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Abstract

We introduce a new method to tag Multiword
Expressions (MWEs) using a linguistically in-
terpretable language-independent deep learn-
ing architecture. We specifically target dis-
continuity, an under-explored aspect that poses
a significant challenge to computational treat-
ment of MWEs. Two neural architectures
are explored: Graph Convolutional Network
(GCN) and multi-head self-attention. GCN
leverages dependency parse information, and
self-attention attends to long-range relations.
We finally propose a combined model that
integrates complementary information from
both, through a gating mechanism. The ex-
periments on a standard multilingual dataset
for verbal MWEs show that our model outper-
forms the baselines not only in the case of dis-
continuous MWEs but also in overall F-score.1

1 Introduction

Multiword expressions (MWEs) are linguistic
units composed of more than one word whose
meanings cannot be fully determined by the se-
mantics of their components (Sag et al., 2002;
Baldwin and Kim, 2010). As they are fraught
with syntactic and semantic idiosyncrasies, their
automatic identification remains a major challenge
(Constant et al., 2017). Occurrences of discontin-
uous MWEs are particularly elusive as they in-
volve relationships between non-adjacent tokens
(e.g. put one of the blue masks on).

While some previous studies disregard discon-
tinuous MWEs (Legrand and Collobert, 2016),
others stress the importance of factoring them in
(Schneider et al., 2014). Using a CRF-based and
a transition-based approach respectively, Moreau
et al. (2018) and Al Saied et al. (2017) try to

∗*The first two authors contributed equally.
1The code is available on https://github.com/

omidrohanian/gappy-mwes.

capture discontinuous occurrences with help from
dependency parse information. Previously ex-
plored neural MWE identification models (Ghar-
bieh et al., 2017) suffer from limitations in dealing
with discontinuity, which can be attributed to their
inherently sequential nature. More sophisticated
architectures are yet to be investigated (Constant
et al., 2017).

Graph convolutional neural networks (GCNs)
(Kipf and Welling, 2017) and attention-based
neural sequence labeling (Tan et al., 2018) are
methodologies suited for modeling non-adjacent
relations and are hence adapted to MWE identifi-
cation in this study. Conventional GCN (Kipf and
Welling, 2017) uses a global graph structure for
the entire input. We modify it such that GCN fil-
ters convolve nodes of dependency parse tree on
a per-sentence basis. Self-attention, on the other
hand, learns representations by relating different
parts of the same sequence. Each position in a se-
quence is linked to any other position with O(1)
operations, minimising maximum path (compared
to RNN’s O(n)) which facilitates gradient flow
and makes it theoretically well-suited for learning
long-range dependencies (Vaswani et al., 2017).

The difference in the two approaches moti-
vates our attempt to incorporate them into a hy-
brid model with an eye to exploiting their indi-
vidual strengths. Other studies that used related
syntax-aware methods in sequence labeling in-
clude Marcheggiani and Titov (2017) and Strubell
et al. (2018) where GCN and self-attention were
separately applied to semantic role labelling.

Our contribution in this study, is to show for
the first time, how GCNs can be successfully ap-
plied to MWE identification, especially to tackle
discontinuous ones. Furthermore, we propose a
novel architecture that integrates GCN with self-
attention outperforming state-of-the-art. The re-
sulting models not only prove superior to existing
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methods in terms of overall performance but also
are more robust in handling cases with gaps.

2 Methodology

To specifically target discontinuity, we explore
two mechanisms both preceding a Bi-LSTM: 1)
a GCN layer to act as a syntactic ngram detector,
2) an attention mechanism to learn long-range de-
pendencies.

2.1 Graph Convolution as Feature Extraction

Standard convolutional filters act as sequential
ngram detectors (Kim, 2014). Such filters might
prove inadequate in modeling complex language
units like discontinuous MWEs. One way to over-
come this problem is to consider non-sequential
relations by attending to syntactic information in
parse trees through the application of GCNs.

GCN is defined as a directed multi-node graph
G(V,E) where vi ∈ V and (vi, r, vj) ∈ E are
entities (words) and edges (relations) respectively.
By defining a vector xv as the feature represen-
tation for the word v, the convolution equation
in GCN can be defined as a non-linear activation
function f and a filter W with a bias term b as:

c = f(
∑

i∈r(v)
Wxi + b) (1)

where r(v) shows all words in relation with the
given word v in a sentence, and c represents the
output of the convolution.

