chosen such that 50 – 80 

beads (Figure 4.2a) were visible in the field of view when imaging. Images of different 

areas were acquired to randomly sample different parts of the field of view. For each 

image, pairs of locations which appeared in both channels were determined. These pairs 

of locations are called control points. A mapping function based on this set of control 

points was calculated and applied to any future data points. We have used a local 

weighted mean (LWM) mapping132: 

 f(x, y) =
∑ Wi(R)Pi(x,y)i

∑ Wi(R)i
, (4.1) 

where the local weight 𝑊𝑖(𝑅) is defined as: 

 
𝑊𝑖(𝑅) = 1 − 3𝑅

2 + 2𝑅3 0 ≤ 𝑅 ≤ 1

𝑊𝑖(𝑅) = 0 𝑅 > 1
                    (4.2)
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and  

 𝑅 =
[(𝑥−𝑥𝑖)

2+(𝑦−𝑦𝑖)
2]
1/2

𝑅𝑛
. (4.3) 

𝑅𝑛 is the distance of position (x, y) to the n-th closest control point. 𝑃𝑖(𝑥, 𝑦) is the 

quadratic mapping function of control point i based on its n nearest control points. Here, 

we obtained the best results with n = 400.  

To estimate the mapping error, the target registration error (TRE) was used. The 

TRE is calculated using the following function: 

 𝑇𝑅𝐸 = (
1

𝑁
∑ [𝑋𝑖,1 − 𝑇𝑖{𝑋𝑖,2}]

2𝑁
𝑖=1 )

1/2

, (4.4) 

where N is the number of control points, 
1,iX and 

2,iX are a pair of control points i in 

channel 1 and channel 2, respectively. iT is the LWM mapping function from channel 

2 to 1 without control point i.  

 

Figure 4.2 Accurate image registration using multicolor beads. (a) The bead density 

was chosen such that ~50 – 80 beads were visible in the field of view. (b) The target 

registration error (TRE) was computed for each control pair by iteratively removing a 

given control pair and computing the mapping function with the remaining control pairs. 

The mean TRE was 21 nm, the median TRE was 17 nm. The mapping function was 

calibrated before each experiment. (c) The distribution of mean TREs for different sub-

regions of the field of view. In the central area (~15 nm), the TRE is smaller than in the 

periphery (>30 nm), presumably due to spherical aberrations of the optical system.   
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As shown in Figure 4.2b, the mean TRE was 21 nm and the median TRE was 17 

nm. The mapping function was determined before each experiment. The optical 

components except the filter block (F1, Figure 3.2) in the emission path were not 

touched after the calibration. The TRE was different in the different regions of the field 

of view, as shown in Figure 4.2c. In the central area, the TRE was ~ 15 nm while the 

TRE was >30 nm in the boundary area. This difference is probably due to spherical 

aberrations of the optical system, where the central part of the field of view is more 

linear than the boundaries.  

4.2 Fluorophore Selection 

Generally, there are two different approaches for multicolor imaging in localization 

microscopy. One approach is to use fluorescent probes that have the same emission 

wavelength but can be activated by light of different wavelengths120,133. The advantage 

of this approach is that one does not need to align different emission channels, which 

can be challenging at the nanometer scale134. However, it may induce more crosstalk 

due to spontaneous activation135. It also cannot be used to simultaneously image in two 

channels which could lower the temporal resolution. The other approach is to use 

fluorescent proteins or dyes with different emission wavelengths136,137. In conventional 

fluorescence microscopy, crosstalk of the fluorescence between the two detection 

channels can be negligible compared to the background signal when the excitation laser 

power is low. For localization microscopy, high laser power is required to induce 

‘blinking’ of the fluorophores. As a result, the crosstalk emission can be much higher 

than the background. Moreover, the usual approach of crosstalk correction by 

subtracting pixel values cannot be applied in localization microscopy to preserve the 

single molecule feature in the fluorescence image. Therefore, the sequential multicolor 

separation approach is often used. For instance, the molecules in the red channel are 

first detected, localized and bleached and then the molecules in the green channel are 

imaged136. For live cell samples, simultaneous imaging in multi-channels is preferred 

as short image acquisition time is needed. For simultaneous imaging, people often 

separate the signal based on the individual and characteristic emission spectra of the 

different fluorophores137,138. The photons from the fluorophores emitting at different 

emission wavelengths are detected in different channels. However, the number of 

photons detected in each channel depends on the characteristics of the emission spectra, 

i.e., green fluorophores have more photons in the green/short channel than in the 

red/long channel while red fluorophores have more photons in the long channel than in 

the short channel. When the relation between the number of photons detected in the 

different channels is plotted for each event, separate populations become visible 

(Figure 4.3).  

However, since the photons of the fluorophores can be detected in both channels, 

this method restricts the density of events and thus limits the temporal resolution of 
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super-resolution imaging. To find the optimal dye pair, we have tried different 

combinations of fluorophores. Normally, the crosstalk is high in the red region since 

the emission spectra of dyes often have a long tail in the red region (Figure 4.4). 

Therefore, we have used relatively dark fluorophores for detection in the green channel 

and bright fluorophores for detection in red channel. Even if the dark green fluorophore 

has crosstalk in the red channel, it can easily be filtered out due to its low photon count 

compared to the bright red fluorophores.  

 

Figure 4.3 Two dimensional distribution of the detected fluorescence photons from 

switching events in two channels. For Alexa647, the photon count is high in the green 

(short wavelength, 680 – 740 nm) channel and low in the red (long wavelength, 740 – 

830 nm) channel. For Alexa750, the number of photons is low in the short wavelength 

channel and high in the long wavelength channel. Therefore, events from each dye can 

be distiguished. Inset: Emission spectra of Alexa750 (red) and Alexa647 (green), the 

black trace is the transmission curve of the dichroic mirror in the splitter device. Image 

adopted from Ref.[138]. 

 

Figure 4.4 Excitation and emission spectra of Alexa568 and Alexa647. Dotted line and 

solid line represent excitation and emission spectra, respectively. Image created with 

the Fluorescence Spectra Viewer.  
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The first combination of fluorophores we have tried was mEos2 to tag clathrin light 

chain (CLC) and fluorescent Qdot® 705 (Invitrogen) quantum dots (QDs) as NPs. The 

advantage of QDs is that they have a wide absorbance and narrow, symmetric emission 

with a size-dependent emission maximum. However, upon steady illumination, the QD 

emission continuously shifted toward shorter wavelengths due to a continuous size 

reduction of the CdSe core due to photoxidation139. This process happened in less than 

1 min in our experimental setup, leading to pronounced crosstalk with mEos2. Next we 

tried to combine mEos2 and Alexa647 which are both good fluorophores for 

localization microscopy. However, we quickly found that the emission of Alexa647 was 

very strong in the 582/50 (mEos2) channel upon 561 nm laser illumination. It was very 

hard to distinguish mEos2 and Alexa647 in this channel which makes dual color super-

resolution imaging difficult140. Similar results were also obtained for Atto655.  

Finally, we have selected dark red (Ex/Em: 660/680 nm) carboxylated polystyrene 

(PS40) NPs (Invitrogen) with a nominal size of 40 nm because they were found to have 

negligible crosstalk with mEos2 (Figure 4.5). PS40 NPs were added to the CLC-mEos2 

transfected COS-7 cells. The emission of the PS40 NPs was detected in the red channel 

(697/75) and the emission of mEos2 was detected in the green channel (582/50). For 

each channel, 4,086 images were averaged, and the intensity in the same area (yellow 

line in Figure 4.5a and b) was plotted (Figure 4.5c). The crosstalk between the two 

channels was very low.  
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Figure 4.5 Raw two-color TIRF image of a CLC-mEos2 expressing COS-7 cell 

exposed to PS40 NPs. PS40 NPs and CCPs were simultaneously imaged with the 

iXon897 camera in two color channels. (a) Average of 4,086 images in the PS40 NPs 

channel. (b) Average of 4,086 raw images in the CLC-mEos2 channel. (c) Fluorescence 

intensity plot of cross sections (500 nm wide) through the same position of the PS40 

NP channel (yellow line in a) and the CLC-mEos2 channel (yellow line in b) indicating 

that crosstalk between the two channels is negligible. The columns on the right hand 

side in panels a and b represent the intensity values. 

4.3 Single Particle Tracking and Moment Scaling Spectrum 

Analysis 

Single-molecule fluorescence techniques are particularly appealing to investigate the 

NP-cell interactions in live cells as the entry of NPs into cells is often heterogeneous. 

Compared to ensemble methods (i.e., flow cytometry, gene expression studies), where 

the information on inhomogeneous behavior, kinetic variability or local heterogeneity 

is often lost141, single particle tracking provides detailed kinetic information during the 

entire entry pathway. 

In most cases, the raw data from SPT experiments comprise a series of time-lapse 

images acquired by the microscope camera. To quantitatively analyze the motion of 

individual particles, their trajectories need to be reconstructed from the raw data. The 
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image analysis methods can generally be divided into two steps: (i) particle detection 

and (ii) particle linking. Particle detection has already been discussed in Chapter 2. 

After molecule localization, the positions were passed to a tracking program 

(http://physics.georgetown.edu/matlab/) which is based on the nearest neighbors 

algorithm written in Matlab.  

The motional behaviour was obtained by analyzing the resulting trajectories. The 

most common approach is to analyze the mean square displacement (MSD) as a 

function of time to determine the motion type (diffusive, directed, confined) and yield 

the relevant parameters (diffusion coefficient, transport velocity, size of confinement 

domain, etc.). Normal and anomalous diffusion in 2D are described by  

 〈𝑹𝟐〉 = Γ𝑡 𝛼, (4.5) 

where Γ  is the transport coefficient, 𝑡  is the time interval, and the exponent, 𝛼 , 

distinguishes the motion type: anomalous subdiffusion ( 𝛼 < 1 ), anomalous 

superdiffusion (𝛼 > 1) and normal or Brownian diffusion (𝛼 = 1)142,143. For anomalous 

diffusion, the diffusion coefficient is time dependent, with 𝐷(𝑡) =
1

4
Γ𝑡𝛼−1. In normal 

diffusion, the MSD is proportional to the time interval and the diffusion coefficient is 

constant, with 𝐷 =
1

4
Γ. 

To characterize the motion of the NPs, we have performed a moment scaling 

spectrum (MSS) analysis144,145. This analysis is based on calculating different moments 

of displacements, 

 𝜇𝜈(𝛿𝑡) =  〈|𝑹(𝑡 + 𝛿𝑡) − 𝑹(𝑡)|
𝜈〉, (4.6) 

where 𝑹(𝑡) is the position vector at time t, 𝛿𝑡 is the time interval, 𝜈 is the order of 

the moment. The special case of 𝜈 = 2 is called MSD. Assuming that each moment 

obeys a power law, 𝜇𝜈 ∝ 𝛿𝑡
𝛾𝜈, the scaling coefficients 𝛾𝜈 were determined by linear 

regression to the double-logarithmic plots of  𝜇𝜈 versus 𝛿𝑡. Here, the value of D(t) at 

1 s, D0, was obtained from the y-axis intercepts 𝑦0  of the second order as: 𝐷0 =

4−1exp (𝑦0). The plot of 𝛾𝜈versus 𝜈 is termed moment scaling spectrum according to 

Ferrari et al.146. The slope of this line (SMSS) characterizes the modes of motion within 

the same trajectory. SMSS values of 0, 0.5, 1 correspond to immobility, free diffusion 

and directed movement, respectively. SMSS values between 0 and 0.5 indicate confined 

motions and values between 0.5 and 1 show superdiffusion. The main advantages of 

the SMSS method over the 〈𝑹𝟐〉 = Γ𝑡 𝛼 classification are a smaller error because of the 

good linearity of the MSS (Figure 4.6) and a clearer distinction between modes of 

motion145.  
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Figure 4.6 Mean square displacement and slope of the MSS analysis. (a) Simulated 

particle trajectory with a Brownian diffusion coefficient of 0.01 µm2/s. (b) MSD as a 

function of time for ten simulated particle trajectories with the same Brownian diffusion 

coefficient of 0.01 µm2/s versus time. (c) Corresponding MSS of the trajectories in (b). 

Different from the temporal dependence of the MSD, the MSS analysis shows a straight 

line. 

