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Abstract: Influenza is one of the most common and severe diseases worldwide. Devastat-
ing epidemics actuated by a new subtype of the influenza A virus occur again and again with
the most important example given by the Spanish Flu in 1918/19 with more than 27 million
deaths. For the development of pandemic plans it is essential to understand the character
of the dissemination of the disease. We employ an extended SIR model for a probabilistic
analysis of the spatio-temporal spread of influenza in Germany. The inhomogeneous mixing
of the population is taken into account by the introduction of a network of subregions, con-
nected according to Germany’s commuter and domestic air traffic. The infection dynamics
is described by a multivariate diffusion process, the discussion of which is a major part of
this report. We furthermore present likelihood-based estimates of the model parameters.

Keywords: General stochastic epidemic; Likelihood inference; Euler scheme; Influenza.

1 Introduction

The analysis of the spread of epidemics dates back to the 18th century. However, as transportation
systems improve and people travel faster, further and more frequently than in former times, also the
character of the geographical spread of epidemics changes. Baroyan, Rvachev, and Ivannikov (1977)
were probably the first to model the spatial spread of influenza by considering the transportation net-
work of a specific region, in this case the train system in the USSR. More recent studies such as Colizza,
Barrat, Barth́elemy, and Vespignani (2006a) and Colizza et al. (2006b) especially emphasize the role of
the airline traffic; Brownstein, Wolfe, and Mandl (2006) provide empirical evidence for the importance
of long-distance air travel.

In this report, we investigate the spatio-temporal spread of influenza in Germany. For this purpose we
employ a so-called SIR model, which will be described in Section 2. In the SIR model, the two pa-
rameters of interest are the contact rateα, which is the number of an individual’s potentially infectious
contacts per unit time, and the reciprocal average infectious periodβ. There are many approaches to
empirically obtain these parameters from external data as for example from so-called contact diaries in
which a representative part of the population accurately reports each contact the person has with other
people (see e.g. Fu, 2005). Naturally, such approaches are always fraught with errors and uncertainty.
Our main objective is thus to consider a probabilistic rather than deterministic model and to statistically
estimate these parameters based on disease counts.

Since we consider a large population, we use a diffusion approximation to carry out estimation methods.
Section 3 deals with the derivation of this diffusion process from the discrete Markov chain model
description given in Section 2. The diffusion model is much more amenable to statistical analysis and
also disposes the inconvenience of being computationally costly for sampling. Section 4 provides an
introduction to simulation and estimation methods for stochastic differential equations with a special
emphasis on the Euler approximation scheme, which will be applied in Section 5 for a simulation study
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and in Section 6 for the application of the diffusion process to the modelling of the spread of influenza
in Germany. The report is concluded in Section 7.

2 Model

As a basis, we use the widely adopted SIR model in which the population under consideration is classi-
fied into susceptible (S), infectious (I) and recovered (R) individuals. Transitions between these classes
are

S + I
α−→ 2I, I

β−→ R, (1)

which means that each contact between a susceptible and an infectious individual will cause an infection
with rateα, resulting in two infected individuals, each of which will recover with rateβ. The parame-
terα is the contact rate of an infectious individual sufficient to spread the disease, andβ is the reciprocal
average infectious period. The infection dynamics in this model, which in the literature is also often
referred to as the general stochastic epidemic, can be deterministically described by the set of ordinary
differential equations

ds/dt = −αsj, dj/dt = αsj − βj, (2)

wheres = S/N andj = I/N denote the fractions of susceptible and infective individuals of the total
population of sizeN . Note that in this description the state space is considered to be continuous, which
is an eligible assumption for large populations. The remaining fractionr = R/N can be calculated as
r = 1− s− j since we assume the population size to be constant during the time of consideration. The
graphic on the left of Figure 1 shows the typical evolution of an epidemic following the deterministic
description (2). The vertical line in this plot indicates the first time point at which the fraction of
susceptibles falls belowρ−1 := β/α, which is a crucial parameter called the basic reproduction number.
Apparently, this mark agrees with the time point at which the epidemic reaches its maximum with
respect to the number of infected individuals. However, since we are dealing with a process that is highly
delicate to disturbances, we are not satisfied with a deterministic description as given by equations (2).
Instead, we employ the stochastic differential equations (SDEs)

ds = −αsj dt +

√
αsj

N
dB1(t) (3)

dj =
(
αsj − βj

)
dt−

√
αsj

N
dB1(t) +

√
βj

N
dB2(t),

whereB1 andB2 are independent Brownian motions, anddB1 anddB2 can hence be interpreted as
Gaussian white noise forces accounting for fluctuations in transmission and recovery. This system is
able to model the probabilistic character of the process. The graphs on the right of Figure 1 illustrate
how the stochastic courses can fluctuate around the deterministic evolution of an epidemic. Section 3
deals with the formal derivation of these SDEs.

So far, a central assumption in our model is that the population under consideration mixes homoge-
neously. However, this situation is surely not given as soon as we regard the nationwide or even world-
wide spread of a disease. We hence introduce a network of subregionsi = 1, . . . , n of sizesNi (Huf-
nagel, Brockmann, & Geisel, 2004), where in addition to the local infection dynamics, which again
follows the standard SIR model, individuals travel between regions with rates which are summarized in
a connectivity matrixγ = (γij)i,j=1,...,n, whereγii = 0 for all i. The transitions for this model are

Si + Ii
α−→ 2Ii, Ii

β−→ Ri, Si
γij−→ Sj , Ii

γij−→ Ij . (4)
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Figure 1: Left: Evolution in time of fractions of susceptible (solid), infected (dashed), and removed
(dotted) individuals in the standard deterministic SIR model (2). The vertical line marks the point
at which the fraction of susceptibles falls belowρ−1 = β/α. Right: Deterministic (thick line) and
stochastic (thin lines) courses of fractions of infectives during an epidemic according to (2) and (3). The
stochastic simulations were performed with the Euler-Maruyama scheme, see Section 4.