Following Kipf and Welling (2017) and
Schlichtkrull et al. (2017), we represent graph re-
lations using adjacency matrices as mask filters for
inputs. We derive associated words from the de-
pendency parse tree of the target sentence. Since
we are dealing with a sequence labelling task,
there is an adjacency matrix representing relations
among words (as nodes of the dependency graph)
for each sentence. We define the sentence-level
convolution operation with filterWs and bias bs as
follows:

Cs = f(WsX
TA+ bs) (2)

where X , A, and C are representation of words,
adjacency matrix, and the convolution output, all
at the level of sentence. The above formalism con-
siders only one relation type, while depending on
the application, multiple relations can be defined.

Kipf and Welling (2017) construct separate ad-
jacency matrices corresponding to each relation

type and direction. Given the variety of depen-
dency relations in a parse tree (e.g. obj, nsubj, ad-
vcl, conj, etc), and per-sentence adjacency matri-
ces, we would end up with an over-parametrised
model in a sequence labeling task. In this work,
we simply treat all relations equally, but consider
only three types of relations: 1) the head to the
dependents, 2) the dependents to the head, and 3)
each word to itself (self-loops). The final output is
obtained by aggregating the outputs from the three
relations.

2.2 Self-Attention

Attention (Bahdanau et al., 2014) helps a model
address the most relevant parts of a sequence
through weighting. As attention is designed to
capture dependencies in a sequence regardless of
distance, it is complementary to RNN or CNN
models where longer distances pose a challenge.
In this work we employ multi-head self-attention
with a weighting function based on scaled dot
product which makes it fast and computationally
efficient.

Based on the formulation of Transformer by
Vaswani et al. (2017), in the encoding module an
input vector x is mapped to three equally sized ma-
trices K, Q, and V (representing key, query and
value) and the output weight matrix is then com-
puted as follows:

Att(Q,K, V ) = softmax(
QKT

√
d

)V (3)

The timing signal required for the self-attention to
work is already contained in the preceding CNN
layers alleviating the need for position encoding.

2.3 Model Architecture

The overall scheme of the proposed model, com-
posed of two parallel branches, is depicted in Fig-
ure 1. We employ multi-channel CNNs as the
step preceding self-attention. One channel is com-
prised of two stacked 1D CNNs and the other is
a single 1D CNN. After concatenation and batch
normalisation, a multi-head self attention mecha-
nism is applied (Section 2.2).

Parallel to the self-attention branch, GCN learns
a separate representation (Section 2.1). Since the
GCN layer retains important structural informa-
tion and is sensitive to positional data from the
syntax tree, we consider it as a position-based ap-
proach. On the other hand, the self-attention layer
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Figure 1: A hybrid sequence labeling approach inte-
grating GCN (o: output dimension; v: word vectors
dimension; s: sentence length) and Self-Attention.

is intended to capture long-range dependencies in
a sentence. It relates elements of the same in-
put through a similarity measure irrespective of
their distance. We therefore regard it as a content-
based approach. As these layers represent differ-
ent methodologies, we seek to introduce a model
that combines their complementary traits in our
particular task.

Gating Mechanism. Due to the considerable
overlap between the GCN and self-attention lay-
ers, a naive concatenation introduces redundancy
which significantly lowers the learning power of
the model. To effectively integrate the informa-
tion, we design a simple gating mechanism us-
ing feed-forward highway layers (Srivastava et al.,
2015) which learn to regulate information flow in
consecutive training epochs. Each highway layer
consists of a Carry (Cr) and a Transform (Tr) gate
which decide how much information should pass
or be modified. For simplicity Cr is defined as
1 − Tr. We apply a block of J stacked highway
layers (the section inside the blue dotted square in
Figure 1). Each layer regulates its input x using
the two gates and a feedforward layer H as fol-
lows:

y = Tr �H + (1− Tr)� x (4)

where � denotes the Hadamard product and Tr
is defined as σ(WTrx + bTr). We set bTr to a
negative number to reinforce carry behavior which
helps the model learn temporal dependencies early
in the training.

Our architecture bears some resemblance to
Marcheggiani and Titov (2017) and Zhang et al.

(2018) in its complementary view of GCN and
BiLSTM. However there are some important dif-
ferences. In these works, BiLSTM is applied prior
to GCN in order to encode contextualised infor-
mation and to enhance the teleportation capability
of GCN. Marcheggiani and Titov (2017) stack a
few BiLSTM layers with the idea that the result-
ing representation would enable GCN to consider
nodes that are multiple hops away in the input
graph. Zhang et al. (2018) use a similar encoder,
however the model employs single BiLSTM and
GCN layers, and the graph of relations is undi-
rected.