By plotting D0 versus SMSS, we can compare all trajectories in a single plot without 

arbitrary selection. Three modes of motion can be distinguished: (i) immobile (D < 2 × 

10-3 μm2/s; Figure 4.7, trajectory 1); (ii) confined diffusion (D > 2 × 10-3 μm2/s, SMSS < 

0.5; Figure 4.7, trajectory 2); (iii) directed movement (SMSS >0.5; Figure 4.7, trajectory 

3).  
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Figure 4.7 Representative trajectories in the SMSS versus D0 plot. (a) Trajectories of 

PS20 NPs diffusing on a COS-7 cell. The color scale represent the frame number. (b) 

Scatter plot of the diffusions coefficients versus the slope of the moment scaling 

spectrum. The dots marked 1 – 3 represent the trajectories shown in (a). 
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Chapter 5  

Materials and Methods 

In this chapter, we will introduce the techniques to fluorescently label cellular samples 

and purified proteins, and to functionalize the NP surface. Two basic labeling 

techniques will be discussed: immunohistochemistry and genetic labeling, both of 

which have been widely applied in cell biology. Furthermore, the imaging buffer for 

localization microscopy will be introduced.  

5.1 Immunostaining  

Immunofluorescence utilizes fluorescently labeled antibodies to detect specific target 

antigens. These labeled antibodies bind to the antigen of interest which allows antigen 

detection through fluorescence techniques. One can distinguish between direct and 

indirect immunofluorescence labeling methods. For direct immunofluorescence 

labeling, the antibody against the molecule of interest is chemically conjugated to a 

fluorescent dye. More frequently used, however, is indirect immunofluorescence 

labeling, where two types of antibody are used: the antibody specific for the molecule 

of interest (primary antibody, unlabeled) and a second anti-immunoglobulin antibody 

(secondary antibody, tagged with a fluorescent dye) that targets the constant portion of 

the first antibody. The advantage of direct immunofluorescence is the fast and simple 

staining procedure. In cases where multiple antibodies are employed in the same species, 

e.g., two mouse monoclonals, only direct labeling can be used. However, the drawback 

of this method is the low signal and low flexibility of the labeling procedure due to the 

fact that there are not many commercially labeled direct conjugates available. In 

indirect immunofluorescence, the labeling signal is amplified since more than one 

secondary antibody can attach to each primary antibody. Additionally, commercial 

secondary antibodies are relatively inexpensive and available with a wide variety of 

dyes in different colors. The limitations include cross-reactivity when the primary 

antibody for multi-labeling experiments was raised in the same species. Moreover, 

samples with endogenous immunoglobulin may exhibit a high background.   

We have used indirect immunofluorescence labeling for the celluar samples. It was 

performed according to the protocol reported in Ref. [147], shown in Figure 5.1.  
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Figure 5.1 Workflow of the protocol for immunostaining. Cells are first fixed with 4% 

PFA. After washing with PBS, the membrane is permeabilized by 0.5% Triton X-100. 

After washing, blocking buffer is added to cover the non-specific binding sites. Then, 

the primary antibody is added. After washing with 0.1% Tween 20, the labeled 

secondary antibody is added. The final sample is kept in PBS. 

(i) COS-7 cells or HeLa cells were first fixed with 4% paraformaldehyde (PFA, 

wt/vol, 4 g PFA in 100 ml final PBS solution, pH 7.4) for 10 min at room 

temperature. Afterwards, two washing steps with phosphate buffered saline 

(PBS) were performed.  

(ii) After fixation, the cells were permeabilized by 0.5% Triton X-100 in PBS 

(vol/vol) for about 10 min. After permeablization, the sample was washed 

twice with PBS.  

(iii) Then, the cells were incubated in blocking buffer (5% bovine serum albumin 

in PBS, wt/vol) for 30 min. 

(iv) Cells were then incubated with primary antibody in blocking buffer at 

different concentrations. For tubulin staining, a 1:2000 dilution (~1 µg/µl) 

of the stock mouse primary antibody was used (monoclonal anti-α-tubulin, 

T6074, Sigma-Aldrich, St. Louis, USA). For clathrin staining, 1 µg/µl rabbit 

anti-clathrin heavy chain (ab 21679 from Abcam, Cambridge, UK) was 

applied. The incubation time was either 30 – 60 min at room temperature or 

overnight at 4℃. Afterwards, the cells were washed three times (each time 

5 min) with 0.1% Tween-20 in PBS.  

(v) The fluorescent secondary antibody in blocking buffer was applied to the 

sample. Since a commercially labeled secondary antibody typically has 2 – 

8 fluorophores per IgG molecule (Invitrogen), one should do the labeling in 
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house, so that the degree of labeling can be adjusted to 0.2 – 0.8 dyes per 

antibody. Then, the majority of dye-labeled antibody molecules are labeled 

with only one dye molecule as required in localization microscopy148. 

Moreover, different concentrations of secondary antibody should be tried. 

For dyes with high on/off duty cycles, the concentration should be low. We 

have used 4 – 7 µg/µl Alexa647 labeled antibody for labeling. After washing 

three times with 0.1% Tween-20 in PBS, the sample was ready for imaging. 

Optionally, post-fixation (fix cells for 5 min using 4% PFA in PBS and wash 

three times with PBS) was applied for longer storage.  

The protocol was slightly modified for tubulin labeling. 3% PFA and 0.1% 

glutaraldehyde in PBS were used to fix the cells for 10 min120. Glutaraldehyde is 

supposed to preserve the structure. Afterwards, the sample was quenched with 0.1% 

sodium borohydride in PBS for 7 min to reduce the unreacted aldehyde groups and the 

fluorescent products formed during fixation. A comparison of a fixation with 4% PFA 

and fixation with glutaraldehyde is shown in Figure 5.2. The microtubules of both 

samples were labeled with Alexa647 (Figure 5.2a and b). In the zoomed image (Figure 

5.2c and d), microtubules without glutaraldehyde fixation appear blurred, whereas the 

structure is much better defined with glutaraldehyde fixation.  

 

Figure 5.2 Immunostaining of microtubules with and without glutaraldehyde. (a) 

Fixation of the cell with 4% PFA only. (b) Fixation of the cell with 3% PFA and 0.1% 

glutaraldehyde. (c) and (d) are the close-ups of the boxed regions in (a) and (b), 

respectively. Alexa647 were used for labeling. Scale bars, 10 µm (b) and 5 µm (d).  
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After immunostaining, the fixed sample can be imaged for a long time in order to 

activate all the fluorophores. However, artifacts may arise due to inadequate labeling. 

Imperfect sample fixation may lead to broken structures. Low labeling efficiency may 

limit the ability to resolve small structures by localization microscopy. Clustering of the 

fluorescent probes due to the amplification effect of indirect immunofluorescence 

labeling may also generate some artificial clusters. These artifacts are not observed 

when using conventional fluorescence microscopy techniques since they don’t have the 

ability to resolve them. Higher resolving power demands more stringent sample 

preparation.  

5.2 Tagging by Fluorescent Proteins 

Another method to label a protein of interest inside a cell is the use of fluorescent 

proteins. Genetically expressed PA-FPs may be used for localization microscopy. 

Compared to immunostaining, this approach has some key advantages136: (i) When 

fused to an endogenously expressed PA-FP, the target protein can be viewed in living 

cells; (ii) sample preparation is much easier than immunostaining. The genes of the 

fusion constructs can be introduced into cells using an appropriate vector (i.e., plasmids, 

viral, cosmids and artificial chromosomes). Transfection can either be transient or 

stable. Those vectors are widely accessible. After expression of the fluorescent protein, 

no potentially perturbing detergents, oxygen scavenging agents, or other treatments to 

manipulate the molecular photophysics need to be applied. (iii) PA-FPs are expressed 

bound to their respective targets. Therefore, issues such as targeting specificity and 

unspecific background are eliminated. (iv) The distance between the target protein and 

the PA-FP (<5 nm) is much less than the distance between secondary antibody and its 

target protein (>10 nm). With small PA-FP tags, higher labeling densities can in 

principle be achieved than with an antibody. 

There are various transfection reagents that can be used to assist the delivery of 

plasmid DNA into cells. Most frequently used techniques which can achieve efficient 

protein expression are calcium phosphate transfection, lipid-based transfection, 

electroporation and micro-injection. Typically, the most efficient means of delivery, 

associated with low toxicity, are lipid-based methods. They employ cationic lipids to 

assist the cell in the uptake of DNA from outside of the cell. The cationic lipids can 

associate with the negatively charged nucleic acid to form a ‘transfection complex’. It 

mediates the fusion of the complex with the negatively charged cell membrane. 

Following endocytosis of the DNA by the cells, the complex appears in endosomes and 

later escapes the endosomal pathway and enters the nucleus for transcription. It is still 

unclear how the nucleic acids are released from the endosomes and transverse the 

nuclear envelope.  

Many factors may influence the transfection efficiency: 1, cell health. 2, degree of 

confluency. 3, purity of DNA, 4, amount of DNA used. Therefore, one should try to 
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optimize parameters such as the ratio of transfection reagent and DNA, the amount of 

DNA to be transfected, the time that the cells are exposed to transfection reagent, and 

the presence or absence of serum to achieve optimal transfection efficiency.  

In the present work, the transfection procedure was done using PromoFectin 

(PromoCell, Heidelberg, Germany). This transfection reagent has lower toxicity than 

the lipofactamine® reagent from Invitrogen. The following protocol describes the 

transfection of COS-7 cells in 8-well Lab-Tek II chambered cover glass with the CLC-

mEos2 plasmid131. For other cells, optimization may be needed. 

Use 1.2 µl of PromoFectin and 375 ng of DNA per well as follows. Scale up and 

down for other culture vessels according to surface area. Transfection starts when the 

cells have a density of ca. 50% confluence.  

1. For each well, dilute 375 ng of DNA into 40 µl of culture medium without 

serum (i.e., Dulbecco’s modified Eagle’s medium, DMEM) or Opti-MEM. Mix 

with pipette. 

2. For each well, dilute 1.2 µl of PromoFectin solution into 40 µl of culture 

medium without serum or Opti-MEM. Mix with pipette. 

3. Add the 40 µl PromoFection solution to the 40 µl DNA solution, mix 

immediately with pipette. 

4. Incubate for 15 – 30 min at room temperature. 

5. Add the 80 µl PromoFectin/DNA mixture drop-wise onto the serum containing 

medium in each well and homogenize the mixture by gently swirling the plate. 

6. After 24 to 48 h, the cells are ready for imaging.  

After transfection with CLC-mEos2, mEos2-labeled clathrin in cells shows a 

punctate structure indicative of CCPs (Figure 5.3b). However, in the transfected cells, 

both non-labeled endogenous CLC and mEos2-labeled CLC (overexpression) are 

expressed. To test whether the mEos2 image reveals all CCPs, we immunolabeled all 

CLC with Alexa647, i.e., both the CLC-mEos2 and endogenous CLC (Figure 5.3a). As 

shown in the overlay image, all of the discrete structures in the immunofluorescence 

image co-localize with those in the mEos2 image.  
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Figure 5.3 Dual-color TIRF image of a COS-7 cell expressing CLC-mEos2. (a) The 

image in the red channel shows the immunofluorescence of CCPs in a cell that was 

transiently transfected with CLC-mEos2. Cells were immunostained using an anti-

clathrin heavy chain primary antibody and a Alexa 647-labeled secondary antibody. (b) 

The image in the green channel shows CCPs via mEos2 fluorescence. (c) Overlay 

image of the two color channels, so puncta with both red and green emission appear in 

yellow. Scale bar, 5 µm. 

5.3 Imaging Buffer  

Under standard pressure at 20 ℃, the concentration of molecular oxygen in aqueous 

solutions is typically between 200 to 300 µM149. However, in the presence of oxygen, 

the triplet state lifetime decreases. Reactions between molecular oxygen and 

fluorophores permanently destroy fluorescence and yield a free radical singlet species 

that chemically modify other molecules in living cells. Therefore, oxygen scavengers 

are employed to create anaerobic conditions so that the lifetime of fluorophores is 

increased by preventing oxygen-based reactions. The most common oxygen scavengers 

for single molecule experiments are glucose oxidase and catalase (GOC) and 

protocatechuate dioxygenase (PCD)150–152. Primary thiols (either β-mercaptoethanol 

(βME) or mercaptoethylamine (MEA)) can also be added to the buffer. However, the 

switching behavior of some dyes (especially red cyanine dyes) is rather sensitive to the 

thiol concentration153,154.  

