709 research outputs found

    Design of a low-noise optoelectronic amplifier channel for a laser radar

    Get PDF
    Abstract. The goal of this Master’s thesis is to find and develop the best topologies and circuit structures for a low-noise amplifier channel for a laser radar application. In this work different topologies, their strengths, weaknesses and challenges are studied. Low-noise optoelectronic amplifier channels have been used extensively in a variety of applications such as wireless communication, optical receivers and laser radar. The common constraint for all the mentioned applications is the noise. The optical input signal for optoelectronic receivers can be very weak. In order to detect the signal reliably and accurately, the receiver must not add significant noise to the input signal. Therefore, this thesis concentrates on improving the signal to noise ratio (SNR) by minimizing the noise sources, filtering the high frequency noise and amplifying the signal. In addition, the delay of the whole channel should be constant with respect to signal strength, supply voltage etc. variations. This low-noise optoelectronic amplifier channel can be employed in a laser radar to detect the distance of several kilometers.Pienikohinaisen optoelektronisen vahvistinkanavan suunnittelu lasertutkasovellukseen. Tiivistelmä. Tämän diplomityön tavoitteena on etsiä ja kehittää sopivia piiriratkaisuja ja -rakenteita lasertutkan pienikohinaiseen vahvistinkanavaan. Työssä tutkittiin eri rakenteita, niiden vahvuuksia, heikkouksia ja haasteita. Pienikohinaisia optoelektronisia vahvistinkanavia on käytetty paljon useissa sovelluksissa kuten langattomassa viestinnässä, optisissa vastaanottimissa ja lasertutkissa. Näissä sovelluksissa yhteisenä haasteena on kohina. Optoelektronisen vastaanottimen tulosignaali voi olla hyvin heikko, joten tarkan ja luotettavan vastaanoton varmistamiseksi vastaanottimen itsessään tulee olla hyvin pienikohinainen. Tässä työssä keskityttiinkin signaalikohinasuhteen (SNR) optimointiin minimoimalla itse kohinalähteet, suodattamalla korkeataajuista kohinaa ja vahvistamalla signaalia. Lisäksi koko kanavan viive oli pidettävä mahdollisimman vakiona eri signaalitasoilla, eri lämpötiloissa, eri käyttöjännitteillä jne. Työssä kehitettyä optoelektronista vahvistinkanavaa voidaan käyttää lasertutkissa mittaamaan etäisyyksiä kilometrien päässä oleviin kohteisiin

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    Développement d'une architecture innovante de récepteur radar à 77 GHz et démonstration en CMOS 28 nm FDSOI

