200 research outputs found

    Cross-lingual transfer learning and multitask learning for capturing multiword expressions

    Get PDF
    This is an accepted manuscript of an article published by Association for Computational Linguistics in Proceedings of the Joint Workshop on Multiword Expressions and WordNet (MWE-WN 2019), available online: https://www.aclweb.org/anthology/W19-5119 The accepted version of the publication may differ from the final published version.Recent developments in deep learning have prompted a surge of interest in the application of multitask and transfer learning to NLP problems. In this study, we explore for the first time, the application of transfer learning (TRL) and multitask learning (MTL) to the identification of Multiword Expressions (MWEs). For MTL, we exploit the shared syntactic information between MWE and dependency parsing models to jointly train a single model on both tasks. We specifically predict two types of labels: MWE and dependency parse. Our neural MTL architecture utilises the supervision of dependency parsing in lower layers and predicts MWE tags in upper layers. In the TRL scenario, we overcome the scarcity of data by learning a model on a larger MWE dataset and transferring the knowledge to a resource-poor setting in another language. In both scenarios, the resulting models achieved higher performance compared to standard neural approaches

    Bridging the gap: Attending to discontinuity in identification of multiword expressions

    Get PDF
    We introduce a new method to tag Multiword Expressions (MWEs) using a linguistically interpretable language-independent deep learning architecture. We specifically target discontinuity, an under-explored aspect that poses a significant challenge to computational treatment of MWEs. Two neural architectures are explored: Graph Convolutional Network (GCN) and multi-head self-attention. GCN leverages dependency parse information, and self-attention attends to long-range relations. We finally propose a combined model that integrates complementary information from both through a gating mechanism. The experiments on a standard multilingual dataset for verbal MWEs show that our model outperforms the baselines not only in the case of discontinuous MWEs but also in overall F-score

    Knowledge-based Sense Disambiguation of Multiword Expressions in Requirements Documents

    Get PDF
    Understanding the meaning and the senses of expressions is essential to analyze natural language requirements. Disambiguation of expressions in their context is needed to prevent misinterpretations. Current knowledge-based disambiguation approaches only focus on senses of single words and miss out on linking the shared meaning of expressions consisting of multiple words. As these expressions are common in requirements, we propose a sense disambiguation approach that is able to detect and disambiguate multiword expressions. We use a two-tiered approach to be able to use different techniques for detection and disambiguation. Initially, a conditional random field detects multiword expressions. Afterwards, the approach disambiguates these expressions and retrieves the corresponding senses using a knowledge-based approach. The knowledge-based approach has the benefit that only the knowledge base has to be exchanged to adapt the approach to new domains and knowledge. Our approach is able to detect multiword expressions with an F1\text{F}_{1}-score of 88.4% in an evaluation on 997 requirement sentences. The sense disambiguation achieves up to 57% F1\text{F}_{1}-score

    Contributions to the Computational Treatment of Non-literal Language

    Get PDF
    A thesis submitted in partial ful lment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.Non-literal language concerns the deliberate use of language in such a way that meaning cannot be inferred through a mere literal interpretation. In this thesis, three different forms of this phenomenon are studied; namely, irony, non-compositional Multiword Expressions (MWEs), and metaphor. We start by developing models to identify ironic comments in the context of the social micro-blogging website Twitter. In these experiments, we proposed a new way to extract features based on a study of their spatial structure. The proposed model is shown to perform competitively on a standard Twitter dataset. Next, we extensively study MWEs, which are the central point of focus in this work. We start by framing the task of MWE identi fication as sequence labelling and devise experiments to see the effect of eye-tracking data in capturing formulaic MWEs using structured prediction. We also develop a novel neural architecture to speci fically address the issue of discontinuous MWEs using a combination of Graph Convolutional Neural Networks (GCNs) and self-attention. The proposed model is subsequently tested on several languages where it is shown to outperform the state-of-the-art in overall criteria and also in capturing gappy MWEs. In the final part of the thesis, we look at metaphor and its interaction with verbal MWEs. In a series of experiments, we propose a hybrid BERT-based model augmented with a novel variation of GCN where we perform classifi cation on two standard metaphor datasets using information from MWEs. This model which performs at the same level with state-of-the-art is, to the best of our knowledge, the first MWE-aware metaphor identifi cation system paving the way for further experimentation on the interaction of different types of fi gurative language.Research Group in Computational Linguistics