Our imaging buffer contained TN buffer (50 mM Tris (pH 8.0) and 10 mM NaCl), 

an oxygen scavenging system (100 U/ml glucose oxidase (Sigma-Aldrich), 1690 U/ml 

catalase (Merck Millipore, Billerica, MA, USA) and 2% (w/v) glucose) and 143 mM 

βME (Sigma-Aldrich). The imaging buffer was only applied to immunostained samples 

where organic dyes were used. It was prepared freshly and was added immediately 

before image acquisition.  

5.4 Protein labeling  

Dyes were purchased as NHS derivatives (succinimidyl ester) and attached to IgG 

antibodies and transferrin. All dyes were dissolved in dimethyl sulfoxide. Aliquots were 
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stored at –20 °C. For antibody labeling, 50 µl of the secondary antibody (1mg/ml, 610-

701-124, Rockland Immunochemicals, Gibertsville, PA) was mixed with 40 µl PBS, 

and then the dye was added at varying concentrations (typically at a final concentration 

of 10 µM). Finally, 10 µl of 1 M NaHCO3 was added. The mixture was incubated at 

room temperature in the dark for 30 min. Afterwards, the labeled antibodies were 

purified by gel filtration columns (Bio-Spin 6 Columns, Bio-Rad). The labeling ratio 

was determined by using a UV-Vis spectrophotometer (NanoDrop 2000c, Thermo 

Fisher Scientific, MA, USA). For Tf labeling, 50 μl of 1 mg/ml Tf solution in PBS were 

mixed with another 40 µl of PBS, 1 µl of 2.5 µg/µl Alexa 647 succinimidyl ester 

(Invitrogen) in DMSO and, subsequently, 10 µl of 1 M NaHCO3 (pH 8.0) were added. 

The solution was shaken for 30 min at room temperature in the dark. Labeled Tf were 

purified by gel filtration using Bio-Spin 6 column (Bio-Rad, CA, USA). The Tf:dye 

labeling ratio was determined by a Nanodrop 2000c spectrometer (Thermo Fisher 

Scientific) to be about 3 dye molecules per Tf. 

5.5 Cell Culture 

The COS-7 cells were cultured at 37 ℃ and 5% CO2 in Dulbecco’s modified Eagle’s 

medium (DMEM), supplemented with 10% fetal bovine serum, 100 U of penicillin, and 

100 µg/mL streptomycin. Cells were seeded in eight well LabTek chambers to a density 

of ca. 50% confluence. 1 day after seeding, cells were transfected with CLC-mEos2 

(gift of X. Zhuang, Harvard University) using promofectin (PromoCell, Heidelberg, 

Germany) according to the protocol given above. COS-7 cells were exposed to 

carboxylated PS NPs (Fluospheres, dark red 660/680, Invitrogen, Grand Island, NY, 

USA). Before exposing the PS NPs to cells, cells were incubated with serum free 

DMEM for 30 min. For PS20, PS40, PS200 and PS40-PEG(10k)-Tf NPs, 0.5 nM NPs 

were applied. For the PS40-Tf NPs, 20 nM NPs were added due to the low binding 

affinity of PS40-Tf NPs to the cell membrane. Only higher concentrations of PS40-Tf 

NPs enabled the observation of PS40-Tf NPs on the basal membrane. 

5.6 Inhibitor Studies 

To examine the effect of chlorpromazine, an inhibitor of clathrin-mediated endocytosis, 

cells were pre-incubated for 30 min with 10 µg/ml chlorpromazine hydrochloride in 

serum-free DMEM medium prior to their exposure to NPs. Then, 200 µl of a solution 

containing the same inhibitor concentration plus PS40 or PS200 NPs (final 

concentration 20 µg/ml in serum-free DMEM, ~1 nM for PS40 and 0.01 nM for PS200) 

were added to the cells grown in eight-well LabTek chambers and incubated for 2 h. 

After 2 h incubation, 200 µl of 0.5 µg/ml CellMaskTM Orange (Invitrogen) in DMEM 

were added to the COS-7 cells and incubated for 5 min. The cells were washed three 

times with PBS before imaging. For a quantitative analysis of NP uptake, we acquired 
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dual-color spinning disk confocal images at cross sections ~2 µm above the bottom 

membrane. For each cell, the fluorescence intensity of the internalized PS NPs was 

quantified by dividing the integrated intensity by the cell area155. The intracellular 

region was identified manually based on the membrane staining using ImageJ.  

5.7 PS40 Nanoparticle Functionalization 

The PS40 NPs were functionalized with Tf. Either Tf was directly bound at the PS40 

surface or Tf was modified with a PEG linker before attaching on the PS40 NPs.   

5.7.1 Directly Coupled PS40-Transferrin NPs 

To directly conjugate Tf to the PS40 NP surface, EDC (or EDAC; 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide hydrochloride) was used. EDC is the most popular 

carbodiimide used for conjugating carboxylates and amines. The schematic of the 

synthesis is shown in Figure 5.4. 

 

Figure 5.4 Direct coupling of Tf on the carboxylated PS40 NP surface. 

96 µl of 1 µM carboxylated polystyrene NP (PS40, 40 nm nominal diameter, 

Ex/Em:660/680 nm, Invitrogen, Grand Island, USA) suspension were mixed with 304 

µl MES buffer (50 mM, pH 6.0) and added dropwise, while shaking, to 400 µl of apo-

Tf (freeze-dried powder, Sigma-Aldrich) dissolved in MES buffer at a concentration of 

5 mg/ml. 4 mg of EDAC were freshly dissolved in 20 µl MES buffer and added to the 

suspension. The particle-transferrin solution was kept for 2 h in the dark, and then 

purified by three dialysis runs of 24 h each against phosphate buffer solution (PBS, 

Invitrogen, pH 7.4) at 4 °C. The selectivity of the conjugation and the final orientation 

of the Tf on the NP surface depend on the number of nucleophilic functions on the 

protein156. Proteins may also crosslink and, therefore, the Tf coating on the PS40 NP 

surface may not be a monolayer.  

5.7.2 Tf modified with a PEG linker (PS40-PEG10k-Tf) 

PEG spacers are expected to preserve the protein function by moving the active moiety 

away from the particle surface157 and to obtain a protein surface monolayer. In order to 

introduce a PEG linker between Tf and PS40 NP, a two step reaction was used (Figure 

5.5). 1. Both PS40 and Tf were functionalized with a different reactive group. A Mal-
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PEGn-NH2 PEG-Linker was used to introduce a maleimide group on the PS40 NP 

surface. SAT(PEG)4 was used to react with an amine group on the Tf and add the 

sulfhydryl group to the protein. 2. In the final conjugation step, the maleimide group on 

the PS40 NP surface was coupled with the thiol group present on the Tf to form a stable 

thioether bond.  

Tf was dissolved in degassed PBS (pH 7.4) at a concentration of 5 mg/ml. 20 µl 

PEGylated N-succinimidyl S-acetylthioacetate (SAT(PEG)4, 1 mg/ml, Thermo Fisher 

Scientific) in dimethyl sulfoxide (0.047 µmol SAT(PEG)4) was added to 1ml of this 

solution (0.0625 µmol Tf). After 30 min shaking at room temperature, 100 µl 

deacetylation buffer (0.5 M hydroxylamine, 25 mM ethylenediaminetetraacetic acid 

(EDTA) in PBS, pH 7.4) was added. After 2 h reaction while shaking, tris(2-

carboxyethyl) phosphine (TCEP) (1 mM) was added and incubated for 5 min. The 

solution was then run through a Sephadex G25 spin column in deoxygenated HEPES 

buffer (pH 7.4). A PS40 NP suspension (10 mg/ml) was added dropwise to a stirring 

equal volume solution of NH2-PEGn-Mal linker (M.W. = 10 kDa, 10 mg/ml, Creative 

PEGWorks, Winston-Salem, NC, USA), both in MES buffer (50 mM, pH 6.0). EDAC 

(final concentration 1 mg/ml) was then added to the suspension. The reaction was 

allowed to proceed under stirring for 2 h. Following the reaction, the suspension was 

purified by a Sephadex G25 column with PBS buffer. The resulting suspension was 

added to the suspension of SAT(PEG)4 modified Tf. Following another 2 h of reaction, 

the NP suspension was purified by three dialysis runs against PBS (pH 7.4) at 4 ℃ for 

24 h each.  

 

Figure 5.5 Preparation of PEGylated Tf NPs. PS40 NPs were modified with Mal-PEGn-

NH2 to introduce maleimide groups on the NP surfaces. Tf was modified by SAT(PEG)4 

to introduce a thiol group. The two products were subsequently ‘clicked’ by the thiol-

maleimide reaction at the particle surface. 
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5.7.3 Characterization of PS NPs 

Dynamic light scattering and ζ-potential measurements were performed in serum free 

DMEM media using a Zetasizer Nano-ZS instrument (Malvern Instruments, Malvern, 

UK) with a 633 nm laser at 25 °C. Each measurement is an average of 5 runs of 100 

individual measurements. The size of a Tf molecule is ~ 7 – 10 nm. However, the 

diameter of the PS40-Tf NPs was 101 ± 9 nm while the diameter of the bare PS40 NPs 

was 62 ± 3 nm. Therefore, Tf is probably forming a multi-layer on the PS40 NPs surface.  

Table 5.1 Physico-chemical characterization of bare and functionalized PS NPs.  

Sample Diameter (nm) ζ in DMEM (mV) 

PS40 62 ± 3  -23.7 ± 1.1 

PS40-Tf 101 ± 9  -8.4 ± 0.6 

PS40-PEG(10k)-Tf 115 ± 6  -9.5 ± 0.7 

PS20 36 ± 1 -33.7 ± 1.9 

PS200 216 ± 2 -33.2 ± 2.7 
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Chapter 6  

Super-resolution Imaging of Microtubules 

and Clathrin Coated Pits 

During the development of localization microscopy techniques, subcellular structures 

with well characterized dimensions of 10 – 50 nm such as microtubules, actin, clathrin-

coated pits, mitochondria, the endoplasmic reticulum and focal adhesion complexes8 

were frequently imaged as proofs of principle. In this chapter, we will demonstrate the 

advantage of localization microscopy using both dSTORM70 and PALM68 to image 

microtubules and CCPs, respectively. Some technical details of acquring a good super-

resolution image are also discussed.  

6.1 Super-resolution Imaging of Microtubules 

Microtubules are a component of the cytoskeleton. They are hollow tubes consisting of 

polymerized α-tubulin and β-tubulin heterodimers. The αβ dimers pack together via 

noncovalent bonding to form the wall of the hollow cylindrical microtubule (Figure 

6.1a). The tube consists of 13 parallel protofilaments, which are linear chains of tubulin 

dimers with α- and β-tubulin alternating along its length (Figure 6.1b and d). All 

protofilaments have the same structural polarity, with a designated plus end (β-tubulin 

end) and a minus end (α-tubulin end). The diameter of the tube is 25 nm158 (Figure 6.1d 

and e). Molecular motors use these tubes as tracks to transport vesicles, organelles and 

other cell components. Two types of motor proteins can be distinguished based on the 

directional movement toward each end: kinesins move toward the plus end and dyneins 

move toward the minus end. Microtubules are the most frequently used model system 

for super-resolution imaging. 

We have labeled α-tubulin in fixed COS-7 cells with Alexa 647 using 

immunostaining. PBS buffer solutions in the sample were exchanged with imaging 

buffer immediately before dSTORM data acquisition. The resultant fluorescence image 

is shown in Figure 6.2a. Due to the resolution limit in far-field microscopy, the full 

width half maximum (FWHM) of the microtubules in the conventional fluorescence 

image is about 400 nm (Figure 6.2c). By using 3D localization microscopy, we 

obtained a super-resolved image of the microtubules (Figure 6.2b). The lateral FWHM 

was only 54 nm (Figure 6.2d). Considering the intrinsic 25-nm width of a microtubule 

and the length of the primary and secondary antibodies with more than 10 nm (diameter 
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of secondary antibody immunoglobulin G is 8.4 nm159), the image represents the real 

microtubules very well. 

 

Figure 6.1 Schematic view of microtubules and the electron micrograph. (a) One 

tubulin subunit and one protofilament made by tubulin heterodimers. (b) and (c) 

Depictions of tubulin dimers packed together in the microtubule wall. (d) and (e) 

Electron micrographs showing a cross section and lengthwise view of a microtubule. 

Image adopted from Ref. [160]. 