Again, we can express this dynamics in terms of SDEs:

dsi =
(
−αsiji −

n∑
k=1

γiksi +
n∑

k=1

γkisk

)
dt

+
√

αsiji

Ni
dB

(i)
1 (t) +

n∑
k=1

√
γiksi

Nk
dB

(i,k)
3 (t)−

n∑
k=1

√
γkisk

Ni
dB

(k,i)
3 (t)

dji =
(
αsiji − βji −

n∑
k=1

γikji +
n∑

k=1

γkijk

)
dt−

√
αsiji

Ni
dB

(i)
1 (t) (5)

+
√

βji

Ni
dB

(i)
2 (t) +

n∑
k=1

√
γikji

Nk
dB

(i,k)
3 (t)−

n∑
k=1

√
γkijk

Ni
dB

(k,i)
3 (t)

dri = βjidt−
√

βji

Ni
dB

(i)
2 (t)

for i = 1, . . . , n. Then-dimensional Brownian motionsB1 andB2 and the collection ofn×n indepen-
dent Brownian motionsB3 represent disturbances in transmission, recovery, and migration, respectively.
See Section 3 for an in-depth analysis of this system. Figure 2 shows the evolution of the fractions of
infectives during an epidemic in five regions which agree in all parameters but the initial numbers of
infectives. In the graphic on the very left there is no migration between regions, while there is strong
mixing on the right. Apparently, with increasing exchange of individuals between regions, the courses
of the epidemics equalize. This fact is again illustrated in Figure 3, where the dotted vertical lines mark
the instants at which the fractions of susceptibles in the deterministic courses fall belowρ−1, while the
dashed lines indicate the actual turning points of the deterministic courses of the epidemics. For regions
with high fractions of infectives, the actual turning point lies before the one that is valid for the model
without migration; for regions with relatively few cases, the opposite situation applies.
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Figure 2: Evolution of the fractions of infectives in five regions which agree in all parameters but the
initial numbers of infectives, which vary from one to five percent of the population. There is no traffic
between regions in the graphic on the left, weak traffic in the middle, and strong traffic on the right. The
thick lines show the deterministic evolution, the thin lines are stochastic simulations.

Figure 3: Evolution of the fractions of infectives in five regions between which people migrate and which
agree in all parameters but the initial numbers of infectives, which vary from one to five percent of the
population. The thick curve shows the deterministic evolution, the thin lines are stochastic simulations.
The dotted vertical lines indicate the instants at which the fractions of susceptibles in the deterministic
course fall belowρ−1. The dashed vertical lines mark the actual turning points of the deterministic
course of the epidemic. Without migration, these lines would agree within each region.

3 Diffusion Approximations of the Discrete State Space Processes

In this section we describe how to convert the model descriptions (1) and (4) into the systems of SDEs (3)
and (5), respectively. There actually seems to be no general procedure for approximating discrete state
space epidemics by diffusions; authors generally work through the specific examples which they cover
in their papers, see for example Clancy and French (2001), Clancy, O’Neill, and Pollett (2001), Nasell
(2002), and Pollett (2001). Bailey (1975) and Goel and Richter-Dyn (1974) treat approximations of the
univariate birth and death process, but do not proceed to multivariate diffusion processes.
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In the following we present two different approaches for the derivation of a diffusion process which
follows the same law as the rather simple model description given by (1). The first method is the
more descriptive one since it deals with the convergence of the process when changing to continuous
time and continuous state space. This way, we obtain theforward Kolmogorov diffusion equation of a
corresponding diffusion process. However, the second approach, in which we obtain the infinitesimal
generator of the process as abackwardKolmogorov diffusion equation, is more straightforward and
eligible for generalization. We hence apply the latter also for the transition from the discrete Markov
chain description (4) of the spatial SIR model to the diffusion representation (5). Referring to the
employed Kolmogorov diffusion equations, we call our methods the forward and backward approaches,
respectively.

3.1 Forward Approach

The line of this procedure is as follows: We start by setting up the transition probabilities of the process
in which we count the numbersS, I ∈ [0, N ] of susceptible and infective individuals in the population.
The state space of this process is discrete, and the evolution of the transition probabilities is described by
differential-difference equations, i.e. first order differential equations in the (continuous) time variable
and difference equations in the (discrete) space variable. These equations are called master equations.
We then consider a sequence of discrete state space processes in which the state variables denote the
fractionss andj of the susceptible and infective classes. For the population size tending to infinity, this
sequence converges to a process with state variables changing continuously in space. The correspond-
ing master equations of the discrete state space processes converge to a second order partial differential
equation which is much more convenient for analytical analysis than the differential-difference equa-
tions. We can show that the Markovian limiting process is described by the limiting diffusion equation.
The latter is of Fokker-Planck type and can be converted into the SDEs (3).