    Get PDF
    Grâce à sa capacité à détecter des cibles éloignées malgré une mauvaise visibilité, le radar automobile à 77 GHz joue un rôle important dans l'aide à la conduite. L'utilisation des fréquences millimétriques offre une bonne résolution et une importante capacité d'intégration des circuits. C'est aussi un défi car il faut satisfaire un cahier des charges exigeant sur le bruit et la linéarité du récepteur. Les technologies SiGe BiCMOS ont été les premières utilisées pour la conception de récepteurs radar à 77 GHz. De bons résultats ont été obtenus en se basant sur des architectures utilisant des mélangeurs actifs. Cependant l'utilisation des technologie BiCMOS se traduisait par une consommation élevée, une faible capacité d'intégration et des coûts de production importants. Récemment, l'intégration des procédés CMOS menant à l'augmentation des fréquences de transition rend ces technologies plus attractives pour les applications nécessitant un faible coût et la cointégration de plusieurs fonctions au sein d'une même puce. La littérature sur les récepteurs radars en technologie CMOS à 77 GHz montre que les architectures inspirées par les technologies BiCMOS ne sont pas pertinentes pour cette application. Le but de cette thèse et de montrer que l'utilisation de techniques propres aux technologie CMOS comme l'échantillonnage et l'utilisation de portes logiques permet d'obtenir de très bonnes performances. Dans ce travail, deux nouvelles architectures de récepteurs radars basées sur le principe d'échantillonnage sont proposées. La première architecture est basée sur un mélangeur passif échantillonné qui permet d'obtenir un très bon compromis bruit/linéarité. La seconde exploite les propriétés des mélangeurs sous-échantillonnés afin utiliser une fréquence d'OL trois fois inférieure à la fréquence RF offrant ainsi de très intéressantes simplifications au niveau de la chaîne de distribution du signal d'OL du récepteur. Le contexte de cette étude est expliqué dans le 1er chapitre qui présente les exigences de conception liées à l'application radar et fourni une analyse de l'état de l'art des récepteurs à 77 GHZ. Le chapitre suivant décrit le principe de fonctionnement et l'implémentation d'un mélangeur échantillonné à 77 GHz en technologie CMOS 28- nm FDSOI. Une topologie de mélangeur sous-échantillonné utilisant une fréquence d'OL de 26 GHz pour convertir des signaux RF autour de 77 GHz est ensuite détaillée dans le chapitre 3. Le chapitre 4 conclut cette étude en détaillant l'intégration des mélangeurs étudiés dans les chapitres précédents avec un amplificateur faible bruit dans différents récepteurs radars. Ces architectures de récepteurs basées sur l'échantillonnage sont ensuite comparées entre elles et avec l'état de l'art montrant ainsi leurs avantages et inconvénients. Les résultats de cette comparaison confirment l'intérêt des techniques d'échantillonnage pour la conversion de fréquence dans le cadre de l'application radar.With its ability to detect distant targets under harsh visibility conditions, the 77 GHz automotive radar plays a key role in driving safety. Using mm-wave frequencies allow a good range resolution, a better circuit integration and a wide modulation bandwidth. This is also a challenge for circuit designers who must fulfill stringent requirements especially on the receiver front-end. First 77 GHz radar receivers were manufactured with SiGe BiCMOS processes benefiting from the high transition frequency and high breakdown voltage of Hetero-junction Bipolar Transistors (HBT). Good results have been achieved with active-mixer-based architectures, but these technologies suffer from high power consumptions, limited integration capacity and large production cost. More recently, the scaling down of CMOS processes (coming together with the increase of the transition frequency of the transistors) makes CMOS a good candidate for 77 GHz circuit design, especially when cost target requires single chip solutions. The literature related to CMOS radar receivers highlights that receivers based on BiCMOS architectures generally show poor performances. The aim of this work is to demonstrate that using CMOS specific technics such as sampling and the use of high-speed digital gates should enhance the performance of the receivers. In this work, two innovative radar receiver architectures based on the sampling principle are proposed. The first one shows that this principle can be extended to millimeter wave frequencies to benefit from a very good noise/linearity trade-off. While the second one uses this principle to converts a 77 GHz RF signal by using a 26 GHz LO frequency thus simplifying the LO distribution chain of the receiver. The background of this study is introduced in the chapter 1 presenting the design trade-off related to the 77 GHz radar receiver and provides a review of the existing solutions. The following chapter describes the sampling mixer principle and the implementation of a 77 GHz sampling mixer in 28-nm FDSOI CMOS technology. Then, a sub- sampling mixer topology allowing to convert an RF signal around 77 GHz using a 26 GHz LO frequency is detailed in the chapter 3. The chapter 4 draws the conclusion of this study by showing the implementation of the two proposed sampling-based mixers with a low noise amplifier in 77 GHz front ends. These receiver architectures are compared with the state of the art highlighting the strengths and weaknesses of the proposed solutions. The results of this study demonstrates that using sampling for down conversion can be convenient to address millimeter-wave frequency applications

