Recursion and Sequentiality in Categories of
Sheaves

Cristina Matache
University of Oxford, UK

Sean Moss
University of Oxford, UK

Sam Staton
University of Oxford, UK

—— Abstract

We present a fully abstract model of a call-by-value language with higher-order functions, recursion
and natural numbers, as an exponential ideal in a topos. Our model is inspired by the fully abstract
models of O’Hearn, Riecke and Sandholm, and Marz and Streicher. In contrast with semantics based
on cpo’s, we treat recursion as just one feature in a model built by combining a choice of modular
components.

2012 ACM Subject Classification Theory of computation — Denotational semantics; Theory of
computation — Categorical semantics

Keywords and phrases Denotational semantics, Full abstraction, Recursion, Sheaf toposes, CPOs
Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.25

Funding Cristina Matache: Research supported by an EPSRC studentship and Balliol College and
Clarendon Fund scholarships.

Sean Moss: Research supported by a Junior Research Fellowship at University College, Oxford.
Sam Staton: Research supported by a Royal Society University Research Fellowship and the ERC
BLAST grant.

1 Introduction

This paper is about building denotational models of programming languages with recursion
by using categories of sheaves. The naive idea of denotational semantics is to interpret every
type A as a set of values [A], every typing context I" as a set of environments [I'], and every
term I' ¢ : A as a partial function [t] : [T'] — [A], so that composing terms corresponds to
composing functions. A more general approach says that a “denotational model” is a category
with enough structure, such as a category of sets, so that we regard [I'] and [A] as objects
of that category, and [t] as a morphism. In our work here, we work in various categories of
sheaves, so that [I'] and [A] are sheaves, which is not far from the naive set-theoretic idea
because categories of sheaves are often regarded as models of intuitionistic set theory. As
we will explain, each category of sheaves is captured by a small site, and by combining or
comparing sites we can combine and compare different denotational models of programming
languages.

We illustrate this by combining sites to give a fully abstract model of a call-by-value PCF.
Full abstraction means that two terms ¢, u are interpreted as equal functions ([t] = [u]) if
and only if they are contextually equivalent. In PCF, which is a simple functional language,
the main challenge for full abstraction is to capture the fact that PCF is sequential, in that
it does not have any primitives for parallelism.

© Cristina Matache, Sean Moss, and Sam Staton;

oY licensed under Creative Commons License CC-BY 4.0
6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 25; pp. 25:1-25:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSCD.2021.25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2

Recursion and Sequentiality in Categories of Sheaves

Our model is inspired by earlier models that were not explicitly sheaf-theoretic [36, 39, 46].
Our fully abstract model is built by combining many different sites which include one for
recursion and that happen to include sites that will turn out to give full definability with
truncated natural numbers. Overall, this truncated full definability can be used to prove full
abstraction of the model.

Although the focus of this paper is on a simple PCF-like language, a broader agenda
is to combine this analysis of recursion and sequentiality with recent sheaf-based models
for other phenomena, including concurrency (e.g. [2]), differentiable programming [42, 18],
probabilistic programming [16], quantum programming [27] and homotopy type theory [1].
The broader context, then, is to use sheaf-based constructions as a principled approach to
building sophisticated models of increasingly elaborate languages.

If the reader is familiar with synthetic domain theory, they may regard the contribution of
this paper as an account of full abstraction in that tradition: at a high level we are merging
the sheaf model of [14] with the Kripke model of [36], via [9]. We give a survey of synthetic
domain theory in §8.2.

We now introduce the key ideas of our paper: to consider a general theory of “normal”
models of PCF (§1.1) and then to build a fully abstract one by combining certain sites (§1.2).

1.1 Normal models of PCF

The key general definition of our paper is that of “normal model” (Definition 4.1). This has
three components: a sheaf category; it has a well-behaved notion of partial function; and it
supports recursion. We now discuss these three components. We motivate with the example
of the extended vertical natural numbers: the linear order V={0<1<-.-<n <...00}.
It is informally an interpretation of the ML datatype datatype v = succ of (unit -> v),
or data V = Succ V in Haskell, and it is widely regarded as a source of recursion (e.g. [6]).