Transition probabilities for the discrete state space process. Assuming that at most one event can
occur during a small time interval of length4t, there are exactly three (disjoint) possibilities to obtain
the state(S, I) ∈ [0, N − 1]× [1, N − 1] with S + I ≤ N at timet +4t:

1. There wereS + 1 susceptibles andI − 1 infectives at timet, and one infection occurred.

2. There wereS susceptibles andI + 1 infectives at timet, and one recovery occurred.

3. There wereS susceptibles andI infectives at timet, and nothing happened.

The probability for the first event to occur is as follows: Each of theI − 1 infectives at timet hasα po-
tentially infectious contacts per time unit. On average,α · (S + 1)/N of these contacts actually cause
an infection. The probability of the first event hence reads

1. (I − 1) α S+1
N 4t + o(4t),

whereo(4t)/4t → 0 as4t → 0. Similarly, the probabilities of the second and third events are

2. β(I + 1)4t + o(4t),

3. 1− α SI
N 4t− βI4t + o(4t).
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Let P (S, I; t) denote the probability that there areS susceptibles andI infectives at timet. Then,
for (S, I) ∈ [0, N − 1]× [1, N − 1], whereS + I ≤ N ,

P (S, I; t +4t) =

[
α

(S + 1)(I − 1)
N

4t + o(4t)

]
P (S + 1, I − 1; t)

+

[
β(I + 1)4t + o(4t)

]
P (S, I + 1; t)

+

[
1−

(
α

SI

N
+ βI

)
4t + o(4t)

]
P (S, I; t).

SubtractP (S, I; t) on both sides, divide by4t and let4t → 0. We then get

∂

∂t
P (S, I; t) =

α

N
(S + 1)(I − 1) P (S + 1, I − 1; t)

+ β(I + 1) P (S, I + 1; t) (6)

−
( α

N
SI + βI

)
P (S, I; t)

as a description for the continuous time process with discrete state space. This is a differential-difference
equation called the forward master equation. For the boundaries excluded above we obtain

∂

∂t
P (S, 0; t) = β P (S, 1; t) , (7)

∂

∂t
P (0, N ; t) =

α

N
(N − 1)P (1, N − 1; t)− βN P (0, N ; t) , (8)

∂

∂t
P (N, 0; t) = 0 (9)

with S ∈ [0, N − 1] in the first formula. Equations (6) to (9) are subject to an initial condition(S0, I0)
at time0.

Transition to continuous state space. Instead of natural numbersS, I of susceptible and infectious
individuals we now consider the respective fractionss = S/N and j = I/N ∈ (0, 1) of the total
population. We consider a sequence of processes corresponding to a sequence of numbersN which
tend to infinity. Define

λ(s, j) := Nαsj =
α

N
SI and µ(s, j) := Nβj = βI.

The forward master equation (6) for each process then becomes for(s, j) ∈ (0, 1)2

∂

∂t
P (s, j; t) = λ(s + ε, j − ε)P (s + ε, j − ε; t)

+ µ(s, j + ε)P (s, j + ε; t)
−

(
λ(s, j) + µ(s, j)

)
P (s, j; t),

whereε = N−1 fixed andP (s, j; t) now denotes the probability density for having fractionss andj of
susceptible and infective individuals at timet. By simply adding and again subtracting some terms, we
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can rewrite the right hand side as

1
2

(
λ(s + ε, j)P (s + ε, j; t)− λ(s, j)P (s, j; t)

)

+
1
2

(
λ(s, j)P (s, j; t)− λ(s− ε, j)P (s− ε, j; t)

)

− 1
2

(
λ(s, j + ε)P (s, j + ε; t)− µ(s, j + ε)P (s, j + ε; t)− λ(s, j)P (s, j; t) + µ(s, j)P (s, j; t)

)

− 1
2

(
λ(s, j)P (s, j; t)− µ(s, j)P (s, j; t)− λ(s, j − ε)P (s, j − ε; t) + µ(s, j − ε)P (s, j − ε; t)

)

+
1
2

(
λ(s + ε, j)P (s + ε, j; t)− 2λ(s, j)P (s, j; t) + λ(s− ε, j)P (s− ε, j; t)

)

+
1
2

(
λ(s, j + ε)P (s, j + ε; t) + µ(s, j + ε)P (s, j + ε; t)− 2λ(s, j)P (s, j; t)

− 2µ(s, j)P (s, j; t) + λ(s, j − ε)P (s, j − ε; t) + µ(s, j − ε)P (s, j − ε; t)

)

−

(
λ(s + ε, j)P (s + ε, j; t)− λ(s + ε, j − ε)P (s + ε, j − ε; t)− λ(s, j)P (s, j; t)

+ λ(s, j − ε)P (s, j − ε; t)

)
.

The first line (without the factor1/2) becomes

1
N λ(s + ε, j)P (s + ε, j; t)− 1

N λ(s, j)P (s, j; t)
ε

=
α(s + ε)j P (s + ε, j; t)− αsj P (s, j; t)

ε

→ ∂

∂s
αsj P (s, j; t)

asε → 0. Proceed similarly with the remaining terms. Altogether, we can derive forε tending to zero

∂

∂t
P (s, j; t) =

∂

∂s
αsj P (s, j; t)− ∂

∂j

(
αsj − βj

)
P (s, j; t)

+
1
2

∂2

∂s2

1
N

αsj P (s, j; t) +
1
2

∂2

∂j2

1
N

(
αsj + βj

)
P (s, j; t)

− ∂2

∂s∂j

1
N

αsj P (s, j; t).

With x = (s, j)′, this can be rewritten as

∂

∂t
P (x; t) = − ∂

∂x

[
A(x)P (x; t)

]
+

1
2

∂

∂x

∂

∂x

[
Σ(x)P (x; t)

]
, (10)
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where

A(x) =
(

−αsj
αsj − βj

)
and Σ(x) =

1
N

(
αsj −αsj

−αsj αsj + βj

)
.