The 3D super-resolution image in Figure 6.2b also encodes the axial positions. The 

3D view of the cropped subregion in Figure 6.2b is shown in Figure 6.2e. It shows a 

compact bundle in all three dimensions. The x-z view and the intensity profile along the 

axial position are shown in Figure 6.2f and Figure 6.2g. Compared to the FWHM of 

conventional 3D confocal microscopy with an axial resolution of 500 – 800 nm161, the 

FWHM of the microtubule along the axial direction was only 90 nm. Considering the 

intrinsic size of the microtubule structure, the 3D image was 10 times better resolved 

in all three dimensions than if it were taken by conventional microscopy.  
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Figure 6.2 3D localization microscopy image of microtubules in a fixed HeLa cell 

immunostained by Alexa 647. (a) Conventional fluorescence image and (b) 3D super-

resolution localization microscopy image of microtubules, respectively. (c) and (d) 

Lateral intensity profiles along the boxed region in (a) and (b), respectively. Gaussian 

fitting resulted in a FWHM of (c) 400 nm and (d) 54 nm. (e) 3D view of the boxed 

region in (b). (f) x-z view of (e). (g) Intensity profile along the axial direction. The 

FWHM of the microtubule was 90 nm along the axial direction. Scale bar, 2 µm. 
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The quality of the 3D localization microscopy image critically depends on the 

sample preparation including the selection of the dye. As described in Chapter 4, sample 

preparation in super-resolution microscopy is important. Imperfect sample fixation and 

permeabilization will result in broken structures. Clustering of the fluorescent probes 

is also a common problem since the fluorophores may undergo repetitive switching and, 

therefore, appear as an artificial cluster in the final reconstructed image70,148.  

The raw image quality is very important for reconstructing a good super-resolution 

image. With PALM/STORM, people have to pay attention to what is reconstructed by 

the software and make sense of the super-resolution images. Otherwise, the image may 

contain many artifacts. The PALM/STORM image is reconstructed by searching 

isolated molecules in the raw imaging frames. The performance of the molecule 

detection software often decreases with increasing molecule density and background 

level. It may either miss real molecules or return molecules with wrong parameters. 

Especially for 3D super-resolution imaging, the quality of the raw image data is crucial 

for the final reconstructed image since more parameters are needed to calculate the 

additional z-position.  

We have compared the performance of Alexa647 and Alexa488 fluorophores. As 

shown in Figure 6.3, the SNR of Alexa647 labeled microtubules (Figure 6.3a) is much 

greater than that of Alexa488 labeled microtubules (Figure 6.3b), which is probably 

due to the fact that the mean number of photons emitted by a single Alexa488 dye 

(~1,000 photons) is much smaller than the number of photons emitted by Alexa647 

(~5,000)148. The autofluorescence in the green channel is also stronger than in the far 

red channel. Although the software can still find ‘bright spots’ as indicated by the red 

boxes, the reconstructed super-resolution images were quite different in quality 

between the two dyes (Figure 6.2 and Figure 6.4). 

 

Figure 6.3 Raw dSTORM image frames. (a) and (b) Microtubules immunostained with 

Alexa647 and Alexa488, respectively. Red boxes indicate the molecule candidates 

detected by the software. 
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Figure 6.4 3D localization microscopy image of microtubules in a fixed HeLa cell 

immunostained by Alexa 488. (a) and (b) Conventional fluorecence image and 3D 

super-resolution image of microtubules. (c) 3D view of the boxed region in (b). (d) and 

(e) Intensity profiles of (c) along the lateral and the axial directions, respectively. Scale 

bar, 2 µm. 

Compared with a conventional fluorescence image (Figure 6.4a), the dSTORM 

image (Figure 6.4b) still reconstructed some finer tubules in lateral direction, with the 

FWHM of the tubules of 88 nm (Figure 6.4d), compared with ~400 nm FWHM in the 

conventional fluorescence image. However, in the 3D view of the tubule structure 

(Figure 6.4c), the points are distributed broadly along the axial direction (Figure 6.4e), 

most likely because the software cannot find the correct 𝜎𝑥 and 𝜎𝑦 of the molecule 

candidates with strong background. 
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6.2 Super-resolution Imaging of Clathrin Coated Pits 

Clathrin is a protein which plays an important role in the formation of coated vesicles 

on the membrane. These proteins are used to bud off small vesicles for the 

transportation of molecules within cells. The function of the vesicles is not only limited 

to endocytosis of nutrients, but also affects cell signaling, immune response, and cell 

communication. Viruses may also utilize this pathway to gain entry to the cell during 

infection.  

Clathrin is a trimer of three 190 kDa heavy chains, each associated with a 23 – 26 

kDa light chain (Figure 6.5). These three pairs of heavy chains and light chains form a 

triskelion shape. A clathrin triskelion is the assembly unit for the vesicular coating. The 

triskelia can interact with each other and form a polyhedral lattice surrounding the 

vesicle. The heavy chain has a very elongated structure, approximately 450 Å in contour 

length, with 42 α-helical zig-zags connecting a globular N terminal domain with a C 

terminal trimer hub162. They provide the structure backbone of the clathrin lattice. The 

light chain binds near the hub and is thought to regulate formation and disassembly of 

the clathrin lattice. After assembly of a clathrin coat, a sharp membrane invagination is 

produced. The radius of the clathrin coated pits ranges from 35 nm to more than 100 

nm.   

 

Figure 6.5 Schematic representation of a clathrin coated pit. Three pairs of heavy 

chains and light chains form a triskelion. These triskelia interact with each other and 

form a clathrin lattice. Image adopted from Ref. [162]. 

We have immunolabeled clathrin coated pits with the mouse monoclonal anti-

clathrin heavy chain (Abcam) primary antibody. The secondary antibody was labeled 

either with Alexa647 or with Atto655 to compare the results. The immunostaining 

procedure has been described in Chapter 5. PBS buffer solutions in the sample were 
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exchanged with imaging buffer immediately before data acquisition. The dSTORM 

images are shown in Figure 6.6. 

 

Figure 6.6 dSTORM imaging of clathrin using Alexa647 and Atto655. (a-c) Alexa 647, 

(d-f) Atto 655 image frames. The red boxes (a and d) are the molecule candidates in the 

raw image frames detected by the software. (b) and (e) Overlay of TIRF images (green) 

and super-resolution images of CCPs (red). (c) and (f) Zoomed image of the boxed 

regions in (b) and (e), respectively. (g) and (h) Intensity plot of (b) and (e), respectively. 

Gaussian fitting (red and green: single Gaussian, blue: sum) resulted in a separation of 

158 nm between the analyzed structures. Scale bars, 1 µm (b and e) and 200 nm (c and 

f). 

As shown in Figure 6.6a and Figure 6.6d, the SNR of the raw image of Alexa647 

is much higher than that of Atto655. Figure 6.6b and Figure 6.6e are overlay images 

of the TIRF image (green) and the reconstructed dSTORM image (red) with Alexa647 

and Atto655, respectively. For both Alexa647 and Atto655, the reconstructed dSTORM 

image of the CCPs has a better resolution than the TIRF image. However, the zoomed 
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images in Figure 6.6c and Figure 6.6f show a ring structure only for the Alexa647 

labeled sample but not for Alexa655. The difference is more obvious in the intensity 

profiles along a 90-nm wide strip shown in Figure 6.6g (Alexa647) and Figure 6.6h 

(Atto655). As shown in Figure 6.6g, the dSTORM image of the Alexa647-labeled 

CCPs shows a ring-like cross-section with a diameter of about 158 nm. In contrast, the 

hollow center of the ring structure was not resolved in the Atto655 image, which instead 

showed a Gaussian profile. Compared to Alexa647, Atto655 suffered from lower 

localization accuracy due to the low photon yield per switching cycle, leading to a 

reduction in image resolution that blurred the CCP image substantially so that its 

hollowness was no longer apparent.  

We further extended super-resolution imaging of CCPs to live HeLa cells by fusing 

the photoswitchable fluorescent protein mEos2 to the clathrin light chain. Cells were 

transfected with the CLC-mEos2 plasmid (gift of X. Zhuang, Harvard University) with 

promofectin using the protocol described in Chapter 5. Imaging buffer was not needed 

for mEos2. Cells were imaged directly in the culture medium. Instead of using 50 ms 

exposure time as for the fixed cell, we used a shorter exposure time of 5 ms. 10,000 

images were taken (totally 50 s).  

As show in Figure 6.7a (TIRF) and Figure 6.7b (PALM), the diffraction limited 

spots of the CCPs in the TIRF image are much bigger than in the PALM image. Some 

punctate patterns even consisted of two individual CCPs, as indicated by the arrows. 

The nanoscopic cup-like morphology was resolved in the PALM image (Figure 6.7c) 

which demonstrates the ability of resolving nanoscopic structures in living cell using 

localization microscopy.  

Another interesting observation is that, instead of forming a ring-like structure, 

some CCPs appeared as two individual spots in the PALM image (Figure 6.7b, circle). 

This might be due to a different morphology of the CCPs on the membrane during 

endocytosis. Further investigations are necessary to explain these findings.
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Figure 6.7 PALM image of CLC-mEos2 expressed in a live HeLa cell. 10,000 images 

were taken at a frame rate of 5 ms (totally 50 s). (a) The average of 800 TIRF images 

of CLC-mEos2 shows point-like structures of CCPs on the membrane. (b) The PALM 

image of CLC-mEos2 shows a ring-like structure of many individual CCPs. The circles 

indicate CCPs that show two individual spots. The arrow shows two CCPs that were 

resolved in the PALM image and appeared as only one in the TIRF image. (c) Zoomed-

in image of the boxed region in (b). (d) Localization density profile along the line drawn 

in (c) shows the cup-like morphology of the CCP. Scale bars, 1 μm (b) and 200 nm (c). 

We also applied the 3D astigmatism super-resolution method to image CLC-mEos2 

in living COS-7 cells. Compared to organic dyes, fluorescent proteins emit much less 

photons. As it is very important to have enough photons for 3D super-resolution 

imaging of a single molecule so that the returned parameters can precisely encode the 

axial position, the camera exposure time was set to 100 ms, which is twice the typical 

camera exposure time for imaging Alexa647. The resulting photon histograms of single 

CLC-mEos2 molecules at camera exposure times of 5 ms (live cell, Figure 6.7) and 

100 ms are shown in Figure 6.8.  
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Figure 6.8 Photon histograms of CLC-mEos2 at different camera exposure times. (a) 

and (b) Photon number distributions of mEos2 at camera exposure times of 5 ms and 

100 ms, respectively. 

As shown in Figure 6.8a and b, the mean photon number of CLC-mEos2 with a 

camera exposure time of 100 ms is ~10 times of that with the exposure time of 5 ms. 

With this high photon count per single molecule, the 3D clathrin image in a living COS-

7 cell could be reconstructed as shown in Figure 6.9. Inclined illumination (HILO)123 

was used for 3D imaging. Figure 6.9a and b shows the conventional wide field image 

(average of 100 images) and the PALM image, respectively. The CCPs in the wide-field 

image appear elongated due to the fact that the cylindrical lens was positioned in front 

of the camera during image acquisition. The PALM image was reconstructed from 

10,000 image frames (16.7 min). The 2D PALM image showed much smaller CCPs 

compared to the ones in the wide field image. It is interesting to see that some CCPs 

were again reconstructed as two individual clusters (indicated by cycles) as shown in 

Figure 6.9. These CCPs were darker than other CCPs in the wide field image. Therefore, 

we suggest that these CCPs were probably about to be internalized. Interestingly, one 

particular CCP (indicated by the arrow) was found in the PALM image but not in the 

TIRF images. This CCP may have formed during the long acquisition time. To resolve 

the ring-like structure of the CCPs, the 2D image was divided into different axial layers 

(Figure 6.9c). Molecules were binned into different layers (25 nm each bin). As shown 

in Figure 6.9c, the molecules only spread ~ 250 nm in the axial direction, which is 

reasonable considering the size of the CCPs. The nanoscopic ring-like structure could 

be resolved between 25 and 75 nm. The CCP exhibits larger size in the middle layers 

(~100 nm to 150 nm) than in the edge layers which also agrees well with the spherical 

shape of the CCP.  
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Figure 6.9 3D imaging of clathrin coated pits. (a) Wide field image of CCPs on the 

bottom COS-7 cell membrane surface. (b) PALM image of CCPs. The circles indicate 

CCPs that show two individual spots. The arrow shows a CCP that was reconstructed 

in the PALM image but not seen in the wide field image. (c) The image of the CCP in 

the boxed region in (b) was divided into different axial layers. Scale bars, 2 µm (a) and 

200 nm (c).
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Chapter 7  

Super-resolution Imaging-based Single 

Particle Tracking Reveals Fast Dynamics of 

Nanoparticle-cell Interactions 

We have combined the high spatial resolution capability of PALM and the fast temporal 

resolution of single particle tracking to investigate the critical early stages of the cellular 

uptake of NPs. Clathrin-mediated endocytosis (CME) is by far the best studied pathway 

among different endocytosis mechanisms23. It is responsible for endocytosis of many 

different NPs46. Here, polystyrene (PS) NPs with different size (20 nm, 40 nm and 200 

nm) and different surface functionality were chosen as model particles. We have 

focused on the interaction between PS NPs and CCPs.  