Sheaf categories. We interpret types of the language as sheaves and terms as natural
transformations between them. Following our motivating example, a (concrete) v-set is a
set X together with a given set Cx C [V — X] of chains with endpoints; these should
be closed under pre-composition with Scott-continuous functions of V and contain all
constant functions. For example, any cpo X can be regarded as a concrete v-set where
the chains are the chains in X with their limits. The concrete v-sets form the (concrete)
sheaves on the one object category V whose morphisms are Scott-continuous functions
V — V (§5). It is helpful to bear in mind two views of this category, or any category of
sheaves:

The external view is that the sheaves comprise sets with infinitary logical relations (of
arity V). The invariance property has the flavour of a Kripke structure, so they are
similar to Kripke logical relations.

The internal view is that the category of sheaves is a model of intuitionistic set theory,
with a special object V for which all functions V — V are continuous.

Partial functions with semidecidable domains. Our programming language contains func-
tions that might not terminate, and so programs correspond to partial functions. In-
tuitively, we should only consider partial functions with a semidecidable domain. We
formalize this by requiring that a normal model have a specified sheaf A of “semidecidable
truth values” (§3, Definition 3.1). For example, in concrete v-sets we pick A = {0 < 1}
with Ca C [V — A] the characteristic functions of infinite or empty up-sets. In general, a
choice of object A induces a “lifting” monad L. So we can program with partial functions
X — L(Y) using Moggi’s monadic metalanguage [32].

C. Matache, S. Moss, and S. Staton

Recursion via orthogonality. Among the v-sets, there is a canonical sheaf V, but actually

we can construct an analogous sheaf @ in any sheaf category with a semidecidable
truth object A, by taking a limit of a chain (§2.1). We can also define a non-extended
vertical natural numbers sheaf w by taking a colimit of a chain; in v-sets this is the set
{0 <1< ...} without an endpoint, with chains all the eventually constant ones.
Our language has recursion, and we interpret recursive definitions in a sheaf A by using
Tarski’s fixed point theorem, by building a chain and taking its formal limit. This can be
done in a canonical way when A is complete, which we define in terms of orthogonality.
The conditions says that the morphism A* — A“ induced by w C @& is an isomorphism:
intuitively, every chain has a canonical upper bound (§2.2). We give a recipe for showing
that A is complete for the interpretation of any type (§3.1).

Recall that cpo’s can be regarded as v-sets,. The constructions of product, function cpo,
and lifting are all preserved by the inclusion functor hence the interpretation in v-sets is
equivalent to the usual one in cpo’s. The point is that we can now follow the same kind of
interpretation in any sheaf category with this structure, and we can combine our site V with
other sites, as we now explain.

1.2 Combining sites and full abstraction

In §6, we build a sheaf category that is a normal model for our variant of PCF, that we
show to be fully abstract in Theorem 7.7. Our argument is based on full definability: every
morphism has a syntactic counterpart.

Our construction in §7 is non-syntactic, but by way of motivation we first consider a site
built from the syntax of PCF. First, let us define a syntactic “semidecidable subset” of a
type T to be a definable function s : 7 — unit, i.e. it will either terminate or diverge. Now
we temporarily define a category Syn where the objects are pairs (7, s) of a type 7 and a
semidecidable property. A morphism f : (7,s) = (7/,5') is a definable function f: 7 — 7’
such that s = (Az. f(2); () and f = (Az.s(x);lety = f(z)ins'(y);y). In other words, the
morphisms of this category should be regarded as total maps on their given domains.

The presheaf category [Syn°P, Set| nearly satisfies all the requirements of a normal model,
and since the Yoneda embedding Syn — [Syn°P, Set] is always full and faithful, we almost
have a model with full definability. There are two obstacles which we will explain how to
bypass: the natural numbers are not preserved by the Yoneda embedding, and we would
prefer a non-syntactic model. To resolve these issues we also need machinery for combining
concrete sites.

Natural numbers objects and truncated definability. In a non-trivial sheaf category there
are uncountably many morphisms N — N. This is arguably a good thing, in that we
can reason set-theoretically, but it means that we cannot have full definability because
the syntax is countable. We follow Milner [31] in considering, for each n, a version of
PCF where any natural number > n triggers divergence. For this truncated language, it
is possible to impose a sheaf condition on the site Syn so that the Yoneda embedding
Syn — Sh(Syn) preserves the structure of the language. Now, by combining sites for all
possible n, together with V to include recursion, we end up with sufficient definability.

Non-syntactic models. To avoid using the syntax of PCF in the definition of the model, we
consider a broader semantic class of sites that we can show include ones with truncated full
definability. We assemble this broad class of sites by using a general method (§6.3) based
on a semantic structure for sequentiality called “structural systems of partitions” [30, 46].