This is a so-called Fokker-Planck equation or forward (Kolmogorov) diffusion equation;A is referred
to as the drift term andΣ the diffusion term. Again, equation (10) is to be solved with the initial con-
dition that the process starts atx0 = (s0, j0)′ at time0. This condition will be included in the notation
asP (x|x0; t) in the following.

The considered sequence of processes with discrete state space tends to a process with continuous state
space, and the corresponding forward master equations converge to a forward diffusion equation. Goel
and Richter-Dyn (1974) prove that the limiting process with continuous state space is described by the
diffusion equation (10) if certain conditions are met. These are as follows: Define

Mn(x) := lim
τ→0

1
τ

∫
Ω
(z − x)nP (z|x; τ)dz ,

whereΩ denotes the state space of the continuous time process andn ∈ N. M1(x) is the rate of growth
of the mean of the vector(s, j)′ when the process is at some statex; M2(x) is the rate of growth of
the variance. If the growth rates of the higher moments vanish, i.e.Mn(x) = 0 for all n ≥ 3, and
the process is Markovian, then the limit of the sequence of processes is described by the limit of the
sequence of master equations. In our case, usingP (z|x; 0) = δ(z−x) and integration by parts, we get

M1(x) = lim
τ→0

1
τ

∫
Ω
(z − x)

[
P (z|x; τ)− P (z|x; 0)

]
dz

=
∫

Ω
(z − x)

∂P

∂t
(z|x; 0) dz

=
∫

Ω
(z − x)

(
− ∂

∂z

[
A(z)P (z|x; 0)

]
+

1
2

∂

∂z

∂

∂z

[
Σ(z)P (z|x; 0)

])
dz

= A(x).

Similarly,
M2(x) = Σ(x) and Mn(x) = 0 for n ≥ 3.

The conditions stated above are hence fulfilled and we can from now on consider the processx = (s, j)′

with continuous state space(0, 1)2 characterized by the forward diffusion equation (10).

Transition to stochastic differential equations. Eventually, according to Kloeden and Platen (1999)
and Tory (2000), the Fokker-Planck equation (10) corresponds to a Markov process which is the solution
of the multivariate SDE

dXt = A(Xt)dt + L(Xt)dBt,

whereΣ = LL′. In our case,

L =

 √
αsj
N 0

−
√

αsj
N

√
βj
N

 (11)

is one solution. The corresponding system of SDEs is (3), as was to be shown. Since these SDEs agree
with our model also fors = 0 andj = 0, we extend the state space to[0, 1]2.
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3.2 Backward Approach

In this method, we aim to obtain the infinitesimal generator of the discrete Markov process described
by (1), as the generator allows us to directly read out the drift vector and diffusion matrix of a corre-
sponding diffusion process. We start by calculating the expected infinitesimal change in space for a
functionf over a small time interval of lengthε:

1
ε

E
(
f
(
X(t + ε)

)
− f

(
X(t)

)∣∣∣X(t)
)

=
1
ε

(
α

N
SIε

[
f(S − 1, I + 1)− f(S, I)

]
+βIε

[
f(S, I − 1)− f(S, I)

]
+
(
1− α

N
SIε− βIε

)[
f(S, I)− f(S, I)

])
.

Changing the arguments of the functionf to fractions instead of total numbers, and withε = N−1, the
above terms become

αsj ε−1
[
f(s− ε, j + ε)− f(s, j)

]
+ βj ε−1

[
f(s, j − ε)− f(s, j)

]
= αsj ε−1

[
−1

2

(
f(s, j)− f(s− ε, j)

)
− 1

2

(
f(s + ε, j)− f(s, j)

)

+
1
2

(
f(s, j)− f(s, j − ε)

)
+

1
2

(
f(s, j + ε)− f(s, j)

)

+
ε−1

2N

(
f(s + ε, j)− 2f(s, j) + f(s− ε, j)

)

+
ε−1

2N

(
f(s, j + ε)− 2f(s, j) + f(s, j − ε)

)

−ε−1

N

(
f(s, j + ε)− f(s− ε, j + ε)− f(s, j) + f(s− ε, j)

)]

+ βj ε−1

[
−1

2

(
f(s, j)− f(s, j − ε)

)
− 1

2

(
f(s, j + ε)− f(s, j)

)

+
ε−1

2N

(
f(s, j + ε)− 2f(s, j) + f(s, j − ε)

)]
.

Forε → 0, this tends to(
αsj

[
− ∂

∂s
+

∂

∂j
+

1
2N

∂2

∂s2
+

1
2N

∂2

∂j2
− 1

N

∂2

∂s∂j

]
+ βj

[
− ∂

∂j
+

1
2N

∂2

∂j2

])
f(s, j) .