In our work, we use pre-trained contextualised
embeddings that already contain all the informa-
tive content about word order and disambigua-
tion. We put BiLSTM on top of GCN, in line
with how CNNs are traditionally applied as fea-
ture generating front-ends to RNNs. Furthermore,
Marcheggiani and Titov (2017) use an edge-wise
gating mechanism in order to down-weight unin-
formative syntactic dependencies. This method
can mitigate noise when parsing information is
deemed noisy, however in Zhang et al. (2018)
it caused performance to drop. Given our low-
resource setting, in this work we preferred not to
potentially down-weight contribution of individ-
ual edges, therefore treating them equally. We rely
on gating as the last step when we combine GCN
and self-attention.

3 Experiments

Data. We experiment with datasets from the
shared task on automatic identification of verbal
Multiword Expressions (Ramisch et al., 2018).
The datasets are tagged for different kinds of ver-
bal MWEs including idioms, verb particle con-
structions, and light verb constructions among oth-
ers. We focus on annotated corpora of four lan-
guages: French (FR), German (DE), English (EN),
and Persian (FA) due to their variety in size and
proportion of discontinuous MWEs. Tags in the
datasets are converted to a variation of IOB which
includes the tags B (beginning of MWEs), I (other
components of MWEs), and O (tokens outside
MWEs), with the addition of G for arbitrary tokens
in between the MWE components e.g. make[B]
important[G] decisions[I].

ELMo. In our experiments, we make use of
ELMo embeddings (Peters et al., 2018) which
are contextualised and token-based as opposed to
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All Discontinuous
Token- MWE-
based based MWE-based

L model F F % P R F

EN

baseline 41.37 35.38

32

24.44 10.48 14.67
GCN-based 39.78 39.11 39.53 16.19 22.97
Att-based 33.33 31.79 46.88 14.29 21.90
H-combined 41.63 40.76 63.33 18.10 28.15

DE

baseline 62.27 57.17

43

69.50 45.37 54.90
GCN-based 65.48 61.17 65.19 47.69 55.08
Att-based 61.20 58.19 67.86 43.98 53.37
H-combined 63.80 60.71 68.59 49.54 57.53

FR

baseline 76.62 72.16

43

75.27 52.04 61.54
GCN-based 79.59 75.15 79.58 56.51 66.09
Att-based 78.21 74.23 71.49 60.59 65.59
H-combined 80.25 76.56 77.94 59.11 67.23

FA

baseline 88.45 86.50

14

67.76 55.88 61.29
GCN-based 87.78 86.42 78.72 54.41 64.35
Att-based 87.55 84.20 62.32 63.24 62.77
H-combined 88.76 87.15 75.44 63.24 68.80

Table 1: Model performance (P, R and F) for devel-
opment sets for all MWE and only discontinuous ones
(%: proportion of discontinuous MWES)

type-based word representations like word2vec
or GLoVe where each word type is assigned a sin-
gle vector. Token-based embeddings better reflect
the syntax and semantics of each word in its con-
text compared to traditional type-based ones. We
use the implementation by Che et al. (2018) to
train ELMo embeddings on our data.

Validation. In the validation phase, we start with a
strong baseline which is a CNN + Bi-LSTM model
based on the top performing system in the VMWE
shared task (Taslimipoor and Rohanian, 2018).
Our implemented baseline differs in that we em-
ploy ELMo rather than word2vec resulting in
a significant improvement. We perform hyper-
parameter optimisation and make comparisons
among our systems, including GCN + Bi-LSTM
(GCN-based), CNN + attention + Bi-LSTM (Att-
based), and their combination using a highway
layer (H-combined) in Table 1.

4 Evaluation and Results

Systems are evaluated using two types of preci-
sion, recall and F-score measures: strict MWE-
based scores (every component of an MWE should
be correctly tagged to be considered as true posi-
tive), and token-based scores (a partial match be-
tween a predicted and a gold MWE would be con-
sidered as true positive). We report results for all
MWEs as well as discontinuous ones specifically.

According to Table 1, GCN-based outperforms
Att-based and they both outperform the strong

baseline in terms of MWE-based F-score in three
out of four languages. Combining GCN with
attention using highway networks results in fur-
ther improvements for EN, FR and FA. The H-
combined model consistently exceeds the baseline
for all languages. As can be seen in Table 1, GCN
and H-combined models each show significant im-
provement with regard to discontinuous MWEs,
regardless of the proportion of such expressions.

In Table 2 we show the superior performance (in
terms of MWE-based F-score) of our top systems
on the test data compared to the baseline and state-
of-the-art systems, namely, ATILF-LLF (Al Saied
et al., 2017) and SHOMA (Taslimipoor and Roha-
nian, 2018). GCN works the best for discontinu-
ous MWEs in EN and FA, while H-combined out-
performs based on results for all MWEs except for
FA. The findings are further discussed in Section
5.