25:3

FSCD 2021

25:4 Recursion and Sequentiality in Categories of Sheaves

Combining sites and concreteness. PCF satisfies the context lemma, which is to say that

the meaning of a term with free variables can be determined by substituting closed values
for those variables. In a categorical semantics, since the terminal object interprets the
empty context, the context lemma indicates that we are working with categories £ that
are concrete in the sense that the hom-functor £(1, —) : £ — Set is faithful: in effect, we
are working with a category of sets and functions.
Sheaf categories are not concrete in general. In fact, in future work we intend to use
non-concrete sheaf categories to address non-well-pointed phenomena in semantics [24].
But to model PCF, we need to ensure that when we combine sites we preserve concreteness.
To this end we introduce a notion of sum for concrete sites, and show that it is a way
of building normal models (§6.4). Moreover, as we show, there are structure preserving
functors out of this sum (Proposition 6.12).

In summary, we build our fully abstract model by taking the sum of all the concrete sites

that can be built with structural systems of partitions, together with V for recursion. We

then show that all the definable models arise, and hence obtain the definability property,
from which we can deduce full abstraction.

2 A categorical setting for recursion

Recursion in a programming language is usually interpreted using Tarski’s fixed point theorem
(e.g. [17, §12.5]). Although this is usually phrased in terms of partial orders of some flavour,
in this section we provide a general abstract categorical treatment (Theorem 2.2). We give a
language and its interpretation in §4.

For this section we fix a cartesian closed category C with a pointed strong monad L.
Recall that a cartesian closed category allows us to interpret a terminating typed A-calculus,
and that a strong monad is a triple (L, {nx : X — L(X)}x, {»=xy: L(Y)X — L(Y)L(X})
satisfying associativity and identity laws, which allows us to interpret impure computation.
A pointed monad is one equipped with a natural family of maps L4 : 1 — L(A). We will
think of L as a partiality monad, so that morphisms I' — L(X) are thought of as programs
that need not terminate. Our main example is the category vSet with its lifting monad Lyget
given in §5, and the category G with Lg given in §7 is another. In the meantime, it might
help the reader to think of the category whose objects are posets and whose morphisms are
monotone maps which preserve all suprema of w-chains that exist, together with the monad
that adds a new element to the bottom of a poset. Then Definition 2.1 below would pick out
as a full subcategory the category of w-cpo’s and w-continuous maps.

Many of the ideas in this section and in §3 are well established in synthetic/axiomatic
domain theory. We review the literature in §8.2.

2.1 Vertical natural numbers

In this abstract setting, provided certain limits and colimits exist, we can construct objects
analogous to the linear orders (0 <1 <2< ...)and (0<1<2< .- < o0), respectively
called the finite and extended vertical natural numbers. The relationship between these is
crucial for Tarski’s fixed point theorem.

We assume that the following sequential diagram has a limit ©:

L()

L1 &Y

1411

C. Matache, S. Moss, and S. Staton

We think of this limit as the extended vertical natural numbers. In particular, there is a

morphism succg : w — w determined by the cone over diagram (1) with apex w given by

©— L1 2% [nt1] and | @ — 1 = L°1. There is another cone with apex 1 given by

1 Jerm i rng which defines a morphism oo : 1 = @. Note that succg o 0o = oo.
We also assume that the following diagram has a colimit w:
=N EelCa Ny LGP 2)

We think of this colimit as the finite vertical natural numbers. In particular, there is a cocone
over diagram (2) with apex w given by L™1 A, 11— o which defines a morphism

succ,, : w — w. There is a canonical comparison map ¢ : w — @ which comes from maps

m n—1 m—1 "
prg 0BT W) g form < mand I Y 2 10 for i > .

Tt is straightforward to check that 4 o (succ, : w — w) = (succg : @ — @) o 4.

2.2 Complete objects and fixed points

In the traditional poset-based setting, Tarski’s fixed point theorem requires that every chain
has a least upper bound. This completeness can be expressed in this abstract categorical
setting because a morphism w — X can be thought of as a chain in X.

Recall that an object X is said to be right-orthogonal to a morphism f: A — B if every
map A — X factors uniquely through f. We can then make the following definition:

» Definition 2.1. An object X € C is L-complete if it is right-orthogonal to the morphism
ida Xi:AXw— Axw for every A € C.

