151,918 research outputs found

    A Systematic Literature Review With Bibliometric Meta-Analysis Of Deep Learning And 3D Reconstruction Methods In Image Based Food Volume Estimation Using Scopus, Web Of Science And IEEE Database

    Get PDF
    Purpose- Estimation of food portions is necessary in image based dietary monitoring techniques. The purpose of this systematic survey is to identify peer reviewed literature in image-based food volume estimation methods in Scopus, Web of Science and IEEE database. It further analyzes bibliometric survey of image-based food volume estimation methods with 3D reconstruction and deep learning techniques. Design/methodology/approach- Scopus, Web of Science and IEEE citation databases are used to gather the data. Using advanced keyword search and PRISMA approach, relevant papers were extracted, selected and analyzed. The bibliographic data of the articles published in the journals over the past twenty years were extracted. A deeper analysis was performed using bibliometric indicators and applications with Microsoft Excel and VOS viewer. A comparative analysis of the most cited works in deep learning and 3D reconstruction methods is performed. Findings: This review summarizes the results from the extracted literature. It traces research directions in the food volume estimation methods. Bibliometric analysis and PRISMA search results suggest a broader taxonomy of the image-based methods to estimate food volume in dietary management systems and projects. Deep learning and 3D reconstruction methods show better accuracy in the estimations over other approaches. The work also discusses importance of diverse and robust image datasets for training accurate learning models in food volume estimation. Practical implications- Bibliometric analysis and systematic review gives insights to researchers, dieticians and practitioners with the research trends in estimation of food portions and their accuracy. It also discusses the challenges in building food volume estimator model using deep learning and opens new research directions. Originality/value- This study represents an overview of the research in the food volume estimation methods using deep learning and 3D reconstruction methods using works from 1995 to 2020. The findings present the five different popular methods which have been used in the image based food volume estimation and also shows the research trends with the emerging 3D reconstruction and deep learning methodologies. Additionally, the work emphasizes the challenges in the use of these approaches and need of developing more diverse, benchmark image data sets for food volume estimation including raw food, cooked food in all states and served with different containers

    A Multi-Task Learning Approach for Meal Assessment

    Full text link
    Key role in the prevention of diet-related chronic diseases plays the balanced nutrition together with a proper diet. The conventional dietary assessment methods are time-consuming, expensive and prone to errors. New technology-based methods that provide reliable and convenient dietary assessment, have emerged during the last decade. The advances in the field of computer vision permitted the use of meal image to assess the nutrient content usually through three steps: food segmentation, recognition and volume estimation. In this paper, we propose a use one RGB meal image as input to a multi-task learning based Convolutional Neural Network (CNN). The proposed approach achieved outstanding performance, while a comparison with state-of-the-art methods indicated that the proposed approach exhibits clear advantage in accuracy, along with a massive reduction of processing time

    Food Volume Estimation From A Single Image Using Virtual Reality Technology

    Get PDF
    Obesity has become a widespread epidemic threatening the health of millions of Americans and costing billions of dollars in health care. In both obesity research and clinical intervention, an accurate tool for diet evaluation is required. In this thesis, a new approach to the estimation of the volume of food from a single input image is presented based on the virtual reality (VR) technology. A VR system is contracted for food image acquisition, camera parameters calibration, virtual reality modeling and construction, virtual object manipulation, and food volume estimation. Our system utilizes a checkerboard to calibrate the intrinsic and extrinsic parameters of the camera using image process techniques. Once these parameters are obtained, we establish a VR space in which a virtual 3D wireframe is projected into the food image in a well-defined proportional relationship. Within this space, the user is able to scale, deform, translate and rotate the virtual wireframe to fit the food in the image. Finally, the known volume of the wireframe is utilized to compute the food volume using the proportional relationship. Our experimental study has indicated that our VR system is highly accurate and robust in estimating volumes of both regularly and irregularly shaped foods, providing a powerful diet evaluation tool for both obesity research and treatment

    Segmentation of articular cartilage and early osteoarthritis based on the fuzzy soft thresholding approach driven by modified evolutionary ABC optimization and local statistical aggregation

    Get PDF
    Articular cartilage assessment, with the aim of the cartilage loss identification, is a crucial task for the clinical practice of orthopedics. Conventional software (SW) instruments allow for just a visualization of the knee structure, without post processing, offering objective cartilage modeling. In this paper, we propose the multiregional segmentation method, having ambitions to bring a mathematical model reflecting the physiological cartilage morphological structure and spots, corresponding with the early cartilage loss, which is poorly recognizable by the naked eye from magnetic resonance imaging (MRI). The proposed segmentation model is composed from two pixel's classification parts. Firstly, the image histogram is decomposed by using a sequence of the triangular fuzzy membership functions, when their localization is driven by the modified artificial bee colony (ABC) optimization algorithm, utilizing a random sequence of considered solutions based on the real cartilage features. In the second part of the segmentation model, the original pixel's membership in a respective segmentation class may be modified by using the local statistical aggregation, taking into account the spatial relationships regarding adjacent pixels. By this way, the image noise and artefacts, which are commonly presented in the MR images, may be identified and eliminated. This fact makes the model robust and sensitive with regards to distorting signals. We analyzed the proposed model on the 2D spatial MR image records. We show different MR clinical cases for the articular cartilage segmentation, with identification of the cartilage loss. In the final part of the analysis, we compared our model performance against the selected conventional methods in application on the MR image records being corrupted by additive image noise.Web of Science117art. no. 86

    High-Throughput System for the Early Quantification of Major Architectural Traits in Olive Breeding Trials Using UAV Images and OBIA Techniques

    Get PDF
    The need for the olive farm modernization have encouraged the research of more efficient crop management strategies through cross-breeding programs to release new olive cultivars more suitable for mechanization and use in intensive orchards, with high quality production and resistance to biotic and abiotic stresses. The advancement of breeding programs are hampered by the lack of efficient phenotyping methods to quickly and accurately acquire crop traits such as morphological attributes (tree vigor and vegetative growth habits), which are key to identify desirable genotypes as early as possible. In this context, an UAV-based high-throughput system for olive breeding program applications was developed to extract tree traits in large-scale phenotyping studies under field conditions. The system consisted of UAV-flight configurations, in terms of flight altitude and image overlaps, and a novel, automatic, and accurate object-based image analysis (OBIA) algorithm based on point clouds, which was evaluated in two experimental trials in the framework of a table olive breeding program, with the aim to determine the earliest date for suitable quantifying of tree architectural traits. Two training systems (intensive and hedgerow) were evaluated at two very early stages of tree growth: 15 and 27 months after planting. Digital Terrain Models (DTMs) were automatically and accurately generated by the algorithm as well as every olive tree identified, independently of the training system and tree age. The architectural traits, specially tree height and crown area, were estimated with high accuracy in the second flight campaign, i.e. 27 months after planting. Differences in the quality of 3D crown reconstruction were found for the growth patterns derived from each training system. These key phenotyping traits could be used in several olive breeding programs, as well as to address some agronomical goals. In addition, this system is cost and time optimized, so that requested architectural traits could be provided in the same day as UAV flights. This high-throughput system may solve the actual bottleneck of plant phenotyping of "linking genotype and phenotype," considered a major challenge for crop research in the 21st century, and bring forward the crucial time of decision making for breeders

    Assessing food intake through a chest-worn camera device

    Get PDF
    corecore