24 research outputs found

    Relative full completeness for bicategorical cartesian closed structure

    Get PDF

    Open Higher-Order Logic

    Get PDF
    We introduce a variation on Barthe et al.ā€™s higher-order logic in which formulas are interpreted as predicates over open rather than closed objects. This way, concepts which have an intrinsically functional nature, like continuity, differentiability, or monotonicity, can be expressed and reasoned about in a very natural way, following the structure of the underlying program. We give open higher-order logic in distinct flavors, and in particular in its relational and local versions, the latter being tailored for situations in which properties hold only in part of the underlying functionā€™s domain of definition

    Abstract Clones for Abstract Syntax

    Get PDF
    We give a formal treatment of simple type theories, such as the simply-typed ?-calculus, using the framework of abstract clones. Abstract clones traditionally describe first-order structures, but by equipping them with additional algebraic structure, one can further axiomatize second-order, variable-binding operators. This provides a syntax-independent representation of simple type theories. We describe multisorted second-order presentations, such as the presentation of the simply-typed ?-calculus, and their clone-theoretic algebras; free algebras on clones abstractly describe the syntax of simple type theories quotiented by equations such as ?- and ?-equality. We give a construction of free algebras and derive a corresponding induction principle, which facilitates syntax-independent proofs of properties such as adequacy and normalization for simple type theories. Working only with clones avoids some of the complexities inherent in presheaf-based frameworks for abstract syntax

    Cubical Syntax for Reflection-Free Extensional Equality

    Get PDF
    We contribute XTT, a cubical reconstruction of Observational Type Theory which extends Martin-L\"of's intensional type theory with a dependent equality type that enjoys function extensionality and a judgmental version of the unicity of identity types principle (UIP): any two elements of the same equality type are judgmentally equal. Moreover, we conjecture that the typing relation can be decided in a practical way. In this paper, we establish an algebraic canonicity theorem using a novel cubical extension (independently proposed by Awodey) of the logical families or categorical gluing argument inspired by Coquand and Shulman: every closed element of boolean type is derivably equal to either 'true' or 'false'.Comment: Extended version; International Conference on Formal Structures for Computation and Deduction (FSCD), 201

    Recursion and Sequentiality in Categories of Sheaves

    Get PDF
    We present a fully abstract model of a call-by-value language with higher-order functions, recursion and natural numbers, as an exponential ideal in a topos. Our model is inspired by the fully abstract models of O'Hearn, Riecke and Sandholm, and Marz and Streicher. In contrast with semantics based on cpo's, we treat recursion as just one feature in a model built by combining a choice of modular components

    Lax Logical Relations

    Get PDF
    Lax logical relations are a categorical generalisation of logical relations; though they preserve product types, they need not preserve exponential types. But, like logical relations, they are preserved by the meanings of all lambda-calculus terms.We show that lax logical relations coincide with the correspondences of Schoett, the algebraic relations of Mitchell and the pre-logical relations of Honsell and Sannella on Henkin models, but also generalise naturally to models in cartesian closed categories and to richer languages

    System <i>F</i> in Agda, for Fun and Profit

    Get PDF

    Fully abstract models for effectful Ī»-calculi via category-theoretic logical relations

    Get PDF
    We present a construction which, under suitable assumptions, takes a model of Moggiā€™s computational Ī»-calculus with sum types, effect operations and primitives, and yields a model that is adequate and fully abstract. The construction, which uses the theory of fibrations, categorical glueing, āŠ¤āŠ¤-lifting, and āŠ¤āŠ¤-closure, takes inspiration from Oā€™Hearn & Rieckeā€™s fully abstract model for PCF. Our construction can be applied in the category of sets and functions, as well as the category of diffeological spaces and smooth maps and the category of quasi-Borel spaces, which have been studied as semantics for differentiable and probabilistic programming
    corecore