For example, in the category of w-cpo’s and continuous maps, all objects are complete for
the usual lifting monad. From §3 we will work in sheaf categories where one does not expect
this.

The present abstract setting admits the following fixed point theorem. The theorem
is about L-complete objects that are moreover L-algebras (i.e. objects X equipped with a
morphism L(X) — X satisfying conditions). In the poset setting, L-algebras are just partial
orders with a least element.

» Theorem 2.2. Let X € C be an L-algebra and LX an L-complete object. Then for any
map g :T'x X — X we can construct a fized point ¢g : I' = X such that ¢4(p) = g(p, dg(p)).

Given an interpretation for a language in C such that types are L-complete objects, we
can use Theorem 2.2 to interpret fixed points suitable for call-by-value:

» Corollary 2.3. Consider objects T', A, B in C such that L(LB*) is a L-complete object.
For a morphism M : T x LB x A — LB we can construct a fized point recp; : I' — LBA
such that: recpr(p)(a) = M(p,recar(p), a).

Both fixed points ¢4 and recy; are constructed in Appendix A.1.

3 Partial maps, semidecidability and recursion in toposes

In this section we keep fixed a Grothendieck topos €. (We will not assume deep familiarity
with Grothendieck toposes, but we recall that they are cartesian closed categories with a
particularly well behaved notion of subobject and also well-behaved limits/colimits; these
toposes turn out to be exactly the categories of sheaves on sites, see §6.1.) We suppose
moreover that £ comes with a suitable notion of “semidecidable subset”, which is classified
by an object A of £ as follows.

25:5

FSCD 2021

25:6

Recursion and Sequentiality in Categories of Sheaves

» Definition 3.1. For a fized object A and a fizred monomorphism T : 1 — A, we say a
subobject of A is semidecidable if it is a pullback of T along some map A — A.
We say that T : 1 — A is a generic semidecidable subobject if:
for every semidecidable subobject m : A’ — A there is precisely one map ¢ : A — A such
that m is the pullback of T along ¢;
every 0 — A is semidecidable;
semidecidable monomorphisms are closed under composition.

Our notion is almost exactly what was called a “dominance” in [40] and a “partial truth value
object” in [34]. The difference is our requirement that the empty subobjects be semidecidable.

Throughout this section we assume a fixed generic semidecidable subobject T : 1 — A.
It is straightforward to show that semidecidable subobjects are closed under finite meets,
including top subobjects, and stable under pullback. Moreover, all coproduct inclusions are
semidecidable.

A partial map A — B consists of a semidecidable subobject A’ — A and a map A’ — B.
Partial maps form a category, which can be given directly or described as the Kleisli category
for a certain strong monad La, the lifting monad. The unit of this monad assigns to each
object B its partial map classifier B — LA B, which is characterized by the property that
maps A — LB correspond to partial maps A — B (the domain of the partial map is given
by pulling back the subobject B — LaB). It is well-known that this gives a strong monad
on & [34, 5], which is moreover commutative and an “equational lifting monad” in the sense
of [3]. The fact that 0 — 1 is semidecidable means that La has a point L4 : 1 — LaA.

3.1 Recipes for complete objects

We now show that a large amount of recursion comes from the assumption of L A-completeness
of the generic semidecidable A. Since we are working in a Grothendieck topos &, the colimit
wa and limit wa arising from the lifting monad La exist and are preserved by products,
as in §2.1. It is useful to consider a slight strengthening of the L A-completeness condition,
which roughly says that an object is La-complete with respect to partial maps.

» Definition 3.2. Let Oa be the class of maps in & which are pullbacks of maps i X id4 :
wA X A = wa X A along semidecidable subobjects of w x A. Write (’)g for the class of objects
right orthogonal to every map in Oa.

The following facts are standard and straightforward.
OY is contained in the class of La-complete objects.
O is closed under the operations (—)xid 4, under pullback along semidecidable subobjects,
and under colimits in the arrow category of £.
O% is a reflective subcategory of £, closed under limits, and an exponential ideal.

Every Grothendieck topos £ admits a set S which generates £ under colimits: if £ is a
presheaf topos, one may take S to be the representable presheaves; more generally if £ is
a sheaf topos take S to be the sheafiied representables. Then it follows that the class O%
is equivalently the class of objects right orthogonal to a certain small subset of Oa, those
maps of the form i x id4 for A € S taken from the generating set.

