1,714 research outputs found

    Fast Objective Coupled Planar Illumination Microscopy

    Get PDF
    Among optical imaging techniques light sheet fluorescence microscopy stands out as one of the most attractive for capturing high-speed biological dynamics unfolding in three dimensions. The technique is potentially millions of times faster than point-scanning techniques such as two-photon microscopy. This potential is especially poignant for neuroscience applications due to the fact that interactions between neurons transpire over mere milliseconds within tissue volumes spanning hundreds of cubic microns. However current-generation light sheet microscopes are limited by volume scanning rate and/or camera frame rate. We begin by reviewing the optical principles underlying light sheet fluorescence microscopy and the origin of these rate bottlenecks. We present an analysis leading us to the conclusion that Objective Coupled Planar Illumination (OCPI) microscopy is a particularly promising technique for recording the activity of large populations of neurons at high sampling rate. We then present speed-optimized OCPI microscopy, the first fast light sheet technique to avoid compromising image quality or photon efficiency. We enact two strategies to develop the fast OCPI microscope. First, we devise a set of optimizations that increase the rate of the volume scanning system to 40 Hz for volumes up to 700 microns thick. Second, we introduce Multi-Camera Image Sharing (MCIS), a technique to scale imaging rate by incorporating additional cameras. MCIS can be applied not only to OCPI but to any widefield imaging technique, circumventing the limitations imposed by the camera. Detailed design drawings are included to aid in dissemination to other research groups. We also demonstrate fast calcium imaging of the larval zebrafish brain and find a heartbeat-induced motion artifact. We recommend a new preprocessing step to remove the artifact through filtering. This step requires a minimal sampling rate of 15 Hz, and we expect it to become a standard procedure in zebrafish imaging pipelines. In the last chapter we describe essential computational considerations for controlling a fast OCPI microscope and processing the data that it generates. We introduce a new image processing pipeline developed to maximize computational efficiency when analyzing these multi-terabyte datasets, including a novel calcium imaging deconvolution algorithm. Finally we provide a demonstration of how combined innovations in microscope hardware and software enable inference of predictive relationships between neurons, a promising complement to more conventional correlation-based analyses

    Vision Science and Technology at NASA: Results of a Workshop

    Get PDF
    A broad review is given of vision science and technology within NASA. The subject is defined and its applications in both NASA and the nation at large are noted. A survey of current NASA efforts is given, noting strengths and weaknesses of the NASA program

    Algorithms in nature: the convergence of systems biology and computational thinking

    Get PDF
    Biologists rely on computational methods to analyze and integrate large data sets, while several computational methods were inspired by the high-level design principles of biological systems. This Perspectives discusses the recent convergence of these two ways of thinking

    Image Quality Assessment for Population Cardiac MRI: From Detection to Synthesis

    Get PDF
    Cardiac magnetic resonance (CMR) images play a growing role in diagnostic imaging of cardiovascular diseases. Left Ventricular (LV) cardiac anatomy and function are widely used for diagnosis and monitoring disease progression in cardiology and to assess the patient's response to cardiac surgery and interventional procedures. For population imaging studies, CMR is arguably the most comprehensive imaging modality for non-invasive and non-ionising imaging of the heart and great vessels and, hence, most suited for population imaging cohorts. Due to insufficient radiographer's experience in planning a scan, natural cardiac muscle contraction, breathing motion, and imperfect triggering, CMR can display incomplete LV coverage, which hampers quantitative LV characterization and diagnostic accuracy. To tackle this limitation and enhance the accuracy and robustness of the automated cardiac volume and functional assessment, this thesis focuses on the development and application of state-of-the-art deep learning (DL) techniques in cardiac imaging. Specifically, we propose new image feature representation types that are learnt with DL models and aimed at highlighting the CMR image quality cross-dataset. These representations are also intended to estimate the CMR image quality for better interpretation and analysis. Moreover, we investigate how quantitative analysis can benefit when these learnt image representations are used in image synthesis. Specifically, a 3D fisher discriminative representation is introduced to identify CMR image quality in the UK Biobank cardiac data. Additionally, a novel adversarial learning (AL) framework is introduced for the cross-dataset CMR image quality assessment and we show that the common representations learnt by AL can be useful and informative for cross-dataset CMR image analysis. Moreover, we utilize the dataset invariance (DI) representations for CMR volumes interpolation by introducing a novel generative adversarial nets (GANs) based image synthesis framework, which enhance the CMR image quality cross-dataset
    corecore