    Multiword expressions at length and in depth

    Get PDF
    The annual workshop on multiword expressions takes place since 2001 in conjunction with major computational linguistics conferences and attracts the attention of an ever-growing community working on a variety of languages, linguistic phenomena and related computational processing issues. MWE 2017 took place in Valencia, Spain, and represented a vibrant panorama of the current research landscape on the computational treatment of multiword expressions, featuring many high-quality submissions. Furthermore, MWE 2017 included the first shared task on multilingual identification of verbal multiword expressions. The shared task, with extended communal work, has developed important multilingual resources and mobilised several research groups in computational linguistics worldwide. This book contains extended versions of selected papers from the workshop. Authors worked hard to include detailed explanations, broader and deeper analyses, and new exciting results, which were thoroughly reviewed by an internationally renowned committee. We hope that this distinctly joint effort will provide a meaningful and useful snapshot of the multilingual state of the art in multiword expressions modelling and processing, and will be a point point of reference for future work

    Multiword expression processing: A survey

    Get PDF
    Multiword expressions (MWEs) are a class of linguistic forms spanning conventional word boundaries that are both idiosyncratic and pervasive across different languages. The structure of linguistic processing that depends on the clear distinction between words and phrases has to be re-thought to accommodate MWEs. The issue of MWE handling is crucial for NLP applications, where it raises a number of challenges. The emergence of solutions in the absence of guiding principles motivates this survey, whose aim is not only to provide a focused review of MWE processing, but also to clarify the nature of interactions between MWE processing and downstream applications. We propose a conceptual framework within which challenges and research contributions can be positioned. It offers a shared understanding of what is meant by "MWE processing," distinguishing the subtasks of MWE discovery and identification. It also elucidates the interactions between MWE processing and two use cases: Parsing and machine translation. Many of the approaches in the literature can be differentiated according to how MWE processing is timed with respect to underlying use cases. We discuss how such orchestration choices affect the scope of MWE-aware systems. For each of the two MWE processing subtasks and for each of the two use cases, we conclude on open issues and research perspectives

    Verbal multiword expressions for identification of metaphor

    Get PDF
    © 2020 The Authors. Published by Association for Computational Linguistics. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: http://dx.doi.org/10.18653/v1/2020.acl-main.259Metaphor is a linguistic device in which a concept is expressed by mentioning another. Identifying metaphorical expressions, therefore, requires a non-compositional understanding of semantics. Multiword Expressions (MWEs), on the other hand, are linguistic phenomena with varying degrees of semantic opacity and their identification poses a challenge to computational models. This work is the first attempt at analysing the interplay of metaphor and MWEs processing through the design of a neural architecture whereby classification of metaphors is enhanced by informing the model of the presence of MWEs. To the best of our knowledge, this is the first “MWE-aware” metaphor identification system paving the way for further experiments on the complex interactions of these phenomena. The results and analyses show that this proposed architecture reach state-of-the-art on two different established metaphor datasets

    Edition 1.1 of the PARSEME shared task on automatic identification of verbal multiword expressions

    Get PDF
    This paper describes the PARSEME Shared Task 1.1 on automatic identification of verbal multiword expressions. We present the annotation methodology, focusing on changes from last year’s shared task. Novel aspects include enhanced annotation guidelines, additional annotated data for most languages, corpora for some new languages, and new evaluation settings. Corpora were created for 20 languages, which are also briefly discussed. We report organizational principles behind the shared task and the evaluation metrics employed for ranking. The 17 participating systems, their methods and obtained results are also presented and analysed
    corecore