We summarize the following consequences of the assumption of A being La-complete.

» Proposition 3.3. Suppose that A is La-complete.
A is in OF, and for A€ £, A€ OX iff LaA is La-complete iff LaA € OX.
O% 1s closed under La and contains 0.
OR is closed under I-indexed coproducts iff >, 1 € OX for some set J with |I| < |J|.

C. Matache, S. Moss, and S. Staton

Proof notes. A being La-complete means that there is a bijection between the semidecidable
subobjects of wa x A and wa X A for any A. From this, and the fact that A = L1, one
deduces the first claim. Closure of (9% under L can be obtained directly, but also follows
from Theorem 3.1 of [8], since La is a special case of a partial product functor. Finally,
note that »_ ;1 € O% implies that a J-indexed join of disjoint semidecidable subobjects of
A X wp is semidecidable iff the join of their pullbacks to A X wa is semidecidable. <

4 A higher-order language with recursion

In this section we introduce the call-by-value calculus PCF, whose models we will study in
the rest of the paper. The calculus is an extension of the simply typed lambda calculus with
binary products and sums and a type nat of natural numbers. PCF, is given as a fine-grained
call-by-value calculus [25], which means there is a syntactic distinction between values and
computations. It includes a construct for defining recursive functions (rec f x.t) which should
be thought of as the recursive definition of a function f, f(x) = t. There is also a construct
for explicitly sequencing computations letz = tint’.

Types: 7:=0|1|nat|7+7|7X7T|T—=7T
Values: wv,w =2z |« |inlv |inrv]| (v,v) | zero | succ(v) | Ax.t | rec fx.t
Computations: ¢ == returnv | casevof {inlz — ¢, inry — '} | mv | mv | v w

| casev of {zero — t, succ(z) — '} | letz =tint’

There are two typing relations, one for values, FV, and one for computations, ¢, defined
as usual. We can define a big-step operational semantics in the usual way, by induction on
types, as a relation |, between a closed computation and a closed value, both of type 7. The
complete definitions appear in Appendix B. For example:

Cyo:7tt:7 D, fir—=t o771 tl(recfx.t)/f, v/z] | w
'Y .t F'Hrecfat:7— 1 (recfx.t) v w

The operational semantics gives the usual notion of contextual equivalence: two computations
t and ¢’ are contextually equivalent iff, for all contexts C' such that C[¢] and C[t'] are closed
computations of ground type, C[t] |, v & C[t'] |, v, and similarly for values.

4.1 Denotational semantics
We now outline the framework used for our denotational semantics of PCF,.

» Definition 4.1. A normal model of PCF, is a Grothendieck topos £ together with a
generic semidecidable subobject 1 — A such that La(Ng) is a complete object for L, where

Ne = 3201,

The interpretation of PCF, types in any normal model £ is given by [0] = 0, [1] = 1,
natj =>""1=1+1+..., [t = 7] =[r] = Lalr], [r x 7] = [7] x ['], and [7 + 7] =
[7] + [7']- The interpretation for values and computations is standard. A value T'FY v : 7
is interpreted as a morphism [I'] — [r] in £&. A computation I' ¢ ¢ : 7 is a morphism
[T] — La[r]. The term (rec fx.t) can be interpreted with the fixed point constructed
in Corollary 2.3.

Since A = LAl (Definition 3.1) is a retract of La(Ng), the object A in a normal model
is La-complete. Hence it follows from Proposition 3.3 and its preceding discussion that all
PCF, types are interpreted as La-complete objects in a normal model.

25:7

FSCD 2021

25:8

Recursion and Sequentiality in Categories of Sheaves

5 Presheaves on the vertical natural numbers

This section describes the category vSet, an example of a normal model. An object of vSet, or
a v-set, is intuitively a set of points equipped with a abstract collection of limiting w-chains.
We ask that the chains be closed under the action of a monoid of reindexings.

Let V be the monoid of continuous monotone endomorphisms of the extended vertical
natural numbers {0 <1< .-- <n <-.- <oo}. As such, it is a one-object full subcategory
of the category wCPO of w-cpo’s. Recall that the category [C°P, Set] of presheaves on a small
category C is the category with objects contravariant functors F' : C°P — Set and morphisms
F — G natural transformations.

» Definition 5.1. vSet is the category [V°P,Set] of presheaves on V.