    Design and Implementation of a UWB Radar Sensor for Non-Destructive Application

    Full text link
    [ES] Debido a la importancia de los campos de aplicación del sensor de radar de banda ultraancha, y también a los requisitos de cada aplicación específica, existe una demanda creciente de diseño compacto, de bajo coste y alta precisión del sensor de radar de banda ultraancha. Para responder a estas exigencias, esta tesis pretende proponer un sensor de radar UWB avanzado. Este trabajo de investigación se centra en el diseño del sensor de radar de banda ultraancha (UWB) para aplicaciones no destructivas (END). Los detalles de diseño incluyen el diseño de un generador de pulsos ultracorto, de alta potencia con un timbre mínimo. El radar desarrollado fue construido con una configuración biestática. El objetivo de este trabajo es medir el rango de distancia y las propiedades eléctricas de un objetivo, por ejemplo, metales y materiales dieléctricos, como el cloruro de polivinilo (PV C). Para lograr este objetivo, se ha desarrollado un novedoso generador de pulsos de alta potencia ultra-corto (pulsador de radar). El nuevo generador de pulsos consiste en un transistor que funciona en modo de avalancha y un circuito de afilado de pulsos que utiliza un nuevo modelo de diodo de recuperación de paso (SRD). Para convertir el pulso gaussiano en un monociclo, se ha añadido una red de formación de monociclo (MFN). El generador de impulsos desarrollado produce un impulso eléctrico con una amplitud de 12 V, un tiempo de subida de 112 ps y un ancho de impulso (FWHM) de 155 ps. Con el fin de aumentar la amplitud de los pulsos, se han propuesto dos técnicas útiles en este trabajo. El primero consiste en agregar dos generadores en paralelo, en este diseño propuesto se tuvo en cuenta alguna especificación para hacer que este circuito funcione. Sin embargo, la segunda técnica adoptada en este trabajo consiste en dos etapas de generadores, ambas técnicas dan lugar a un buen rendimiento; en lugar de un solo módulo de un generador de impulsos, las técnicas propuestas en este trabajo aumentan la amplitud en torno al doble. Ambas técnicas han sido investigadas en detalle. Para transmitir y recibir los impulsos ultracortos generados, se utilizaron dos tipos diferentes de antenas UWB. En primer lugar, una antena Vivaldi con un ancho de banda de unos 5,5 GHz de 600 MHz a 6 GHz. La segunda es una antena Vivaldi con un ancho de banda de 6 GHz de 400 Mhz a 6,2 GHz. Utilizando el sensor de radar de banda ultraancha desarrollado, se realizaron mediciones de prueba. Esto incluye las propiedades eléctricas, así como la medición de la distancia a las placas de metal, madera y PVC. La incertidumbre del sensor de radar es de 14 mm (datos medidos asustados a + 14 mm para un blanco fijo). El diseño y la implementación real que conduce a lograr un excelente prototipo de rendimiento para una aplicación no destructiva.[CA] A causa de la rellevància dels camps d'aplicació del sensor de radar d'ultra banda ampla, i també l'exigència de cada aplicació específica, hi ha una demanda creixent de disseny compacte, de baix cost i alta precisió del sensor de radar d'ultra banda ampla. Amb la intenció d'atendre aquestes demandes, aquesta tesi pretén proposar un sensor avançat de radar UWB. Aquest treball de recerca tracta del disseny del sensor de radar d'ultra-banda ampla (UWB) per a aplicacions no destructives (NDT). Els detalls del disseny inclouen el disseny d'un pols de monocicle amb pols de potència d'alta potència i amb un mínim de timbre. El radar desenvolupat va ser construït en configuració bi-estàtica. L'objectiu d'aquest treball és mesurar el rang de distància i les propietats elèctriques d'un objectiu, per exemple, materials metàl·lics i dielèctrics, com el clorur de polivinil (PV C). Per assolir aquest objectiu, s'ha desenvolupat un nou ultrasò, generador de pols d'alta potència (polsador de radar). El nou generador de pols està format per un transistor que funciona en mode d'allaus i un circuit d'afilat de pols mitjançant un nou model de díode de recuperació de pas (SRD). Per a convertir el pols gaussiano en un monocicle, s'ha afegit una xarxa de formació de monocicles (MFN). El