43,785 research outputs found

    Approximation of epidemic models by diffusion processes and their statistical inference

    Full text link
    Multidimensional continuous-time Markov jump processes (Z(t))(Z(t)) on Zp\mathbb{Z}^p form a usual set-up for modeling SIRSIR-like epidemics. However, when facing incomplete epidemic data, inference based on (Z(t))(Z(t)) is not easy to be achieved. Here, we start building a new framework for the estimation of key parameters of epidemic models based on statistics of diffusion processes approximating (Z(t))(Z(t)). First, \previous results on the approximation of density-dependent SIRSIR-like models by diffusion processes with small diffusion coefficient 1N\frac{1}{\sqrt{N}}, where NN is the population size, are generalized to non-autonomous systems. Second, our previous inference results on discretely observed diffusion processes with small diffusion coefficient are extended to time-dependent diffusions. Consistent and asymptotically Gaussian estimates are obtained for a fixed number nn of observations, which corresponds to the epidemic context, and for N→∞N\rightarrow \infty. A correction term, which yields better estimates non asymptotically, is also included. Finally, performances and robustness of our estimators with respect to various parameters such as R0R_0 (the basic reproduction number), NN, nn are investigated on simulations. Two models, SIRSIR and SIRSSIRS, corresponding to single and recurrent outbreaks, respectively, are used to simulate data. The findings indicate that our estimators have good asymptotic properties and behave noticeably well for realistic numbers of observations and population sizes. This study lays the foundations of a generic inference method currently under extension to incompletely observed epidemic data. Indeed, contrary to the majority of current inference techniques for partially observed processes, which necessitates computer intensive simulations, our method being mostly an analytical approach requires only the classical optimization steps.Comment: 30 pages, 10 figure

    Spreading processes in Multilayer Networks

    Get PDF
    Several systems can be modeled as sets of interconnected networks or networks with multiple types of connections, here generally called multilayer networks. Spreading processes such as information propagation among users of an online social networks, or the diffusion of pathogens among individuals through their contact network, are fundamental phenomena occurring in these networks. However, while information diffusion in single networks has received considerable attention from various disciplines for over a decade, spreading processes in multilayer networks is still a young research area presenting many challenging research issues. In this paper we review the main models, results and applications of multilayer spreading processes and discuss some promising research directions.Comment: 21 pages, 3 figures, 4 table

    A Diffusion Approximation for an Epidemic Model

    Get PDF
    Influenza is one of the most common and severe diseases worldwide. Devastating epidemics actuated by a new subtype of the influenza A virus occur again and again with the most important example given by the Spanish Flu in 1918/19 with more than 27 million deaths. For the development of pandemic plans it is essential to understand the character of the dissemination of the disease. We employ an extended SIR model for a probabilistic analysis of the spatio-temporal spread of influenza in Germany. The inhomogeneous mixing of the population is taken into account by the introduction of a network of subregions, connected according to Germany's commuter and domestic air traffic. The infection dynamics is described by a multivariate diffusion process, the discussion of which is a major part of this report. We furthermore present likelihood-based estimates of the model parameters
    • …
    corecore