Equivalently, vSet is the category of sets equipped with an action of the monoid V with
equivariant maps. For X € vSet we think of X (V) as a set of “abstract chains”. We write |X| =
vSet(1, X) for the set of global elements, thought of as “points”; note that we can also describe
| X| as the set of x € X(V) such that X (e)(z) = z for all e € V(V,V). Thus each abstract
chain s € X (V) gives an actual chain of points of X: X (cg)(s), X(c1)(s),..., X (¢x)(s),
where ¢, : V — V is the constant map with value n for n € NU {co}.

The category wCPO embeds fully-faithfully into vSet by mapping an w-cpo D to the set
of w-chains in D each equipped with their supremum. V-sets in the image of wCPO have
several special properties; one of them is that the map X (V) — Set(N U {co}, | X|) given
by s — An.X(c,)(s) is injective. An X € vSet with this property is called a concrete v-set,
or concrete presheaf on V (we recall a generalization of this later in Definition 6.4). For
a concrete v-set X, the abstract chains in X (V) may be identified with a set of functions
V] = NU {oo} — | X]| containing all constant functions and closed under precomposition
with endomorphisms of V.

The full embedding wCPO < vSet was already observed by Fiore and Rosolini [13, 14],
who then considered a category of sheaves on V as a model of Synthetic Domain Theory.
Their sheaf condition is not relevant to our work here. They consider a dominance in their
sheaf category, which we treat as a generic semidecidable subobject in vSet. Let Ayser € vSet
be the splitting in vSet of the idempotent 71 : V — V given by 0 +— 0 and — 1 for = > 1.
So Ayset(V) can be identified with the set of monotone sequences N — {0, 1}.

» Lemma 5.2. Aset is a generic semidecidable subobject, as in Definition 3.1.

Proof notes. The most difficult part to check is that semidecidable monomorphisms are closed
under composition. Given ¢ : A — Ase classifying m : B — A and given ¢ : B — Ayset,
first note that ¢ admits an extension map 9’ : A — Ayser where, for x € A(V), ¢/ (z) is
the greatest element of Ayser (in the lexicographic ordering) such that ¢(¢'(z)) = (1,1,...)

if it exists and ¥’'(x) = (0,0,...) otherwise. Then if ¢ is the classifier of n : C — B,
the composite mn : C — A is classified by the map £ : A — Aser where, for x € A(V),

§(x); = min{¢(x);, 9’ ()i} <

Thus vSet admits a strong, pointed lifting monad Lyset, given by partial map classifiers
as in the discussion following Definition 3.1. This lifting monad can be explicitly given
by (Lysee X)(V) = {L} + >, cn(X(V))n so0 it has a copy of the set X (V) for each n € N.
The action of an endomorphism e on V is:

il if im(e) € {0,...,n—1}
(Lusee X)(€)(s € (X(V))n) = § X(¢)(s) € (X(V))i if e({0,.... k= 1}) €{0,...,n =1},
e(k)>n—1, ¢(i)=e(k+1i)—n

C. Matache, S. Moss, and S. Staton

and (Lyset X)(e)(L) = L. There is a ready intuition for (Lyser X)(e) which is precise when
X is a concrete v-set: an element of (X (V)),, is a sequence s of elements from | X|, to which
we add n L’s at the beginning. The action (LysetX)(e) of an endomorphism e of V is now
just the standard reindexing of sequences by function composition (L,..., L, s)oe.

We now show that (vSet, Ayset) satisfies the conditions of a normal model (Definition 4.1)
of PCF,, which means showing that Lyset(Nyset) = Lvset(zgo 1) is Lyset-complete. It is
straightforward to give the following explicit description of w and w: for the Lyse lifting
monad on vSet, the limit @ is the representable y(V), and 7 : w — @ is the subobject of maps
with bounded image (in particular, eventually constant).

» Lemma 5.3. Ayset is Lyset-complete.

Proof notes. Firstly, one checks that Ayset is orthogonal to ¢ : w — @, since the maps
into Ayser from w or @ are essentially just the eventually constant binary sequences. Then
consider an extension problem f : w x A — Ayset. Precomposing with the surjection on
points Hw€|A| w X 1gz)y — w x A, there is a unique extension to a map HmelAl @ X 1gzy. This
gives a unique candidate extension of f to @ x A. To see that this is a valid morphism in
vSet, one simply checks that it maps (w x A)(V) into Ayget(V). <

» Proposition 5.4. Lyset(Nyset) = Lyset(D g 1) is Lyset-complete.