generador de polsos desenvolupat produeix un pols elèctric amb una amplitud de 12 V, un temps d'augment de 112 ps i un ample de pols (FWHM) de 155 ps. Amb l'objectiu d'augmentar l'amplitud dels polsos, s'han proposat dues tècniques útils en aquest treball. El primer consisteix a afegir dos generadors de forma paral·lela, en aquest disseny proposat, cal tenir en compte algunes especificacions per a fer la viabilitat d'aquest circuit. No obstant això, la segona tècnica adoptada en aquest treball consisteix en una doble etapa de generadors, ambdues tècniques donen lloc a una bona actuació; en lloc d'un únic mòdul d'un generador de pols, les tècniques proposades en aquest treball augmenten l'amplitud al voltant del doble. Per transmetre i rebre polsos ultra-curts generats, s'han utilitzat dos tipus diferents d'antenes UWB. En primer lloc, una antena de Vivaldi amb un ample de banda d'uns 5,5 GHz de 600 MHz a 6 GHz. Mentre que la segona és una antena Vivaldi amb un ample de banda de 6 GHz de 400 MHz a 6.2 GHz. Mitjançant el sensor de radar ultra-ampla desenvolupat, es va realitzar la mesura de la prova. Incloïen propietats elèctriques i mesures de distància a les plaques metàl·liques, fusta i PVC. S'ha trobat que la incertesa del sensor de radar és de 14 mm (dades mesurades espantades entre + 14 mm per a un objectiu fix). El disseny i la implementació real condueixen a aconseguir un excel·lent prototip de rendiment per a una aplicació no destructiva.[EN] Due to the relevance of application fields of ultra-wideband radar sensor, and also the requirement of each specific application, there is an increasing demand of compact, low cost and high accuracy design of ultra-wideband radar sensor. With a view to addressing these demands, this thesis aims to propose an advanced UWB radar sensor. This research work deals with the design of the ultra-wideband (UWB) radar sensor for non-destructive (NDT) application. The design details include the design of ultra-short, high power pulse generator monocycle pulse with a minimum of ringing. The developed radar was build in bi-static configuration. The goal of this work is to measure the distance range and electrical properties of a target e.g, metal and dielectric materials, such as Polyvinyl chloride (PV C). To achieve this goal, a novel ultrashort, high power pulse generator (radar pulser) has been developed. The new pulse generator consists of a transistor operating in avalanche mode and a pulse sharpening circuit using a new model of step recovery diode (SRD). In order to converts the Gaussian pulse to a monocycle, a monocycle forming network (MFN) has been added. The developed pulse generator produces an electrical pulse with an amplitude of 12 V, a rise-time of 112 ps and pulse width (FWHM) of 155 ps. For the purpose to increase the amplitude of the pulses, two useful techniques have been proposed in this work. The first one consist of adding two generators in parallel, in this proposed design some specification was be taking into account to making the workability of this circuit. However, the second technic adopted in this work consists of a two-stage of generators, both technics give rise to a good performance; instead of a single module of a pulse generator, the techniques proposed in this work increase the amplitude around the double. In order to transmit and receive the generated ultra-short pulses, two different types of UWB antennas have been used. First, a Vivaldi antenna with a bandwidth of about 5.5 GHz from 600 MHz to 6 GHz. While the second is a Vivaldi antenna with a bandwidth of 6 GHz from 400 Mhz to 6,2 GHz. Using the developed ultra-wideband radar sensor, test measurement was performed. These included electrical properties as well as distance measurement towards metal plates, wood, and PVC. The uncertainty of the radar sensor has been found to be 14 mm (measured data scared within + 14 mm for a fixed target). The design and real implementation leading to achieve excellent performance prototype for a non-destructive application.Ahajjam, Y. (2019). Design and Implementation of a UWB Radar Sensor for Non-Destructive Application [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/124057TESI