Hence

lim
ε→0

1
ε

E
(
f
(
X(t + ε)

)
− f

(
X(t)

)∣∣∣X(t)
)

=
(

A∇ +
1
2
∇′Σ∇

)
f
(
X(t)

)
,

where

A =
(

−αsj
αsj − βj

)
and Σ =

1
N

(
αsj −αsj
−αsj αsj + βj

)
.
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We can now (Øksendal, 2003) associate this generator to the Itô diffusion

dXt = A(Xt)dt + L(Xt)dBt ,

whereL is the square root ofΣ, compare with (11). Turning to the spatial SIR model (4), we again
calculate

1
ε

E
(
f
(
X(t + ε)

)
− f

(
X(t)

)∣∣∣X(t)
)

=
1
ε

[
n∑

i=1

(
α

Ni
SiIiε

[
f(Si − 1, Ii + 1)− f(Si, Ii)

]
+ βIiε

[
f(Ii − 1)− f(Ii)

]
+

n∑
k=1

γikSiε
[
f(Si − 1, Sk + 1)− f(Si, Sk)

]
+

n∑
k=1

γikIiε
[
f(Ii − 1, Ik + 1)− f(Ii, Ik)

])]
,

where we suppress the non-involved components of the processX = (S1, . . . , Sn, I1, . . . , In)′. The
first two summands in the sum over alli can be rewritten as above. We exemplarily expand the third
summand, definingεi := N−1

i and assuming(Si − 1)/(Ni − 1) ≈ (Si − 1)/Ni:
n∑

k=1

γiksiε
−1
i

[
f(si − εi, sk + εk)− f(si, sk)

]
=

n∑
k=1

γiksiε
−1
i

[
−

ε−1
k

Nk

(
f(si, sk + εk)− f(si − εi, sk + εk)− f(si, sk) + f(si − εi, sk)

)
−
(
f(si, sk)− f(si − εi, sk)

)
+
(
f(si, sk + εk)− f(si, sk)

)]
,

which converges to
n∑

k=1

γiksi

[
− 1

Nk

∂2

∂si∂sk
− ∂

∂si
+

∂

∂sk

]
f(si, sk)

asεi → 0 for all i. Altogether, we obtain the infinitesimal generator(
Ã∇ +

1
2
∇′Σ̃∇

)
f
(
X(t)

)
where Ã =

(
As

Aj

)
and Σ̃ =

(
Σss Σsj

Σsj Σjj

)
with components

As
i = −αsiji −

∑
k

γiksi +
∑

k

γkisk , Aj
i = αsiji − βji −

∑
k

γikji +
∑

k

γkijk

and

Σss
ii = αsiji

Ni
, Σss

ik = −γiksi

Nk
− γkisk

Ni
(k 6= i)

Σjj
ii = αsiji+βji

Ni
, Σjj

ik = −γikji

Nk
− γkijk

Ni

Σsj
ii = −αsiji

Ni
, Σsj

ik = 0.

These are exactly the drift and covariance terms that we obtain from the diffusion process (5). For
example, computation ofdsi ·dsk according to the rulesdt ·dt = dt ·dBt = dBt ·dt = 0, dBt ·dBt = dt
anddB1

t · dB2
t for independent Brownian motionsB1 andB2 yields

dsi · dsk = −γiksi

Nk
− γkisk

Ni
.

We can therefore conclude that the diffusion process (5) is a valid approximation to the discrete Markov
chain described by (4).
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4 Simulation and Parameter Estimation for Diffusion Processes

In this section we give a brief introduction to modelling and estimation techniques for SDEs, all of which
can be found in the literature. Our emphasis lies on the description of the so-called Euler-Maruyama ap-
proximation for non-explicitly solvable SDEs as this will be employed in Sections 5 and 6. Throughout
this section, we consider the stochastic Itô differential equation

dXt = a(Xt, θ)dt + b(Xt, θ)dBt , X0 = x0,

whereX = (Xt)t≥0 is a stochastic process,t the time parameter,B = (Bt)t≥0 Brownian motion
anda andb functions that fulfil the Lipschitz condition such that a unique solution of the differential
equation exists.θ is the possibly vector-valued parameter which is to be estimated.

4.1 Explicitly Solvable SDEs

A stochastic process satisfying an analytically explicitly solvable SDE can exactly be simulated for any
value ofθ, and, conversely, for given dataxt0 , xt1 , . . . , xtu the likelihood function forθ can be calculated
explicitly. Assume that a stochastic process can be written in the form

Xt = x0 + d(t, θ) + e(t, θ)Bt

for t ≥ 0, an initial conditionX0 = x0 and appropriate functionsd ande. Then, for givenθ, a path of
this process at timet can be sampled via

Xt = x0 + d(t, θ) + e(t, θ) ·N(0, t)

or, in case the path is already given up to times ≥ 0, by

Xt|Fs = x0 + d(t, θ) + e(t, θ) · (Bs + N(0, t− s)) ,

whereF = (Ft)t≥0 denotes the natural filtration. For the simulation of the process at intermediate
time points, Brownian bridges can be employed. The log likelihood function ofθ in case of a time-
homogeneous SDE and given dataxt0 , xt1 , . . . , xtu reads

l(θ) =
u∑

k=1

log
(
p4tk−1

(xtk−1
, xtk ; θ)

)
,

where4tk−1 := tk − tk−1 and

pt(v, w; θ) = P (Xt ∈ dw|X0 = v; θ)/dw

is the transition probability from statev to w in the time interval[0, t] for v, w ∈ R andt > 0 . Because
of

X4tk−1
−X0 ∼ N(d(4tk−1), e(4tk−1)24tk−1)

and the time homogeneity ofX we get

p4tk−1

(
xtk−1

, xtk ; θ
)

= P
(
X4tk−1

∈ dxtk

∣∣∣ X0 = xtk−1
; θ
)/

dxtk

= P
(
X4tk−1

−X0 ∈ dxtk − xtk−1
; θ
)/

dxtk

= φ
(
xtk − xtk−1

∣∣∣ d(4tk−1, θ), e(4tk−1, θ)24tk−1

)
for k = 1, . . . , u, whereφ(y|µ, σ2) denotes the probability density of the normal distribution with
meanµ and varianceσ2 at pointy.
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4.2 Non-explicitly Solvable SDEs

However, only few SDEs are explicitly solvable, so in case the considered SDE is not, alternative
methods need to be employed for simulation and parameter estimation. For sampling techniques, an
extensive overview of established procedures is provided by Kloeden and Platen (1999) . For infer-
ence on diffusions, which is a relatively young and highly developing research area, Sørensen (2004)
reviews techniques including estimating functions, Bayesian analysis and Markov chain Monte Carlo
(MCMC) methods, indirect inference, methods of moments and non-parametric approaches. This col-
lection should be supplemented by an algorithm for exact estimation for discretely observed diffusion
processes recently introduced in Beskos, Papaspiliopoulos, Roberts, and Farnhead (2006) and subse-
quent papers.

