54,807 research outputs found

    A Proposal for Semantic Map Representation and Evaluation

    Get PDF
    Semantic mapping is the incremental process of “mapping” relevant information of the world (i.e., spatial information, temporal events, agents and actions) to a formal description supported by a reasoning engine. Current research focuses on learning the semantic of environments based on their spatial location, geometry and appearance. Many methods to tackle this problem have been proposed, but the lack of a uniform representation, as well as standard benchmarking suites, prevents their direct comparison. In this paper, we propose a standardization in the representation of semantic maps, by defining an easily extensible formalism to be used on top of metric maps of the environments. Based on this, we describe the procedure to build a dataset (based on real sensor data) for benchmarking semantic mapping techniques, also hypothesizing some possible evaluation metrics. Nevertheless, by providing a tool for the construction of a semantic map ground truth, we aim at the contribution of the scientific community in acquiring data for populating the dataset

    Characterizing perfect recall using next-step temporal operators in S5 and sub-S5 Epistemic Temporal Logic

    Full text link
    We review the notion of perfect recall in the literature on interpreted systems, game theory, and epistemic logic. In the context of Epistemic Temporal Logic (ETL), we give a (to our knowledge) novel frame condition for perfect recall, which is local and can straightforwardly be translated to a defining formula in a language that only has next-step temporal operators. This frame condition also gives rise to a complete axiomatization for S5 ETL frames with perfect recall. We then consider how to extend and consolidate the notion of perfect recall in sub-S5 settings, where the various notions discussed are no longer equivalent

    Reason Maintenance - State of the Art

    Get PDF
    This paper describes state of the art in reason maintenance with a focus on its future usage in the KiWi project. To give a bigger picture of the field, it also mentions closely related issues such as non-monotonic logic and paraconsistency. The paper is organized as follows: first, two motivating scenarios referring to semantic wikis are presented which are then used to introduce the different reason maintenance techniques

    A Role-Based Approach for Orchestrating Emergent Configurations in the Internet of Things

    Full text link
    The Internet of Things (IoT) is envisioned as a global network of connected things enabling ubiquitous machine-to-machine (M2M) communication. With estimations of billions of sensors and devices to be connected in the coming years, the IoT has been advocated as having a great potential to impact the way we live, but also how we work. However, the connectivity aspect in itself only accounts for the underlying M2M infrastructure. In order to properly support engineering IoT systems and applications, it is key to orchestrate heterogeneous 'things' in a seamless, adaptive and dynamic manner, such that the system can exhibit a goal-directed behaviour and take appropriate actions. Yet, this form of interaction between things needs to take a user-centric approach and by no means elude the users' requirements. To this end, contextualisation is an important feature of the system, allowing it to infer user activities and prompt the user with relevant information and interactions even in the absence of intentional commands. In this work we propose a role-based model for emergent configurations of connected systems as a means to model, manage, and reason about IoT systems including the user's interaction with them. We put a special focus on integrating the user perspective in order to guide the emergent configurations such that systems goals are aligned with the users' intentions. We discuss related scientific and technical challenges and provide several uses cases outlining the concept of emergent configurations.Comment: In Proceedings of the Second International Workshop on the Internet of Agents @AAMAS201

    A Survey of Volunteered Open Geo-Knowledge Bases in the Semantic Web

    Full text link
    Over the past decade, rapid advances in web technologies, coupled with innovative models of spatial data collection and consumption, have generated a robust growth in geo-referenced information, resulting in spatial information overload. Increasing 'geographic intelligence' in traditional text-based information retrieval has become a prominent approach to respond to this issue and to fulfill users' spatial information needs. Numerous efforts in the Semantic Geospatial Web, Volunteered Geographic Information (VGI), and the Linking Open Data initiative have converged in a constellation of open knowledge bases, freely available online. In this article, we survey these open knowledge bases, focusing on their geospatial dimension. Particular attention is devoted to the crucial issue of the quality of geo-knowledge bases, as well as of crowdsourced data. A new knowledge base, the OpenStreetMap Semantic Network, is outlined as our contribution to this area. Research directions in information integration and Geographic Information Retrieval (GIR) are then reviewed, with a critical discussion of their current limitations and future prospects

    "I would like to see that one is able to say I'm proud of being a citizen of the EU…" – the way Hungarian people see Europe and the European Union

    Get PDF
    This paper explores the concepts of Europe, Europeanism and European Union, their meaning to Hungarians, how people define them and how they relate to these concepts through the analysis of qualitative in-depth interviews. The main question is whether the discourse, expressing attitudes towards Europe and the European Union, are of symbolic or utilitarian character. The symbolic way to relate to the EU is based on principles, an ideological or an emotional approach of the subject, while the pragmatic or utilitarian logic is based on rational cost-benefit analysis. The main argument of this current paper is that the way Hungarians tend to relate to the EU is rather utilitarian and it is the utilitarian logic that represents the relevant frame to understand people’s attitudes on the subject

    Machine learning and its applications in reliability analysis systems

    Get PDF
    In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA

    Probabilities and health risks: a qualitative approach

    Get PDF
    Health risks, defined in terms of the probability that an individual will suffer a particular type of adverse health event within a given time period, can be understood as referencing either natural entities or complex patterns of belief which incorporate the observer's values and knowledge, the position adopted in the present paper. The subjectivity inherent in judgements about adversity and time frames can be easily recognised, but social scientists have tended to accept uncritically the objectivity of probability. Most commonly in health risk analysis, the term probability refers to rates established by induction, and so requires the definition of a numerator and denominator. Depending upon their specification, many probabilities may be reasonably postulated for the same event, and individuals may change their risks by deciding to seek or avoid information. These apparent absurdities can be understood if probability is conceptualised as the projection of expectation onto the external world. Probabilities based on induction from observed frequencies provide glimpses of the future at the price of acceptance of the simplifying heuristic that statistics derived from aggregate groups can be validly attributed to individuals within them. The paper illustrates four implications of this conceptualisation of probability with qualitative data from a variety of sources, particularly a study of genetic counselling for pregnant women in a U.K. hospital. Firstly, the official selection of a specific probability heuristic reflects organisational constraints and values as well as predictive optimisation. Secondly, professionals and service users must work to maintain the facticity of an established heuristic in the face of alternatives. Thirdly, individuals, both lay and professional, manage probabilistic information in ways which support their strategic objectives. Fourthly, predictively sub-optimum schema, for example the idea of AIDS as a gay plague, may be selected because they match prevailing social value systems

    Newton vs. Leibniz: Intransparency vs. Inconsistency

    Full text link
    We investigate the structure common to causal theories that attempt to explain a (part of) the world. Causality implies conservation of identity, itself a far from simple notion. It imposes strong demands on the universalizing power of the theories concerned. These demands are often met by the introduction of a metalevel which encompasses the notions of 'system' and 'lawful behaviour'. In classical mechanics, the division between universal and particular leaves its traces in the separate treatment of cinematics and dynamics. This analysis is applied to the mechanical theories of Newton and Leibniz, with some surprising results
    corecore