    NASA Thesaurus. Volume 1: Hierarchical listing

    Get PDF
    There are 16,713 postable terms and 3,716 nonpostable terms approved for use in the NASA scientific and technical information system in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary

    NASA thesaurus. Volume 1: Hierarchical Listing

    Get PDF
    There are over 17,000 postable terms and nearly 4,000 nonpostable terms approved for use in the NASA scientific and technical information system in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary and Volume 3 - Definitions

    Analysis of Measurements for Solid State Lidar Development

    Get PDF
    A Detector Characterization Facility (DCF), capable of measuring 2-micron detection devices and evaluating heterodyne receivers, was developed at the Marshall Space Flight Center. The DCF is capable of providing all the necessary detection parameters for design, development, and calibration of coherent and incoherent solid state laser radar (lidar) systems. The coherent lidars in particular require an accurate knowledge of detector heterodyne quantum efficient, nonlinearity properties, and voltage-current relationship as a function of applied optical power. At present, no detector manufacturer provides these qualities or adequately characterizes their detectors for heterodyne detection operation. In addition, the detector characterization facility measures the detectors DC and AC quantum efficiencies noise equivalent power and frequency response up to several GHz. The DCF is also capable of evaluating various heterodyne detection schemes such as balanced detectors and fiber optic interferometers. The design and analyses of measurements for the DCF were preformed over the previous year and a detailed description of its design and capabilities was provided in the NASA report NAS8-38609/DO77. It should also be noted that the DCF design was further improved to allow for the characterization of diffractive andholographical optical elements and other critical components of coherent lidar systems

    Space Communications: Theory and Applications. Volume 3: Information Processing and Advanced Techniques. A Bibliography, 1958 - 1963

    Get PDF
    Annotated bibliography on information processing and advanced communication techniques - theory and applications of space communication

    NASA Tech Briefs, May 2012

    Get PDF
    Topics covered include: An "Inefficient Fin" Non-Dimensional Parameter to Measure Gas Temperatures Efficiently; On-Wafer Measurement of a Multi-Stage MMIC Amplifier with 10 dB of Gain at 475 GHz; Software to Control and Monitor Gas Streams; Miniaturized Laser Heterodyne Radiometer (LHR) for Measurements of Greenhouse Gases in the Atmospheric Column; Anomaly Detection in Test Equipment via Sliding Mode Observers; Absolute Position of Targets Measured Through a Chamber Window Using Lidar Metrology Systems; Goldstone Solar System Radar Waveform Generator; Fast and Adaptive Lossless Onboard Hyperspectral Data Compression System; Iridium Interfacial Stack - IrIS; Downsampling Photodetector Array with Windowing; Optical Phase Recovery and Locking in a PPM Laser Communication Link; High-Speed Edge-Detecting Line Scan Smart Camera; Optical Communications Channel Combiner; Development of Thermal Infrared Sensor to Supplement Operational Land Imager; Amplitude-Stabilized Oscillator for a Capacitance-Probe Electrometer; Automated Performance Characterization of DSN System Frequency Stability Using Spacecraft Tracking Data; Histogrammatic Method for Determining Relative Abundance of Input Gas Pulse; Predictive Sea State Estimation for Automated Ride Control and Handling - PSSEARCH; LEGION: Lightweight Expandable Group of Independently Operating Nodes; Real-Time Projection to Verify Plan Success During Execution; Automated Performance Characterization of DSN System Frequency Stability Using Spacecraft Tracking Data; Web-Based Customizable Viewer for Mars Network Overflight Opportunities; Fabrication of a Cryogenic Terahertz Emitter for Bolometer Focal Plane Calibrations; Fabrication of an Absorber-Coupled MKID Detector; Graphene Transparent Conductive Electrodes for Next- Generation Microshutter Arrays; Method of Bonding Optical Elements with Near-Zero Displacement; Free-Mass and Interface Configurations of Hammering Mechanisms; Wavefront Compensation Segmented Mirror Sensing and Control; Long-Life, Lightweight, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration; Reliable Optical Pump Architecture for Highly Coherent Lasers Used in Space Metrology Applications; Electrochemical Ultracapacitors Using Graphitic Nanostacks; Improved Whole-Blood-Staining Device; Monitoring Location and Angular Orientation of a Pill; Molecular Technique to Reduce PCR Bias for Deeper Understanding of Microbial Diversity; Laser Ablation Electrodynamic Ion Funnel for In Situ Mass Spectrometry on Mars; High-Altitude MMIC Sounding Radiometer for the Global Hawk Unmanned Aerial Vehicle; PRTs and Their Bonding for Long-Duration, Extreme-Temperature Environments; Mid- and Long-IR Broadband Quantum Well Photodetector; 3D Display Using Conjugated Multiband Bandpass Filters; Real-Time, Non-Intrusive Detection of Liquid Nitrogen in Liquid Oxygen at High Pressure and High Flow; Method to Enhance the Operation of an Optical Inspection Instrument Using Spatial Light Modulators; Dual-Compartment Inflatable Suitlock; Large-Strain Transparent Magnetoactive Polymer Nanocomposites; Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine; Time Distribution Using SpaceWire in the SCaN Testbed on ISS; and Techniques for Solution- Assisted Optical Contacting