7.1 Interaction between Carboxylated PS40 NPs and CCPs 

We have already discussed that the PALM images of the CCPs labeled with mEos2 

often show ring-like shapes, whereas they only appear as spot-like structures in the 

conventional TIRF image (Figure 6.7), demonstrating the much improved spatial 

resolution of PALM. Molecules were identified in each frame using the software 

described in Section 2.391. The PALM image of CCPs in COS-7 cell was reconstructed 

from 5,000 fluorescence images of CLC-mEos2 (Figure 7.1a). The trajectories of the 

PS40 NPs were overlaid with the CCPs (Figure 7.1b and Figure 7.1c). Due to the 

movement of clathrin during image acquisition, the CCPs appeared blurred in the 

PALM image. Therefore, we reconstructed the PALM image with shorter time intervals 

(500 frames, 15 s). Indeed, as shown in Figure 7.1d, a much improved quality of the 

CCP structure was obtained. Dynamic information on even faster time scales could not 

be obtained from the PALM images. However, by using the trajectories of the NPs as 

complementary information, one can get additional dynamic insight into the events 

involving clathrin. An example is shown in Figure 7.1d. From 0 – 60 s, the trajectory 

of the particle was confined to a small area and the clathrin pit in the PALM image was 

also constrained. From 60 – 120 s, the trajectory of the PS40 NP showed a directed 

motion over a short distance. Meanwhile, the clathrin structure became more extended. 

The trajectory of the NP always co-localized with the CCP, indicating co-movement of 

the PS40 NP and the CCP. From 105 – 150 s, the PS40 NP remained at the same spot 
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again.  

In order to obtain even faster dynamic information, the rolling-window algorithm 

was applied for subtrajectory analysis163. The local mean square displacement (time 

window: 100 frames and step duration: 20 frames) was fitted by a power law function 

𝑀𝑆𝐷 =Γ𝑡𝛼 as described in Section 4.3. The time dependent α is shown in Figure 

7.2. As expected, in the first 60 s and the last 30 s, 54% and 50% of the α values were 

below 1, showing hindered diffusion, with the remaining events associated with α 

mostly slightly above 1. From 60 – 120 s, 80% of the α values were above 1, suggesting 

a super-diffusion process. The detailed analysis of the MSD curves revealed very 

heterogeneous diffusive motions of the PS40 NPs that co-moved with the CCPs. Even 

with the PS40 NPs confined in the CCPs (first 60 s and last 30 s in Figure 7.1d), the 

interaction of the CCPs and the sub-membrane cytoskeleton could direct the movement 

of the CCPs (60 – 120 s in Figure 7.1d). Therefore, the motion type of the NPs reflects 

the interactions between the CCPs and the submembrane cytoskeleton network. 

 

Figure 7.1 Interaction between PS40 NPs and CCPs. (a) Conventional wide field image 

(top) and PALM image (bottom) of CCPs. (b) Trajectories of PS40 NPs moving on the 

COS-7 cell. (c) Overlap of the PS40 NPs trajectories with the PALM image of the CCPs. 

(d) Time-lapse images of higher-magnification views of the boxed region in (c) 

showing the highly dynamic interaction between PS40 NP and CCP. Scale bars, 1 µm. 
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Figure 7.2 Analysis of the time exponent of the MSDs calculated from the trajectories 

shown in Figure 7.1. The local mean square displacement (time window 100 frames, 

step duration 20 frames) was fitted by a power law function,
tMSD   . The 

horizontal line at α = 1 refers to free diffusion, α < 1 indicates anomalous sub-diffusion, 

and α > 1 super-diffusion. The green and red time windows represent anomalous sub-

diffusion and super-diffusion dominated time periods, respectively.   

7.1.1 Accumulation of Carboxylated PS40 NPs on the Membrane 

Since carboxylated PS40 NPs are closer to each other than the optical diffraction limit 

if they accumulate, we cannot distinguish the fluorescent spot from a single PS40 NP 

from that of accumulated PS40 NPs. To overcome the detection barrier, we have used 

a mixture of NPs emitting in the green and in the red with identical size (40 nm) as a 

nanoruler164. Equal volumes of red (660/680) and green (565/580) PS40 NPs (~1 nM 

each) were mixed and then applied to COS-7 cells. A 561 nm laser and a 640 nm laser 

were used to excite the green and red NPs, respectively.  

The image of PS40 NPs was taken 40 min after adding the NPs (Figure 7.3). 

Figure 7.3(a) and (b) show the PS40 NPs in the red and green channel, respectively. 

The two channel images were then merged by the local weighted mean mapping 

function derived from the calibration using multi-color beads. 33.3% (194/581) of red 

and green PS40 NPs were found to be co-localized with each other. This result indicates 

that an individual spot contains one or at most two NPs which is consistent with 

previous results4. In a random combination, another one-third of the spots have two 

particles of the same color, and the remaining one-third of the spots consists only of a 

single green or red NP. Note that, the more NPs congregate in one site, the lower is the 

probability of spots having only a single color. 

 



7.1 Interaction between Carboxylated PS40 NPs and CCPs  

101 

 

 

Figure 7.3 NPs (excitation/emission peaks: 565/580 nm), which we refer to as ‘green 

NPs’, were mixed with equal proportions of red NPs (excitation/emission peaks: 

660/680 nm). Lasers emitting light at 561 nm and 640 nm were used to excite the green 

and red NPs, respectively. Images were taken 40 min after adding the NPs. (a) Red 

PS40 NPs at the bottom surface of a COS-7 cell, imaged with a band pass filter (697/75). 

(b) Same view in the green channel, filtered with a band pass filter (582/50). (c) The 

two images were merged using the image registration method described in Chapter 4. 

Scale bar, 5 µm.  

To quantify particle aggregation on the membrane over time, the cells were fixed 

at different time points (10, 20, 30, 40 min) after adding the mixed red and green PS40 

NPs. The distance between the co-localized green and red NPs is expected to indicate 

the size of the vesicles that captured the NPs164. The size of the vesicle was determined 

by the sum of the distance between the co-localized green and red NPs and their 

diameters (62 nm from the DLS measurement). The size distributions at the four chosen 

time points are shown in Figure 7.4(a), (b), (c) and (d), respectively. The fraction of 

red PS40 NPs that were co-localized with green PS40 NPs was 20% (48/245), 25% 

(102/405), 29% (160/550), 33% (194/581) for 10, 20, 30 and 40 min, respectively. The 

average vesicle size at the different time points was 167 ± 55 nm, 155 ± 60 nm, 167± 

70 nm and 160 ± 65 nm. Even though co-localization increases with time, the mean 

distance between red and green PS40 NPs does not change, indicating that larger 

aggregates do not form during this time.  
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Figure 7.4 Distance between colocalized red and green PS40 NPs. After adding mixed 

red and green PS40 NPs to COS-7 cells, cells were fixed at different time points. The 

distance between the co-localized green and red NPs indicates the size of the vesicles 

that captured the NPs. The vesicle size distributions for at fixation 10, 20, 30, 40 min 

after NP exposure are shown in panels (a), (b), (c) and (d), respectively.  

7.2 Two Types of Interaction between Carboxylated PS40 NPs 

and CCPs 

Interestingly, two distinctly different types of interaction between PS40 NPs and CCPs 

were observed (Figure 7.5 and Figure 7.7). In more than 80% (48/59) of all events, in 

the beginning, NPs were bound on the membrane without any CCP present (type I, 

Figure 7.5 a-d). After some time, the CCP signal appeared and increased gradually. 

During this period, the fluorescence intensity of the NPs remained essentially constant. 

After the signal of the CCPs reached its maximum, the NP emission intensity started to 

decrease, indicating the beginning of internalization (Figure 7.5c). In the final stage, a 

100-nm lateral movement of the CCP was observed in both the PALM image of the 

CCP and the trajectory of the PS40 (Figure 7.5b), while the control PS40 NPs outside 

the cells showed constant intensity and location (Figure 7.6). It is noteworthy that the 

intensity of the PS40 NPs often did not decrease to zero after the complete 

disappearance of the clathrin signal. However, the decrease of more than 30% of the 

intensity indicates that the PS40 NPs moved away from the surface. The PS40 NPs 

probably stay near the membrane and are not immediately transported deeply into the 

cell after internalization.  
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Figure 7.5 Type I PS NP and CCP co-localization. (a) Overlay of PS40 NP trajectory 

and CCP. (b) PS40 NP trajectory over raw data. A lateral shift of the PS40 NP was 

observed during the uptake process. (c) The emission intensities of the PS40 NP and 

the CCP during the uptake process. (d) Schematics of the sequential stages during type 

I endocytosis of PS40 NP. Red: NP, blue: clathrin. Scale bar, 100 nm. (d, courtesy of 

Karin Nienhaus.) 

 

Figure 7.6 Trajectory and intensity distribution of a control PS40 NP adsorbed on the 

glass surface. (a) The trajectory of the control PS40 NP showed a constant location, 

with an average standard deviation of the x and y dimensions of 14.7 nm. The average 

standard deviation of the x and y dimension of the PS40 NP shown in Figure 7.5b is 

31.8 nm. (b) The intensity distribution of the controlled PS40 NP shows a constant 

intensity level. Scale bar, 100 nm. 

In the other cases, the PS40 NPs were observed to move into a pre-existing CCP 

region (type II, Figure 7.7a-d). As shown in Figure 7.7a, at the initial stage, the PS40 

NP was randomly moving on the membrane, then co-localized with and remained 

within the CCP (Figure 7.7c and d). Finally, the signal of the CCP continuously 

decreased, indicating internalization of the CCP. After about 15 s, both the CCP and the 

PS40 NP had disappeared (Figure 7.7c), suggesting that the CCP had detached from 

the membrane (Figure 7.7d). 
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Figure 7.7 Type II PS40 NP and CCP co-localization. (a) Overlay of the PS40 NP 

trajectory and the CCP. (b) PS40 NP trajectory over raw data. (c) Emission intensities 

of the PS40 NP and the CCP during the uptake process. (d) Schematics of the sequential 

stages during type II endocytosis of PS40 NPs. Red: NP, blue: clathrin. Scale bar 500 

nm. (d, courtesy of Karin Nienhaus.) 

7.3 Co-localization of PS NPs with CCPs 

7.3.1 Role of Clathrin in the Cellular Uptake of Carboxylated PS NPs  

Studies have reported that carboxylated PS40 NPs are taken up by cells in a clathrin-

dominated pathway165. By using chlorpromazine, an inhibitor known to interfere with 

the CME pathways, we also observed an up to 40% decrease in the fluorescence of 

internalized PS40 NPs (Figure 7.8a-c), suggesting a significant role of clathrin in the 

endocytosis of these NPs by COS-7 cells. In contrast, treatment of COS-7 cells with 

chlorpromazine lead to almost no change in the uptake level of PS200 NPs (Figure 

7.8d-f), probably due to the fact the PS200 are too big to be taken up through CCPs 

which normally have a diameter of less than 200 nm. We emphasize that, although the 

inhibition data do not give direct evidence on the specificity of NP-cellular interactions 

due to the toxicity of the inhibitor, the difference in the uptake of PS40 and PS200 NPs 

is indicative of the relative contribution made by CME pathway. 
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Figure 7.8 Effect of chlorpromazine on the uptake of PS40 and PS200 NPs by COS-7 

cells. Spinning disk confocal images of COS-7 cells after 2 h incubation with 20 µg/ml 

(~1 nM) PS40 NPs, (a) without inhibitor (control) and, (b) with 10 µg/ml 

chlorpromazine. (c) Overall effect of chlorpromazine on the uptake of PS40 NPs, 

averaged over 32 cells, showing that the drug suppressed uptake by ~40%. Spinning 

disk confocal images after 2 h incubation with 20 µg/ml PS200 NPs, (d) without 

inhibitor (control) and, (e) with 10 µg/ml chlorpromazine. (f) Overall uptake of PS200 

NPs, averaged over 25 cells. Within the error, there is no indication that internalization 

of PS200 NPs was affected by chlorpromazine. Scale bar, 10 µm. 