In the following, we will only deal with the most basic method for approximate simulation and estima-
tion of SDEs, which is the Euler approximation (also called Euler-Maruyama approximation)

Xtk = Xtk−1
+ a(Xtk−1

, θ) · 4tk−1 + b(Xtk−1
, θ) · 4Bk−1, (12)

wherek = 1, . . . , u and4Bk−1 := Btk−Btk−1
. With this, we can approximately sample the processX

in the time interval[0, t] for discrete time points0 = t0 < t1 < . . . < tu = t for given parameterθ and
initial valueX0 = x0. Vice-versa, for the maximum distance between two consecutive instants tending
to zero, the distribution ofXtk conditional onXtk−1

converges to a normal distribution. The conditional
mean and variance can be obtained from (12):

E(Xtk |Xtk−1
) = Xtk−1

+ a(Xtk−1
, θ)4tk−1 and Var(Xtk |Xtk−1

) = b2(Xtk−1
, θ) · 4tk−1.

Hence, given datax = (xt0 , xt1 , . . . , xtu), we can write down the approximate log likelihood function
of θ as

l(θ) =
u∑

i=1

log
(
φ(xti |xti−1 + a(xti−1 , θ)4ti−1 , b2(xti−1 , θ) · 4ti−1)

)
with φ defined as above. In Sections 5 and 6, we will apply the Euler approximation scheme to estimate
the transmission and recovery rates for our epidemic models.

5 Simulation Study: Local SIR Model

We now come back to the local SIR model introduced in Section 2, which was originally described as
a discrete Markov chain with transitions (1) and which was in Section 3 proved to be approximated by
the continuous state space process(s, j)′ satisfying the system of stochastic differential equations (3).
In this section we show simulation results for both these model descriptions and compare parameter
estimates forα andβ based thereon.

5.1 Simulation

We repeatedly simulate the outbreak of an epidemic for different population sizesN , once based on
the original discrete Markov chain model representation (1), and once as an Euler approximation to the
stochastic differential equations (3).
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For the discrete process, we fix the time step4t and within one step transfer the discrete random
vector (S, I) ∈ [0, N ]2 to (S − 1, I + 1) with probability αSI/N4t, or to (S, I − 1) with prob-
ability βI4t. Otherwise, the state of the Markov chain does not change. Note that4t has to be
sufficiently small to ensure that all involved probabilities are well-defined, i.e.4t has to be less than
(maxS,I∈[0,N ](αSI/N + βI))−1. The initial state should satisfyS0 + I0 ≤ N .

For the diffusion process, we employ the Euler scheme to subsequently simulate the state of the pro-
cess(s, j)′ at discrete equidistant time points in intervals of length4t. In this case, there is no restriction
to the size of the time step, though the approximation clearly improves as4t tends to zero.

Figure 4 shows the fractions of infectives of ten independent samples for each model description and
population sizesN = 103, 104, 105. For each sample, the step size was chosen to be4t = 2.5 · 10−5,
where time was measured in days. The model parameters wereα = 0.625 andβ = 0.25, and the
initial fraction of infectives was one percent of the population. The stochastic samples twine around the
deterministic course of the fractions of infectives, which was obtained with the standard Euler scheme
from equations (2). However, the magnitude of the fluctuations decreases for larger population sizes, as
was to be expected from (3).

Figure 4: Independent samples from the discrete Markov chain model (dotted) and the discretized diffu-
sion process (dashed) for population sizesN = 103 (left), N = 104 (middle), andN = 105 (right). The
solid lines indicate the deterministic course of the epidemic. The model parameters wereα = 0.625
and β = 0.25, the fraction of infectives at time zero was0.01, and the time step was chosen to
be4t = 2.5 · 10−5.

5.2 Likelihood Function

In this paragraph, we derive the log likelihood function of the process(s, j)′ satisfying (3) according to
Section 4. For the sake of clarity, we introduce functionsap andbpk, p ∈ {s, j}, k = 1, 2, and rewrite
this as

dX
(
t
)

=
(

as

(
X(t),θ

)
aj

(
X(t),θ

) ) dt +
(

bs1

(
X(t),θ

)
bs2

(
X(t),θ

)
bj1

(
X(t),θ

)
bj2

(
X(t),θ

) )( dB1(t)
dB2(t)

)
,
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whereX = (s, j)′ Lundθ = (α, β). The associated Euler scheme reads

X(tk)=X(tk−1)+4tk−1

(
as

(
X(tk−1),θ

)
aj

(
X(tk−1),θ

))︸ ︷︷ ︸
=:A(X(tk−1),θ)

+
(

bs1

(
X(tk−1),θ

)
bs2

(
X(tk−1),θ

)
bj1

(
X(tk−1),θ

)
bj2

(
X(tk−1),θ

))︸ ︷︷ ︸
=:M(X(tk−1),θ)

(
4B1(tk−1)
4B2(tk−1)