    NASA Tech Briefs, April 2011

    Get PDF
    Topics covered include: Amperometric Solid Electrolyte Oxygen Microsensors with Easy Batch Fabrication; Two-Axis Direct Fluid Shear Stress Sensor for Aerodynamic Applications; Target Assembly to Check Boresight Alignment of Active Sensors; Virtual Sensor Test Instrumentation; Evaluation of the Reflection Coefficient of Microstrip Elements for Reflectarray Antennas; Miniaturized Ka-Band Dual-Channel Radar; Continuous-Integration Laser Energy Lidar Monitor; Miniaturized Airborne Imaging Central Server System; Radiation-Tolerant, SpaceWire-Compatible Switching Fabric; Small Microprocessor for ASIC or FPGA Implementation; Source-Coupled, N-Channel, JFET-Based Digital Logic Gate Structure Using Resistive Level Shifters; High-Voltage-Input Level Translator Using Standard CMOS; Monitoring Digital Closed-Loop Feedback Systems; MASCOT - MATLAB Stability and Control Toolbox; MIRO Continuum Calibration for Asteroid Mode; GOATS Image Projection Component; Coded Modulation in C and MATLAB; Low-Dead-Volume Inlet for Vacuum Chamber; Thermal Control Method for High-Current Wire Bundles by Injecting a Thermally Conductive Filler; Method for Selective Cleaning of Mold Release from Composite Honeycomb Surfaces; Infrared-Bolometer Arrays with Reflective Backshorts; Commercialization of LARC (trade mark) -SI Polyimide Technology; Novel Low-Density Ablators Containing Hyperbranched Poly(azomethine)s; Carbon Nanotubes on Titanium Substrates for Stray Light Suppression; Monolithic, High-Speed Fiber-Optic Switching Array for Lidar; Grid-Tied Photovoltaic Power System; Spectroelectrochemical Instrument Measures TOC; A Miniaturized Video System for Monitoring Drosophila Behavior; Hydrofocusing Bioreactor Produces Anti-Cancer Alkaloids; Creep Measurement Video Extensometer; Radius of Curvature Measurement of Large Optics Using Interferometry and Laser Tracker n-B-pi-p Superlattice Infrared Detector; Safe Onboard Guidance and Control Under Probabilistic Uncertainty; General Tool for Evaluating High-Contrast Coronagraphic Telescope Performance Error Budgets; Hidden Statistics of Schroedinger Equation; Optimal Padding for the Two-Dimensional Fast Fourier Transform; Spatial Query for Planetary Data; Higher Order Mode Coupling in Feed Waveguide of a Planar Slot Array Antenna; Evolutionary Computational Methods for Identifying Emergent Behavior in Autonomous Systems; Sampling Theorem in Terms of the Bandwidth and Sampling Interval; Meteoroid/Orbital Debris Shield Engineering Development Practice and Procedure; Self-Balancing, Optical-Center-Pivot, Fast-Steering Mirror; Wireless Orbiter Hang-Angle Inclinometer System; and Internal Electrostatic Discharge Monitor - IESDM
    corecore