Proof notes. One observes that any map w — Lyset(D o 1) or @ — Lyset(d o 1) factors
through one of the subobjects Lyset(ti) : Avset = Lyset 1 — Lyset(Y g 1), where ¢; : 1 — > 7 1
is the ¢-th coproduct inclusion. |

Therefore, (vSet, Ayset) is a normal model for PCF,. Notice that [0] and [1] are concrete v-
sets. It is a standard fact that concrete presheaves are an exponential ideal, and that products
and coproducts preserve concrete presheaves. Moreover, by straightforward inspection the
lifting monad Lyse: preserves concreteness as well. Therefore, the PCF, types are interpreted
as concrete presheaves in vSet. This observation is useful for the proof of the next theorem
(Appendix A.2) because we only need to compare certain morphisms on their underlying
points.

» Theorem 5.5. The pair (vSet, Ayset) gives a sound and adequate model of PCF,.
Soundness: t || v = [t] = g0 [v] € Lyset[7].
Adequacy: if T is a ground type, [t] = nppo [v] = t |, v.

6 Sheaf conditions for sequentiality

In the previous section we used a simple index category, V, to cut down the interpretation
of PCF,-types in Set to a model with recursion. In this section we discuss the other index
categories and their combinations, which we need for a fully abstract model. The motivation
for the new index categories is that they each encapsulate a “prediction” of the underlying
sets of the interpretations of types and the definable morphisms between them. Roughly
speaking, the relations force each prediction to arise as a full subcategory, including what
turns out to be the correct prediction.

6.1 Sites and sheaves

As the fully abstract model of §7 is given as the topos of sheaves on a site, we recall here
some necessary definitions. The standard reference is [20], but for us all sites will be small.

25:9

FSCD 2021

25:10

Recursion and Sequentiality in Categories of Sheaves

A site is a small category C equipped with a coverage J, where a coverage J on C is a set
of covering families (a, {f; | ¢ € I}) where a € C and each f; is a morphism f; : a; — a with
codomain a such that, whenever (a,{f; :a; > a|i€I}) € Jand g:b— aisin C, there
exists (b,{h; : b; = b|i € I'}) € J such that, for all i € I, there exists j € I and k : b; — a;
such that fjok =goh;.

Given a covering family (a,{f; : a; = a | i € I}) € J and a presheaf F : C°® — Set, a
matching family is a collection (s; € F(a;) | i € I) such that foralli,j € I,be C, g: b — a;,
and h : b — a; we have F(g)(s;) = F(h)(sj). A sheaf on the site (C,J) is a presheaf
F : C°P — Set such that for every covering family (a,{f; : a; = a | i € I'}) € J and matching
family (s; € F(a;) | i € I) there is a unique element s € F(a) such that F(f;)(s) = s; for all
i € I. The element s is called the amalgamation of the matching family (s;). The category
of sheaves is denoted Sh(C, .J).

The notion of coverage we have given here is a minimal one (see A2.1.9 of [20]). There
can be several coverages on one category C giving rise to the same collection of sheaves. It
is common to add saturation conditions to the coverage J to tighten the correspondence
between coverages and collections of sheaves, and also to assist calculation. The following
two are useful for us.

(M) J contains (a, {1, : @ = a}) for all a € C.
(L) If (a,{fi :ai — a|i€I}) e Jand (b;,{g;j : bij = a; | j € J;}) € J for i € I then

(a,{figij : bij — a | 1€ I,j € Ji}) e J.

» Example 6.1. Every small category C admits a “trivial” coverage, where J =) and
for which all presheaves on C are J-sheaves. For us, the trivial coverage on C is given by
J ={(a,{1, : a = a}) | a € C}, which has the same sheaves (all presheaves) but also satisfies
(M) and (L).

A fundamental fact about Sh(C,J) is that it is a reflective subcategory of [C°P, Set],
i.e. the inclusion functor Sh(C, J) — [C°P, Set] is full, faithful and possesses a left adjoint,
which is called sheafification. A coverage is subcanonical if all of the representable presheaves
C(—, a) for a € C are sheaves — this means that sheafification leaves representables unchanged
as functors C°P — Set. The trivial coverage is subcanonical, but many useful coverages are
not, and in this latter case the sheafified representables play a role analogous to that of the
representable presheaves. Hence we will sometimes find it useful to write y for the composite
C — [C°P,Set] — Sh(C, J) of the Yoneda embedding