)

for k = 1, . . . , u, wheretu is the upper bound of the considered time interval. The conditional expecta-
tion and variance of the discretized processX hence are

E(X(tk)|X(tk−1)) = X(tk−1) +4tk−1 ·A(X(tk−1),θ)

and
Var(X(tk)|X(tk−1)) = 4tk−1 ·M(X(tk−1),θ)M ′(X(tk−1),θ)

for k = 1, . . . , u. Without any restrictions applying toX we could now write down the associated log
likelihood function for given datax = (xt0 ,xt1 , . . . ,xtu) = ((st0 , jt0)

′, (st1 , jt1)
′, . . . , (stu , jtu)′),

l(θ) =
u∑

k=1

log φ(xtk |xtk−1
+4tk−1A(xtk−1

,θ) , 4tk−1M(x(tk−1),θ)M ′(x(tk−1))),

as introduced in Section 4.2. The functionφ(y|µ,Σ) now denotes the probability density of the bivari-
ate normal distribution with meanµ and covariance matrixΣ aty. However, since the state variabless
andj are defined as the fractions of susceptible and infectious individuals of the total population, re-
spectively, they underlie the restriction of taking values in the interval[0, 1]. Hence, as soon as values
less than zero or greater than one occur in the Euler simulation, these have to be corrected to zero or one,
respectively. Vice-versa, when applying the likelihood function above, we assume the underlying data
to be risen from an Euler approximation and hence to be potentially truncated. In order to determine the
maximum likelihood estimator ofθ, we hence maximise a combination of the density and the probabil-
ity function of appropriately parameterized normal distributions; a justification for this procedure can be
found in Klein and Moeschberger (1997). We therefore have to detect where data is possibly truncated.
This is the case if either

stk = 1 or jtk = 1 or stk = 0 ∧ stk−1
6= 0 or jtk = 0 ∧ jtk−1

6= 0

for any k = 1, . . . , u. In case ofstk = stk−1
= 0 or jtk = jtk−1

= 0 we have no truncation since
stk−1

= 0 ⇒ stk = 0, and analogously forj. Define

µ(tk) =
(

µ1(tk)
µ2(tk)

)
= xtk−1

+4tk−1A(xtk−1
,θ)

Σ(tk) =
(

σ2
1(tk) σ12(tk)

σ12(tk) σ2
2(tk)

)
= 4tk−1M(x(tk−1),θ)M ′(x(tk−1),θ)

and

µ∗1(tk) = µ1(tk) +
σ12(tk)
σ2

2(tk)
(jtk−1

− µ2(tk)) ,

µ∗2(tk) = µ2(tk) +
σ12(tk)
σ2

1(tk)
(stk−1

− µ1(tk)) ,

(σ∗1(tk))
2 = σ2

1(tk)−
σ2

12(tk)
σ2

2(tk)
,

(σ∗2(tk))
2 = σ2

2(tk)−
σ2

12(tk)
σ2

1(tk)
.
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Then, because of(stk , jtk)|(stk−1
, jtk−1

) ∼ N(µ(tk),Σ(tk)), we have

stk |{stk−1
, jtk−1

} ∼ N(µ1(tk), σ2
1(tk)) , jtk |{stk−1

, jtk−1
} ∼ N(µ2(tk), σ2

2(tk))

and

stk |{jtk , stk−1
, jtk−1

} ∼ N(µ∗1(tk), (σ
∗
1(tk))

2) , jtk |{stk , stk−1
, jtk−1

} ∼ N(µ∗2(tk), (σ
∗
2(tk))

2).

The log likelihood function for given datax = (xt0 ,xt1 , . . . ,xtu) then reads

l(θ) = log f(x|θ) =
u∑

k=1

log f(xtk |xtk−1
,θ) ,

wheref(xtk |xtk−1
,θ) equals

φ(xtk |µ(tk),Σ(tk)) if stk , jtk not truncated,

Φ(I(xtk)|µ(tk),Σ(tk)) if stk , jtk possibly truncated,

φ(stk |µ1(tk), σ2
1(tk)) · Φ(I(jtk)|µ∗2(tk), (σ∗2(tk))2) if stk not truncated,jtk possibly truncated,

φ(jtk |µ2(tk), σ2
2(tk)) · Φ(I(stk)|µ∗1(tk), (σ∗1(tk))2) if stk possibly truncated,jtk not truncated.

Here,Φ(I(z)|µ, σ2) denotes the integral of the univariate normal distribution function with meanµ and
varianceσ2 over an intervalI(z) depending onz.

5.3 Estimation Results

Finally, we apply the log likelihood function obtained above to the data sets sampled in Section 5.1.
Recall that the value of the parameter was chosen to be(α, β) = (0.625, 0.25). Table 1 shows estimation
results which are each based on a set of ten independent samples, obtained for the two different model
descriptions and different population sizes, taking into account every1000th sample point. Figure 5
displays the maximum likelihood estimates based on the single sample paths instead of on a set of ten.
Maximization of the log likelihood function was performed by applying theR function optim. The
results indicate that the diffusion process works well as an approximation to the original discrete model,
since the estimation based on the data risen from (1) is of the same value as the estimation on the data
from (3).

5.4 Remarks

The time step4t = 2.5 ·10−5 in Section 5.1 was chosen rather small for both model descriptions and all
considered population sizes, which led to very detailed data and hence naturally to satisfying estimation
results. However, this data situation does by no means comply with natural ones in epidemics. Still,
even a data set of size ten (instead of 1200, as in our case) would have produced similar results. The
reason for the chosen time step solely came from the upper bound restriction to4t when sampling
from the discrete Markov process (1) forN = 105. It however fulfilled the purpose of illustrating the
resemblance of the sample paths drawn from the two models (1) and (3).