5 Discussion and Analysis

The overall results confirm our assumption that
a hybrid architecture can mitigate errors of in-
dividual models and bolster their strengths. To
demonstrate the effectiveness of the models in de-
tecting discontinuous MWEs, in Figure 2 we plot
their performance for FR and EN given a range
of different gap sizes. As an ablation study, we
show the results for the baseline, GCN-based, Att-
based only, as well as H-combined models. GCN
and Att-based models each individually outper-
form the baseline, and the combined model clearly
improves the results further.
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Figure 2: Model performance given different gap sizes

The example in Figure 3 taken from the En-
glish dataset demonstrates the way GCN considers
relations between non-adjacent tokens in the sen-
tence. Our baseline is prone to disregarding these
links. Similar cases captured by both GCN and
H-combined (but not the baseline) are take a final
look, picked one up, and cut yourself off.
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All | Discontinuous
EN DE FR FA

baseline 33.01 | 16.53 54.12 | 53.94 67.66 | 58.70 81.62 | 61.73
GCN-based 36.27 | 24.15 56.96 | 54.87 70.79 | 59.95 81.00 | 62.35
H-combined 41.91 | 22.73 59.29 | 55.00 70.97 | 63.90 80.04 | 61.90
ATILF-LLF 31.58 | 09.91 54.43 | 40.34 58.60 | 51.96 77.48 | 53.85
SHOMA 26.42 | 01.90 48.71 | 40.12 62.00 | 51.43 78.35 | 56.10

Table 2: Comparing the performance of the systems on test data in terms of MWE-based F-score

O BLVC O O ILVC O O OHcombined

he made a great effort to be calm
O BLVC O O O O O O

O BLVC O O ILVC O O O

Baseline

GCN

Figure 3: Sample sentence with a discontinuous occur-
rence of an English MWE, make an effort.

O BLVC O O ILVCO OHcombined

O O O O O O O

O BLVC O O O O O

Baseline

GCN

Des     discours   violents   contre      les            Juifs      sont   prononcés

O

O

O

Figure 4: Example sentence with a discontinuous oc-
currence of a French MWE, prononcer un discours ‘to
make a speech’.

In more complicated constructs where syntac-
tic dependencies might not directly link all con-
stituents, GCN alone is not always conducive to
optimal performance. In Figure 4, the French sen-
tence is in the passive form and MWE parts are
separated by 5 tokens. This is an MWE skipped
by GCN but entirely identified by the H-combined
model.

It is important to note that model performance is
sensitive to factors such as percentage of seen ex-
pressions and variability of MWEs (Pasquer et al.,
2018). In FA for instance, 67% of the MWEs in
the test set are seen at training time, making them
easy to be captured by the baseline (Taslimipoor
et al., 2018). Furthermore, only 21% of MWEs in
FA and 15% in EN are discontinuous as opposed
to 44% in FR and 38% in DE. In this case, a se-
quential model can already learn the patterns with
high accuracy and the potential of a GCN and self-
attention is not fully exploited.

Also in DE, a sizable portion of MWEs are
verbal idioms (VIDs) which are known for their
lexico-syntactic fixedness and prevalence of to-
kens that lack a standalone meaning and occur
only in a limited number of contexts (also known

as cranberry words). Furthermore, MWEs in the
Persian dataset are all Light Verb Constructions
(LVCs), which can be modelled using lexical se-
mantic templates (Megerdoomian, 2004). For
such MWEs, our models compete with strong se-
quential baselines.

6 Conclusion and Future Work

In this paper, we introduced the application of
GCN and attention mechanism to identification of
verbal MWEs and finally proposed and tested a
hybrid approach integrating both models. Our par-
ticular point of interest is discontinuity in MWEs
which is an under-explored area. All the individual
and combined models outperform state-of-the-art
in all considered criteria. In future, we will fur-
ther develop our system using structured attention
(Kim et al., 2017) and try to improve the accuracy
of parsers in multi-tasking scenarios.

References
Hazem Al Saied, Matthieu Constant, and Marie Can-

dito. 2017. The ATILF-LLF system for Parseme
shared task: a transition-based verbal multiword ex-
pression tagger. In Proceedings of the 13th Work-
shop on Multiword Expressions (MWE 2017), pages
127–132, Valencia, Spain. Association for Compu-
tational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Timothy Baldwin and Su Nam Kim. 2010. Multi-
word expressions. In Handbook of Natural Lan-
guage Processing, second edition., pages 267–292.
CRC Press.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards better UD parsing:
Deep contextualized word embeddings, ensemble,
and treebank concatenation. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages



2697

55–64, Brussels, Belgium. Association for Compu-
tational Linguistics.
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