7.3.2 Co-localization Probability 

7.3.2.1 Co-localization of PS NPs and CCPs in simulated data 

To determine the probability for an accidental co-localization of PS NPs and CCPs on 

the membrane, we used simulated data to evaluate this effect. Considering the density 

of PS NPs and CCPs on the membrane, 30 PS NPs and 100 CCPs were randomly 

distributed in an area of 30 μm × 30 μm (Figure 7.9a). The percentage of PS NPs co-

localized with CCPs was determined as a function of the diameter of the CCPs (from 

100 to 1000 nm, Figure 7.9b). If the distance between the PS NP and the center of the 

CCP was less than the radius of the CCP, the PS NP was counted as a co-localized 

particle. The percentage of PS NPs that were co-localized with CCPs depending on the 

width of the CCPs is shown in Figure 7.9b. For CCPs with widths less than 200 nm, 

only 0.2% of PS NPs are expected to co-localize with CCPs. 
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Figure 7.9 Simulation of random co-localization of PS NPs and CCPs. (a) 30 PS NPs 

and 100 CCPs were randomly deposited within a field of 30 μm × 30 μm. (b) Fraction 

of PS NPs co-localized with CCPs as a function of CCP diameter. For CCPs <200 nm 

in diameter, only 0.2% of PS NPs are expected to co-localize with CCPs. 

7.3.2.2 Co-localization of PS NPs and Tf in COS-7 Cells 

Next, we have evaluated the co-localization probability of Tf and CCPs. Tf is supposed 

to be exclusively internalized via CME. For the imaging of Tf, cells transfected by 

CLC-mEos2 were incubated in serum-free DMEM for 30 – 60 min at 37 ℃. 1 µM 

labeled Tf-Alexa647 was added in situ, left for 3 min and then washed with DMEM. 

The cells were kept in DMEM for imaging. The TIRF images of clathrin and Tf are 

shown in Figure 7.10.  

 

Figure 7.10 Dual-color TIRF image of a COS-7 cell expressing CLC-mEos2, exposed 

to fluorescently labeled Tf. (a) The green channel shows the punctate structure of CLC-

mEos2 CCPs. (b) The red channel displays Tf labeled with Alexa647. (c) Overlay image, 

revealing colocalization of ~35% of the CCPs with Tf. Scale bar, 5 μm. 
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The ImageJ plugin JACoP was used to quantify the co-localization of CCPs and Tf. 

The object-based method was used. In order to segment the CPPs and the Tf objects 

from the fluorescent image, the background in the TIRF image (Figure 7.11a) was first 

subtracted using a rolling ball algorithm with a ball size of 2 pixels (Figure 7.11b). The 

objects with minimal size of 5 pixels were extracted from the background-subtracted 

image (Figure 7.11c). After object extraction, the percentage of Tf that co-localized 

with CCPs was calculated. The co-localization probability of Tf and CCPs was about 

35% as shown in Figure 7.12. 

 

Figure 7.11 Object extraction from TIRF images of COS-7 cells using ImageJ. (a) TIRF 

image showing CCPs stained with CLC-mEos2; scale bar, 5 µm. (b) Image after 

background subtraction. (c) Objects (minimal size 5 pixels) were extracted from the 

background-subtracted image. 

7.3.2.3 Co-localization of PS NPs and CCPs in COS-7 Cells 

A variety of other NPs with different sizes and surface ligands were also investigated 

in this study. Carboxylated PS NPs with diameters of 20 nm and 200 nm (PS20 and 

PS200) were investigated. For unmodified, carboxylated PS20 (Figure 7.12a) and PS40 

(Figure 7.12b) NPs, we found that ~5% of the PS NP trajectories were colocalized with 

the CCPs (Figure 7.12f), which is significantly higher than the simulated randomly 

distributed particles (0.2%, Figure 7.9). For cellular imaging of Tf, which is a ligand 

supposed to be exclusively internalized via CME, COS-7 cells were preincubated in 

serum free DMEM for 30 – 60 min at 37 ℃. 1 µM labeled Tf-Alexa647 was added in 

situ and left to incubate for 3 min. Then, the cells were thoroughly rinsed in DMEM for 

imaging. We found that ~35% of the molecules colocalized with CCPs (Figure 7.12). 

The relatively low percentage of colocalization is probably due to the fact that not all 

CME processes have been activated simultaneously in the short image acquisition time. 

In contrast, no CCP-related cellular internalization of PS200 NPs was found (Figure 

7.12d), most probably because they are too large to be transported via this route. Indeed, 

treatment of COS-7 cells with chlorpromazine lead to almost no change in the uptake 

level of PS200, whereas the internalization of PS40 NPs was strongly decreased 
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(Figure 7.8). We then examined the cellular uptake of PS40 NPs upon modification 

with transferrin by either directly binding at the particle surface (PS40-Tf) or by 

coupling with a PEG linker in between (PS40-PEG(10k)-Tf. For PS40-Tf NPs, only 25% 

of the cells (3/12) were found to have NPs colocalized with CCPs (Figure 7.12e and f). 

One the contrary, for PS40-PEG(10k)-Tf NPs, over 70% of the cells (17/24) were found 

to have NPs colocalized with CCPs (Figure 7.12c and f). For bare PS40 and PS20 NPs, 

55% (26/47) and 60% (26/43) of the cells were found to have NPs colocalized with 

CCPs, respectively. The median colocalization fraction (13%) is also higher than that 

of the bare PS NPs. Interestingly, a higher percentage of PS40-PEG(10k)-Tf NPs were 

found to go through Type II internalization (17%, Figure 7.13) compared to the bare 

PS40 NPs (8%) and PS20 NPs (9%).  
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Figure 7.12 Percentage of different PS NPs and Tf co-localized with CCPs. (a) Overlay 

of PS20 NP trajectories and CCPs. (b) Overlay of PS40 NP trajectories and CCPs. (c) 

Overlay of PS40-PEG(10k)-Tf NP trajectories and CCPs. (d) Overlay of PS200 NP 

trajectories and CCPs. (e) Overlay of PS40-Tf NP trajectories and CCPs. (f) Percentage 

of different PS NPs and transferrin colocalized with CCPs. Blue and yellow circles 

indicate Type I and Type II events, respectively. Scale bars, 1 µm. 
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Figure 7.13 Dual-color image sequences showing examples of NPs colocalizing with 

CCPs in a type II encounter. Overlays of (a) PS20 NP, (b) PS40 NP, and (c) PS40-

PEG(10k)-Tf NPs trajectories with CCP images. For PS20, PS40 and PS40-PEG(10k)-

Tf NPs, 9% (5/58), 8% (5/63) and 17% (11/64) of all observed co-localization events 

are classified as type II encounters, respectively. Scale bars, 500 nm.  

7.4 Mobility of PS NPs on the Membrane 

7.4.1 MSS Analysis of the Mobility of Bare PS NPs on the Membrane 

We have also quantified the mobility of the PS NPs on the cell membrane. The diffusion 

coefficient D(t) at 1 s, D0, was used to measure the particle dynamics, and the slope of 

moment scaling spectrum (SMSS) was used to determine the mode of movement145. 

Three modes of motion could be distinguished (Figure 7.14): (i) confined diffusion 

( 3

0 102 D μm2/s, Figure 7.14, box 1); (ii) fast random diffusion with transient 

confinement ( 3

0 102 D μm2/s, SMSS < 0.5, Figure 7.14, box 2); (iii) directed 

movement (SMSS > 0.5, Figure 7.14, box3). For bare PS NPs, most of the PS40 (62%, 

Figure 7.14a) and PS200 (59%, Figure 7.14e) NPs were found to be confined on the 

membrane while PS20 NPs were more mobile, with only 46% (Figure 7.14d) being 

confined. Interestingly, very different mobility of PS40-Tf and PS40-PEG(10k)-Tf NPs 

on the membrane was found. Most of the PS40-Tf NPs (72%, Figure 7.14b) were 

observed to diffuse fast on the membrane, with a mean D0 of the transient confinement 

portion: 0.035 ± 0.002 μm2/s (standard error of mean, n = 1441) compared to the mean 
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D0 of the transient confinement portion of PS40-PEG(10k)-Tf: 0.015 ± 0.001 μm2/s (n 

= 1259). Similar results were also observed in spinning disk confocal imaging of the 

top cell surface (Figure 7.16 – Figure 7.18). These results show the low binding affinity 

of PS40-Tf on the membrane, which is probably the reason for the low uptake of PS40-

Tf NPs by COS-7 cells and why very few PS40-Tf NPs were found to be colocalized 

with CCPs.  

 
Figure 7.14 Comparison of SMSS versus D0 plots for different PS NPs on the COS-

7 cell membrane. The three boxes highlight regions in the graph in which the PS 

NP motion is either confined (box 1), rapid with transient confinement (box 2) or 

directed (box 3). The SMSS versus D0 plots of different PS NPs show quite different 

mobility of these PS NPs on the membrane: PS40 NPs (a), PS40-Tf NPs (b), PS40-

PEG(10k)-Tf NPs (c), PS20 NPs (d) and PS200 NPs (e). 
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7.4.2 Microscopic Diffusion Coefficients 

Microscopic diffusion coefficients of individual tracks, denoted by D1-4, were 

determined by linear fits to the MSD of the first four image frames, corresponding to 

an elapsed time of 120 ms in our data. For diffusion in compartmentalized space,    

D1-4 characterizes short-term diffusion within a compartment, whereas the long-term 

behavior is governed by the dynamics across many compartments. D1-4 is convenient 

because it can be determined independently of the motional modes166. The center of the 

D1-4 distribution shifts to lower values with increasing size of the PS NPs; the centers 

of the D1-4 distributions are 4.8×10-3 μm2 /s, 1.3×10-3 μm2 /s and 0.8×10-3 μm2 /s for 

PS20, PS40 and PS200, respectively (Figure 7.15). For PS40-PEG(10k)-Tf NPs, two 

populations of D1-4 were found, with center positions at 0.7×10-3 μm2/s and 1.8×10-2  

μm2/s. Likewise, for PS40-Tf NPs, two populations were found, with center populations 

at 0.5×10-2 μm2 /s and 0.8×10-1 μm2 /s, respectively. 

Since the PS NPs have an additional searching process in Type II events, PS NPs 

with higher mobility on the membrane are likely to have higher probability to find a 

CCP on the membrane. Compared to bare PS40 NPs, PS40-PEG(10k)-Tf NPs have a 

more mobile population on the membrane which may indicate that it has more Type II 

events than bare PS40 NPs. However, this is not the case for PS20 NPs. Even though 

PS20 NPs are also more mobile than PS40 NPs, the percentage of Type II events did 

not increase. The role of the ligand should also play an important role in the random 

walk search on the membrane to find a suitable entrance site6. These pieces of 

information could shed some light on the optimal NPs design for target molecules 

which requires both a suitable mobility of NPs on the membrane and the conjugated 

ligand. 

 

Figure 7.15 Distribution of microscopic diffusion coefficient D1-4 of different PS NPs. 
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7.5 Spinning Disk Confocal Imaging 

COS-7 cells were first incubated with 0.5 µg/ml Hoechst 33342 nucleic acid stain in 

serum free DMEM for 30 min. Afterwards, membranes were stained with 0.25 µg/ml 

CellMaskTM Orange (Invitrogen) in DMEM for 5 min and washed twice with PBS. 

After adding the same amount of PS40 NPs as for TIRF imaging (0.5 nM), live cell 

imaging was performed for 1 h at 2 s intervals by using an Andor Revolution® XD 

spinning disk laser scanning microscope (BFi OPTiLas, München, Germany) with 

alternating excitation. 

For spinning disk confocal imaging, relatively low laser power was used compared 

to the laser power used for localization microscopy and longer image acquisition (2 h) 

was applied. Since COS-7 cells are relatively flat, individual PS40 NPs could be 

observed on the top membrane surface (Figure 7.16a). Interestingly, after summing up 

all the images acquired in 1 h, a lot of spots were still clearly resolved on the membrane 

(Figure 7.16b). In comparison, fast moving particles in the medium (arrows, Figure 

7.16a) were not visible on the membrane in the summed image (arrows, Figure 7.16b). 

