483 research outputs found

    GRIDKIT: Pluggable overlay networks for Grid computing

    Get PDF
    A `second generation' approach to the provision of Grid middleware is now emerging which is built on service-oriented architecture and web services standards and technologies. However, advanced Grid applications have significant demands that are not addressed by present-day web services platforms. As one prime example, current platforms do not support the rich diversity of communication `interaction types' that are demanded by advanced applications (e.g. publish-subscribe, media streaming, peer-to-peer interaction). In the paper we describe the Gridkit middleware which augments the basic service-oriented architecture to address this particular deficiency. We particularly focus on the communications infrastructure support required to support multiple interaction types in a unified, principled and extensible manner-which we present in terms of the novel concept of pluggable overlay networks

    Data sharing in DHT based P2P systems

    Get PDF
    International audienceThe evolution of peer-to-peer (P2P) systems triggered the building of large scale distributed applications. The main application domain is data sharing across a very large number of highly autonomous participants. Building such data sharing systems is particularly challenging because of the "extreme" characteristics of P2P infrastructures: massive distribution, high churn rate, no global control, potentially untrusted participants... This article focuses on declarative querying support, query optimization and data privacy on a major class of P2P systems, that based on Distributed Hash Table (P2P DHT). The usual approaches and the algorithms used by classic distributed systems and databases forproviding data privacy and querying services are not well suited to P2P DHT systems. A considerable amount of work was required to adapt them for the new challenges such systems present. This paper describes the most important solutions found. It also identies important future research trends in data management in P2P DHT systems

    Dragon: Multidimensional Range Queries on Distributed Aggregation Trees,

    Get PDF
    Distributed query processing is of paramount importance in next-generation distribution services, such as Internet of Things (IoT) and cyber-physical systems. Even if several multi-attribute range queries supports have been proposed for peer-to-peer systems, these solutions must be rethought to fully meet the requirements of new computational paradigms for IoT, like fog computing. This paper proposes dragon, an ecient support for distributed multi-dimensional range query processing targeting ecient query resolution on highly dynamic data. In dragon nodes at the edges of the network collect and publish multi-dimensional data. The nodes collectively manage an aggregation tree storing data digests which are then exploited, when resolving queries, to prune the sub-trees containing few or no relevant matches. Multi-attribute queries are managed by linearising the attribute space through space lling curves. We extensively analysed dierent aggregation and query resolution strategies in a wide spectrum of experimental set-ups. We show that dragon manages eciently fast changing data values. Further, we show that dragon resolves queries by contacting a lower number of nodes when compared to a similar approach in the state of the art

    A Fog-based Distributed Look-up Service for Intelligent Transportation Systems

    Get PDF
    Future intelligent transportation systems and applications are expected to greatly benefit from the integration with a cloud computing infrastructure for service reliability and efficiency. More recently, fog computing has been proposed as a new computing paradigm to support low-latency and location-aware services by moving the execution of application logic on devices at the edge of the network in proximity of the physical systems, e.g. in the roadside infrastructure or directly in the connected vehicles. Such distributed runtime environment can support low-latency communication with sensors and actuators thus allowing functions such as real-time monitoring and remote control, e.g. for remote telemetry of public transport vehicles or remote control under emergency situations, respectively. These applications will require support for some basic functionalities from the runtime. Among them, discovery of sensors and actuators will be a significant challenge considering the large variety of sensors and actuators and their mobility. In this paper, a discovery service specifically tailored for fog computing platforms with mobile nodes is proposed. Instead of adopting a centralized approach, we pro-pose an approach based on a distributed hash table to be implemented by fog nodes, exploiting their storage and computation capabilities. The proposed approach supports by design multiple attributes and range queries. A prototype of the proposed service has been implemented and evaluated experimentally
    • …
    corecore