6 Application: Influenza in Germany

We now apply the spatial SIR model (5) in order to estimate the transmission and recovery rate for an
influenza outbreak in Germany. As subregions we choose 438 rural and urban districts. A description
of the data on influenza prevalence and of the connectivity matrix is given in the following.
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discrete Markov chain

N α̂ lower upper β̂ lower upper
103 0.6198 0.6098 0.6299 0.2461 0.2421 0.2501
104 0.6257 0.6217 0.6297 0.2505 0.2489 0.2521
105 0.6256 0.6243 0.6269 0.2494 0.2489 0.2500

diffusion approximation

N α̂ lower upper β̂ lower upper
103 0.6284 0.6182 0.6385 0.2484 0.2444 0.2524
104 0.6273 0.6233 0.6313 0.2485 0.2469 0.2501
105 0.6246 0.6233 0.6259 0.2502 0.2497 0.2507

Table 1: Estimation results for(α, β), each based on a set of ten independent samples which were
drawn from the discrete model (1) and the diffusion model (3) for population sizesN = 103, 104, 105

in Section 5.1. From this data, every1000th sample point was taken into account. The table displays
the maximum likelihood estimateŝα andβ̂ and the lower and upper bounds of the respective 95% Wald
confidence intervals.
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Figure 5: Maximum likelihood estimates for(α, β), each based on a single sample path obtained in
Section 5.1. For the estimation, every1000th sample point of each path was taken into account. The
true parameter(α, β) = (0.625, 0.25) is marked by an asterisk. Filled marks indicate estimates based
on discrete model data, unfilled ones refer to those based on diffusion model data. Circles stand for the
caseN = 103, squares forN = 104, and triangles forN = 105.

6.1 Data

Disease counts. For the underlying data set on influenza prevalence, we employ a database of the
Robert Koch Institute Berlin (RKI) as of 11 November 2006, which is available at
http://www3.rki.de/survstat. This database contains reported incidences on a weekly basis. We
assume the infectious period to usually not last longer than one week and hence data from subsequent
weeks to be mutually independent. This way, we equate prevalence and incidence and also obtain the
size of the susceptible group by subtracting the number of infectives of the previous week from the
foregoing number of susceptibles. Table 2 and Figure 6 show the numbers of influenza A and A/B
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Figure 6: Numbers of reported cases of influenza A and A/B in Germany.

cases which were reported to the RKI between 2001 and 2006. Since the epidemics of subsequent years
usually arise from different antigen mutants of the influenza virus, we consider the model parametersα
andβ to depend only on the data of the respective season. We thus base the following estimation on the
data of weeks 5 to 14 of the year 2005, which constitutes the heaviest reported influenza outbreak.

year number
2001 2201
2002 1219
2003 7724
2004 3312
2005 10181
2006 2220

Table 2: Numbers of reported cases of influenza A and A/B in Germany.

Connectivity matrix. We assume the daily flow of commuters to be a sensible indicator for the migra-
tion between the rural and urban districts. We hence investigate data on commuter traffic, which is freely
available for few parts of Germany from the Federal Agency for Work. From this data we construct a
linear model, assuming that the outbound traffic from one region to another depends on the population
densitiesxdens1andxdens2of both the origin and the target region (since a high population density can
be taken as an indicator for an urban region with many working places and leisure amenities), on the
distancexdist between the two regions, and on the numberxnum of neighbours of the starting region. In
order to ensure that we obtain reasonable values for the rates of trafficγij , we employ a logit function
which transforms the real line to the interval[0, 0.7] and achieve

logit(γij) = −3.207 · 10−2 + 7.767 · 10−4xdens1+ 9.056 · 10−4xdens2− 1.312xdist− 9.832 · 10−2xnum.

In addition, we take into account domestic air travel in order to cover also the long distance connections.
Data on this can be obtained from the OAGflights database athttp://www.oagflights.com. The
overall resulting network is shown in Figure 7.
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Figure 7: Estimated daily traffic network between the rural and urban districts of Germany. The thick-
ness of each line represents the strength of migration between two regions. Green lines are given data,
blue lines estimates based on the former; red lines are domestic air travel.

6.2 Results

Eventually, based of the data described above, we set up the log likelihood function for the parameter
θ = (α, β) in the spatial SIR model (5) similarly to how it was done in Section 5.2. The maximum like-
lihood estimatêθ = (0.257, 0.425), which we again obtain by maximising the log likelihood function
employing theR routineoptim, is a somewhat chastening result since from real-world experience one
would expect the fractionρ = α/β to be greater than one. However, a non-plausible result was to be
foreseen from the fact that we deal with highly underreported disease counts (see Dargatz, Georgescu,
& Held, 2006) and that with the Euler scheme we employ a method which approximates a diffusion only
for sufficiently small time steps, which is surely not fulfilled for weekly reported cases. However, being
aware of these difficulties, we have a strong motivation to further investigate improvements obtained by
data augmentation and MCMC methods, which are part of our ongoing work.

7 Conclusion

In this report, we transformed a discrete state space epidemic Markov process to a continuous state
space diffusion, which is much more convenient for sampling and estimation purposes. We performed
simple Euler simulation and employed an approximate likelihood function for the estimation of the
epidemic model parameters. Future work is clearly on further treatment of the statistical inference for
the multivariate epidemic diffusion model (5), including data augmentation, Bayesian and non-Bayesian
analysis and especially MCMC.
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