It indicates that the PS40 NPs were immobilized during imaging. The zoomed image 

in Figure 7.16c further confirms this assumption. A lot of PS40 NPs could be observed 

over a long time period. The motion of the PS40 NPs on the top membrane surface was 

very similar to that of the PS40 NPs on the basal membrane. Therefore, the PS40 NPs 

appear to be strongly bound to the membrane, and they are confined in a small region. 

This may be due to a membrane skeleton ‘‘fence’’ or ‘‘corral’’ 167,168 formed by cortical 

actin. The cytosolic surface of the plasma membrane is partitioned into many grids. The 

actin filaments restrict the inter-compartment movement. 

For PS40-PEG(10k)-Tf NPs, the trajectories of the NPs during the 2 h image 

acquisition time were plotted onto the initial raw particle image (Figure 7.17). Only 

trajectories longer than 5 min were kept. As shown in Figure 7.17b, many particles can 

be tracked for a very long time which means that the particles stayed on the membrane 

for long time periods. In contrast, no trajectories were found for PS40-Tf NPs on the 

membrane. If we sum up all image frames taken over the 2 h, almost no individual spots 

could be identified (Figure 7.18b). Almost no PS40-Tf NPs were found to be bound on 

the membrane which confirms the view from the SPT data that most of PS40-Tf NPs 

were not confined on the membrane. 
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Figure 7.16 Multi-color spinning disk confocal images of COS-7 cells exposed to PS40 

NPs, taken in three color channels. Blue: nucleus; green: membrane; red: PS40 NPs. (a) 

Single confocal image scanned across the top membrane of the cell marked by the 

yellow frame. (b) Integrated image of all confocal frames collected during 1 h; scale 

bar, 10 µm. The two arrows mark locations where NPs identified in panel (a) have 

disappeared in panel (b), indicating that these are fast diffusing NPs in the cell medium. 

By contrast, many spots on the plasma membrane of the marked cell in the first image 

(panel (a)) are still visible in the integrated image, indicating their low mobility. (c) 

Temporal evolution of the marked region of panel (a). Many PS40 NPs can be tracked 

for a long time period, similar to what was observed for the basal membrane. They are 

confined to small membrane regions, likely due to a “fence” or ‘‘corral” formed by 

cortical actin that restricts their long-range diffusion. 



7.5 Spinning Disk Confocal Imaging  

115 

 

 
Figure 7.17 Multi-color spinning disk confocal imaging of PS40-PEG(10k)-Tf NPs on 

COS-7 cells. Blue: nucleus; green: membrane; red: PS40 NPs. (a) Confocal image of 

PS40-PEG(10k)-Tf NPs on the top cell surface; scale bar 10 µm. (b) NP trajectories 

longer than 5 min in the region marked by the yellow frame in panel (a) over 2 h; scale 

bar, 5 µm. 

 

Figure 7.18 Multi-color spinning disk confocal imaging of PS40-Tf NPs on COS-7 

cells. Blue: nucleus; green: membrane; red: PS40 NPs. (a) Confocal image of PS40-Tf 

NPs scanned across the top cell surface, showing NPs as punctate structures; scale bar, 

10 µm. (b) Integrated image of all confocal frames taken over 2 h. Unlike in panel (a), 

resident spots are essentially absent, indicating that these NPs are not immobilized by 

tightly adhering to the membrane, which is in agreement with the observations made 

by single particle tracking.  
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7.6  Size of CCPs 

Finally, we investigated the size of the CCPs that co-localized with PS NPs and those 

that did not co-localize. It has been reported that the size of CCPs is affected by the size 

of the cargoes29. Association of CCPs with larger cargoes was supposed to build a larger 

clathrin lattice. With the super-resolved PALM image, we could directly measure the 

size of the CCPs that were loaded with PS NPs (Figure 7.19). An appropriate bin time 

window is critical for size measurements from the PALM image. The size distribution 

of the CCPs determined from 30 s snapshots was similar to those determined from both 

15 s snapshots and 7.5 s snapshots, which is consistent with previous results131(Figure 

7.20). Shorter time bins reduce the effect of CCP movement during data acquisition, 

however, the size of the CCPs also varies during the whole lifetime162. Therefore, non-

matured CCPs are measured more often within a short time window. Compared with 

the 30 s snapshot, the 45 s snapshot has more CCPs with sizes >200 nm, which is 

probably due to the effect of movement of CCPs during the long time data acquisition. 

Therefore, a time bin of 30 s was used for measuring the size of the CCPs. As shown in 

Figure 7.19, the mean size of the non-overlapped CCPs was 150 nm. However, for the 

CCPs that colocalized with PS20, PS40 and PS40-PEG(10k)-Tf NPs, a significant 

increase of about 30 – 40 nm was found. No significant size change was found for CCPs 

that colocalized with PS20, PS40 and PS40-PEG(10k)-Tf NPs. Our observations 

provide direct evidence that cargo loading is related to the size of CCPs. 

 
Figure 7.19 Measured size distributions of CCPs with and without loaded PS NPs. To 

measure the size of each CCP, localization density profiles along the short axis within 

a 60-nm wide stripe at the center of CCPs were obtained and fitted with a Gaussian to 

obtain the full-width half maximum (FWHM). The FWHM of many individual CCPs 

is shown. 
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Figure 7.20 Measured size distributions of CCPs obtained from PALM images by using 

different time bins.  

7.7 Summary 

In summary, we have demonstrated that, by combining SPT and PALM, one could 

directly observe the fast dynamics of NPs during endocytosis, with both high spatial 

and temporal resolution. This has allowed us to visualize endocytic mechanisms of PS 

NPs without using inhibitors to block specific endocytic pathways. In combination with 

the PALM image, the detailed analysis of the co-localized CCP trajectories shows very 

heterogeneous diffusion during the interaction of PS NPs and CCPs, indicating a strong 

interaction between the CCPs and the sub-membrane cytoskeleton during endocytosis. 

With the unique advantage of imaging with both high spatial and temporal resolution, 

we identified two different types of NP-CCP interaction modes. In most cases, CCPs 

form in situ around NPs to trigger endocytosis. NPs with different size and ligand 

conjugation were also investigated. PS200 NPs were not internalized through CCPs 

while PS20 and PS40 NPs were internalized through CCPs. By conjugation of Tf 

through a PEG linker on the PS NP surface, the percentage of PS NPs taken up through 

CME is increased. Although the current study focused on the clathrin-involved 

endocytosis pathway, one can easily extend this strategy to study other essential aspects 

of NP-cell interactions, such as the exocytosis of NPs, role of the cytoskeleton in NP 

transport and caveolae-involved endocytosis mechanism. 
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Chapter 8  

Summary 

Recently, the resolution limit of far-field optical microscopy methods has been 

overcome by a couple of techniques. Among these approaches, single molecule 

localization microscopy is an emerging multidisciplinary field that has opened up new 

opportunities to study cellular events at the nanometer scale. The main principle of this 

new imaging modality is the sparse activation of fluorophore molecules at different 

times. Individual molecular patterns are then identified and fitted with a model function, 

enabling precise estimation of the fluorophore locations. Unlike conventional 

fluorescence microscopy images, the raw data of these sparse patterns cannot be 

visualized directly. Instead, an additional data processing step is needed to generate the 

final image. 

In this work, we have presented a fast and efficient molecule detection algorithm 

for localization microscopy. With the development of GPU based molecule localization 

algorithms, molecule localization requires less than 10% of the overall analysis process. 

Molecule detection is currently the limiting factor of the analyzing software regarding 

both speed and detection efficiency aspects. The bottleneck of the analysis software lies 

on fast molecule detection while maintaining minimum detection errors. Therefore, 

most of my work focused on molecule detection. Instead of the basic thresholding 

approach based on the SNR of each pixel, we used the null hypothesis that a pixel 

belongs to the local background by computing the P-value for each pixel under the 

assumption that it is drawn from a normal distribution. There are two advantages of this 

method: 1) the calculation of the P value can be parallelized which enables real time 

computation of the data; 2) the P-value map is insensitive to the changes of the SNR 

and significantly enhances signal contrast without introducing noise peaks, which 

enables efficient molecule detection. For a typical image size of 512 × 512 pixels, 

acquired by the electron-multiplying charge-coupled device (EMCCD) camera, the 

processing time is 15 – 30 ms per image, depending on its complexity. The speed is 

comparable to the maximum full frame rate of current EMCCD cameras and, therefore, 

allows real-time data processing. Comparison of our newly developed algorithm a-

livePALM with other state-of-the-art algorithms demonstrates that a-livePALM 

achieves efficient molecule detection without sacrificing analysis speed. This advanced 

software development enables a statically analysis of large data sets recorded in PALM 

experiments.  
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We have also implemented 3D astigmatism super-resolution imaging by 

introducing a cylindrical lens in the emission pathway. Using bright fluorescent beads, 

the localization accuracy was ~5 – 7 nm near the focal plane (<200 nm) and ~8 – 13 

nm further away from the focal plane (400 – 600 nm). Application of this technique to 

image microtubules and CCPs demonstrates the ability of resolving nanoscopic 

structures in living cells using localization microscopy. With the microtubules 

immunostained by Alexa647, the reconstructed FWHM of the tubule bundle was ~54 

nm in the lateral direction and ~90 nm in the axial direction while the FWHM observed 

by TIRF microscopy was ~400 nm in the lateral direction. We have also implemented 

this technique to image CLC-mEos2 in living COS-7 cells. By optimization of the 

experimental conditions (i.e., image acquisition time, suitable fluorescent probes), 

CCPs which appeared as punctuate structures in a TIRF image showed as ring-like 

structures in the PALM image. These proof-of-principle experiments demonstrate the 

improved spatial resolution by localization microscopy. 

Mapping the interaction between NPs and cells requires both high spatial and 

temporal resolution. However, the basic principle of localization microscopy, which 

requires enough individual molecules to reconstruct a super-resolution structure limits 

the temporal resolution of this technique. We have demonstrated that, by combining 

SPT and PALM, one could directly observe the interaction between NPs and receptors 

on the cell membrane with high spatial and temporal resolution. This has allowed us to 

visualize the endocytic uptake of PS NPs without using inhibitors to block specific 

endocytic pathways. The detailed analysis of trajectories that co-localized with CCPs 

showed very heterogeneous diffusion during the interaction of PS NPs and CCPs, 

indicating the strong interaction between the CCPs and the sub-membrane cytoskeleton 

during endocytosis. With the unique advantage of imaging with both high spatial and 

temporal resolution, we have identified two different types of NP-CCP interaction 

modes, where in most cases CCPs form in situ around NPs to trigger endocytosis. NPs 

with different size and ligand conjugation were also investigated. PS20 and PS40 NPs 

were internalized through CCPs while PS 200 NPs were not internalized through CCPs. 

By conjugation of Tf through a PEG linker on the PS40 NP surface, the percentage of 

PS40 NPs taken up through CME was increased. 

MSS analysis was applied to elucidate the relation between diffusion coefficient 

and motion type of PS NPs (confined, transiently confined and directed movement). 

Most of the bare PS40 (62%) and PS200 (59%) NPs were found to be confined on the 

membrane while bare PS20 NPs showed more mobility, with only 46% being confined. 

They are confined to small membrane regions, likely due to a “fence” or ‘‘corral” 

formed by cortical actin that restricts their long-range diffusion. Interestingly, very 

different mobilities were found for of PS40-Tf and PS40-PEG(10k)-Tf NPs on the 

membrane. Most of the PS40-Tf NPs (72%) were observed to diffuse fast on the 

membrane, with a mean D0 of the transient confinement portion: 0.035 ± 0.002 μm2 /s 
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compared to the mean D0 of the transiently confined portion of PS40-PEG(10k)-Tf: 

0.015 ± 0.001 μm2/s. Spinning disk confocal imaging also confirmed these observations 

on the top cell surface. Weaker binding of PS40-Tf NPs on the membrane also inhibits 

the efficient uptake of these NPs. We therefore emphasize the importance of NP binding 

to the membrane, since in most cases, CCPs form in situ around NPs to trigger 

endocytosis. Any conjugation of ligands on NPs should be well characterized because 

the binding affinity of NPs on the membrane may change after modification.  

Though we limited this method to the interaction between NPs and cell membrane 

receptors, we envision a great potential of applying the present approach for exploring 

a wide range of biological events at the molecular level, with the unique advantage of 

featuring both high spatial and temporal resolution. 
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Innerhalb der letzten Jahre konnte mit Hilfe neuartiger Techniken das limitierte 

Auflösungsvermögen der konventionellen Weitfeldmikroskopie überwunden werden. 

Eine dieser Methoden ist die Lokalisationsmikroskopie (photoactivation localization 

microscopy, PALM), ein multidisziplinäres Forschungsgebiet, welches neue 

Möglichkeiten eröffnet, um zelluläre Prozesse auf der Nanometerskala zu untersuchen. 

Das Grundprinzip dieses bildgebenden Verfahrens beruht auf der zufälligen 

Aktivierung einiger weniger Fluorophore innerhalb eines Ensembles zu unterschiedlich 

Zeitpunkten. Diese können anhand ihrer Fluoreszenz identifiziert und mit Hilfe einer 

Modellfunktion präzise lokalisiert werden. Dieser Vorgang wird so lange widerholt, bis 

alle Fluorophore registriert sind. Anders als bei Bildern gängiger 

Fluoreszenzmikroskope muss dann zusätzlich ein Datenaufbereitungsschritt eingefügt 

werden, um aus den vielen Einzelbildern das endgültige Bild zu erzeugen. 

Im Rahmen dieser Arbeit wurde ein schneller und zudem effizienter Algorithmus 

zur Moleküldetektion und -lokalisierung entwickelt, den wir a-livePALM genannt 

haben. Die Moleküldetektion ist zurzeit der limitierende Faktor im Hinblick auf die 

Geschwindigkeit und Effizienz der Datenanalyse. Den eigentlichen Engpass bildet die 

schnelle und gleichzeitig möglichst fehlerfreie Moleküldetektion. Durch die 

Entwicklung eines GPU-basierten Moleküldetektionsalgorithmus konnte die 

Gesamtrechenzeit für diesen Schritt auf weniger als 10% der gesamten Prozessdauer 

reduziert werden. Anstatt einer simplen, auf dem Signal-Rausch-Verhältnis jedes Pixels 

basierenden Schwellenwertanalyse wurde die Nullhypothese angewandt, um jedem 

Pixel einen lokalen Hintergrund zuzuordnen. Dazu wurde der P-Wert für jeden Pixel 

berechnet, und zwar unter der Annahme, dass der P-Wert mit Hilfe einer 

Normalverteilung gewonnen werden kann. Diese Methode hat zwei Vorteile: 1.) Die 

Berechnung des P-Wertes für die einzelnen Pixel kann parallel durchgeführt werden, 

was eine Analyse der Daten in Echtzeit ermöglicht; 2.) Die P-Wert-Karte ist 

unempfindlich gegenüber Unterschieden im Signal-Rausch-Verhältnis und erhöht den 

Kontrast erheblich, ohne durch Rauschen verursachte Peaks einzubringen, was eine 

effiziente Moleküldetektion ermöglicht. Für ein typisches Bild mit einer Größe von 512 

× 512 Pixeln, das mit einer mit einer electron-multiplying charge-coupled device 

Kamera (EMCCD-Kamera) aufgenommen wurde, betrug die Verarbeitungszeit, 

abhängig von der Komplexität des Bildes, 15 – 30 ms. Diese Geschwindigkeit ist 

vergleichbar mit der maximalen Bildrate von aktuellen EMCCD-Kameras und erlaubt 
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daher eine Echtzeit-Analyse der Daten. Der Vergleich unseres neuentwickelten a-

livePALM-Algorithmus mit anderen modernen Algorithmen zeigte, dass a-livePALM 

eine effiziente Moleküldetektion ermöglicht, ohne dabei Geschwindigkeit zu opfern. 

Diese hochentwickelte Software ermöglicht somit eine statistische Analyse von großen 

Datensätzen, die in PALM-Experimenten gemessen wurden. 

Zusätzlich wurde durch den Einbau einer Zylinderlinse in den Emissionspfad des 

Mikroskops ein Astigmatismus-basiertes hochauflösendes Bildgebungsverfahren in 3D 

implementiert. Unter Verwendung heller fluoreszierender Partikel konnte eine 

Lokalisationsgenauigkeit von ~ 5 – 7 nm im Bereich der Brennebene (Abstand < 

200 nm) und  ~8 – 13 nm außerhalb der Brennebene (Abstand 400 nm – 600 nm) 

erreicht werden. Die Anwendung dieser Technik in der Bildgebung von Mikrotubuli 

und sogenannten Clathrin-coated-Pits (CCPs) zeigte die Fähigkeit der 

Lokalisationsmikroskopie, nanoskopische Zellstrukturen aufzulösen. Für mit Alexa647 

immunhistochemisch gefärbte Mikrotubuli konnte eine Durchmesser (FWHM) der 

Protofilamente von ~ 54 nm in lateraler Richtung und ~ 90 nm in axialer Richtung 

bestimmt werden. Im Vergleich dazu konnte durch konventionelle 

Totalreflexionsfluoreszenzmikroskopie (TIRFM) lateral nur eine Halbwertsbreite  

von ~ 400 nm erreicht werden. Weiterhin wurde diese Methode verwendet, um die 

Clathrin-light-chain (CLC)‒mEos2 Fusion in lebenden COS-7–Zellen abzubilden. 

Durch die Optimierung der experimentellen Bedingungen (Bildaufnahmezeit, 

geeignete Fluorophore etc.) konnten die CCPs, welche durch TIRFM nur punktförmig 

wiedergegeben wurden, durch PALM als ringförmige Strukturen abgebildet werden. 

Diese Experimente erbrachten den Grundsatzbeweis dafür, dass durch 

Lokalisationsmikroskopie eine verbesserte räumliche Auflösung erreicht wird. 

Um die Wechselwirkung zwischen Nanopartikeln (NPs) und lebenden Zellen zu 

beobachten, ist sowohl eine hohe räumliche als auch eine hohe zeitliche Auflösung 

erforderlich. Das Prinzip der Lokalisationsmikroskopie erfordert jedoch die Detektion 

einer ausreichenden Anzahl an Photonen, um im Anschluss eine Struktur mit einer 

Auflösung unterhalb des Beugungslimits rekonstruieren zu können, weshalb diese 

Technik nur eine sehr begrenzte Zeitauflösung aufweist. Daher haben wir PALM (zur 

Bildgebung der CCPs) mit Single Particle Tracking (SPT, zur Beobachtung der NP 

Diffusion) kombiniert. Dadurch wurde es möglich, die Aufnahme von Polystyrol (PS) 

NPs durch Endozytose in Echtzeit zu beobachten, ohne zuvor bestimmte Mechanismen 

der Endozytose durch Verwendung spezieller Inhibitoren zu unterdrücken. Die genaue 

Analyse von Trajektorien der NPs, die eine Kolokalisation mit CCPs aufwiesen, zeigte 

ein sehr heterogenes Diffusionsverhalten. Dies wies auf eine starke Interaktion 

zwischen den CCPs und dem sub-membranen Zytoskelett während der Endozytose hin. 

Mit dieser einmaligen Möglichkeit der Bildgebung mit sowohl hoher zeitlicher als auch 

räumlicher Auflösung konnten zwei verschiedene Arten der NP-CCP Interaktion 

identifiziert werden, wobei sich in den meisten Fällen CCPs in situ um die NPs bildeten, 
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um somit die Endozytose auszulösen. Des Weiteren wurde die zelluläre Aufnahme von 

NPs verschiedener Größe und Oberflächenfunktionalisierung verglichen. 20-nm und 

40-nm PS NPs wurden hierbei durch CCPs internalisiert, während 200-nm PS NPs 

nicht durch CCPs internalisiert wurden. Durch die Bindung von Transferrin über einem 

PEG-Linker an die Oberfläche von 40-nm PS NPs wurde der Prozentsatz der NPs, der 

durch Clathrin-vermittelten Endozytose  internalisiert wurde, erhöht.  

Mit Hilfe einer ‚Moment Scaling Spectrum‘ (MSS) Analyse wurde der 

Zusammenhang zwischen Diffusionskoeffizient und Art der Bewegung (beschränkt, 

vorübergehend beschränkt, gerichtete Bewegung) genauer untersucht. Die Bewegung 

der meisten 40-nm PS NPs (62%) und 200-nm PS NPs (59%) auf der Zellmembran war 

beschränkt, während die 20-nm PS NPs mobiler waren und nur zu 46% eine 

beschränkte Diffusion aufwiesen. Diffusion über größere Strecken wurde vermutlich 

durch die Bildung von „fence“ oder „corral“ Strukturen des kortikalen Aktins 

unterbunden. Interessanterweise zeigten die mit Transferrin funktionalisierten 40-nm 

PS NPs, je nach Art der Anbindung, sehr unterschiedliche Mobilität. Die meisten der 

direkt mit Transferrin bedeckten 40-nm PS NPs (72%) zeigten eine schnelle Diffusion 

auf der Membran mit einem mittleren Diffusionskoeffizienten D0 = 0.035 ± 0.002 μm2/s. 

Wurde das Transferrin über einen Linker an die Oberfläche gekoppelt, war der 

Diffusionskoeffizient deutlich kleiner, D0 = 0.015 ± 0.001 μm2/s (Werte für NPs mit 

vorübergehend beschränkter Bewegung). Diese Beobachtungen konnten durch 

Bildgebung mit einem Spinning-Disk-Mikroskop auch für die Membran an der 

Oberseite der Zelle bestätigt werden. Die schwächere Bindung der mit Transferrin 

funktionalisierten 40-nm PS NPs an die Membran hemmte auch die effektive 

Aufnahme der NPs in die Zelle. Deshalb muss an dieser Stelle noch einmal die 

Bedeutung der Bindung der NPs an die Membran betont werden, da sich die CCPs in 

den meisten Fällen in situ um gebundene NPs bilden und so die Endozytose auslösen. 

Da die Bindungsaffinität der NPs an die Membran auch von der Art der 

Oberflächenfunktionalisierung abhängt, sollte diese gut charakterisiert werden. 

Auch wenn die Methode hier nur zur Untersuchung der Interaktion zwischen NPs 

und Zellmembranrezeptoren verwendet wurde, hat sie großes Potential in der 

Erforschung von einer Vielzahl von biologischen Prozessen auf molekularer Ebene mit 

dem einzigartigen Vorteil einer gleichzeitig hohen räumlichen und zeitlichen 

Auflösung. 
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Acronyms 

APD avalanche photodiode 

AP adaptor protein 

ADC analog-to-digital converter 

βME β-mercaptoethanol 

CCP clathrin coated pit 

CCV clathrin coated vesicles 

CDF cumulative distribution function 

CIC clock induced charge 

CME clathrin-mediated endocytosis 

CLC clathrin light chain 

CLIC clathrin-independent carrier 

CPU central processing unit 

CRLB Crámer-Rao lower bound 

DMEM Dulbecco’s modified Eagle’s medium 

dSTORM direct stochastic optical reconstruction microscopy 

EM electron-multiplying 

EMCCD electron multiplying charge-coupled device 

FWHM full width half maximum 

GFP green fluorescent protein 

GPU graphic processing unit 

GSDIM ground state depletion and individual molecule return 

LWM local weighted mean 

MEA mercaptoethylamine 

MLE maximum likelihood estimator 

MSD mean square displacement 

MSS moment scaling spectrum 

NP nanopartiitcle 

PALM photoactivated localization microsocpy 

PALMIRA PALM with independently running acquisition 

PA-FP photoactivatable fluorescent protein 

PBS phosphate buffered saline. 

PDF probability density function 

PFA paraformaldehyde 

PMT photomultiplier tubes 

PO precision optimized 

PS NP polystyrene nanoparticle 
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PSF point spread function 

QD quantum dot 

RO recall optimized 

SBR signal-to-background ratio 

sCMOS scientific complementary metal-oxide-semiconductor 

SNR signal-to-noise ratio 

SPT single particle tracking 

SSIM saturated structured illumination microscopy 

STED stimulated emission depletion 

STORM stochastic optical reconstruction microscopy 

Tf transferrin 

TfR transferrin receptor 

TIRFM total internal reflection fluorescence microscopy 

TRE target registration error 

UAIM ultrahigh accuracy imaging modality   
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Appendix 

 

Figure S1 : Computer screenshot displaying the input parameters used for QuickPALM.  
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Figure S2 : Computer screenshot displaying the input parameters used for Maliang.  
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Figure S3 : Computer screenshot displaying the input parameters used for 

rapidSTORM. 
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