16,636 research outputs found

    Efficient Data Compression with Error Bound Guarantee in Wireless Sensor Networks

    Get PDF
    We present a data compression and dimensionality reduction scheme for data fusion and aggregation applications to prevent data congestion and reduce energy consumption at network connecting points such as cluster heads and gateways. Our in-network approach can be easily tuned to analyze the data temporal or spatial correlation using an unsupervised neural network scheme, namely the autoencoders. In particular, our algorithm extracts intrinsic data features from previously collected historical samples to transform the raw data into a low dimensional representation. Moreover, the proposed framework provides an error bound guarantee mechanism. We evaluate the proposed solution using real-world data sets and compare it with traditional methods for temporal and spatial data compression. The experimental validation reveals that our approach outperforms several existing wireless sensor network's data compression methods in terms of compression efficiency and signal reconstruction.Comment: ACM MSWiM 201

    Image fusion based on principal component analysis and slicing image transformation

    Get PDF
    Image fusion deals with the ability to integrate data from image sensors at different instants when the source information is uncertain. Although there exist many techniques on the subject, in this paper, we develop two originative techniques based on principal component analysis and slicing image transformation to efficiently fuse a small set of noisy images. For instance, in neural data fusion, this approach requires a considerable number of corrupted images to efficiently produce the desired outcome and also requiring a considerable computing time because of the dynamics involved in the fusion data process. In our approaches, the computation time is considerably smaller. This results appealing to increasing feasibility, for instance, in remote sensing or wireless sensor network. Moreover, and according to our numerical experiments, when our methods are compared against the neural data fusion algorithm, they present better performance.Postprint (published version

    Performance Evaluation of Neural Networks for Animal Behaviors Classification: Horse Gaits Case Study

    Get PDF
    The study and monitoring of wildlife has always been a subject of great interest. Studying the behavior of wildlife animals is a very complex task due to the difficulties to track them and classify their behaviors through the collected sensory information. Novel technology allows designing low cost systems that facilitate these tasks. There are currently some commercial solutions to this problem; however, it is not possible to obtain a highly accurate classification due to the lack of gathered information. In this work, we propose an animal behavior recognition, classification and monitoring system based on a smart collar device provided with inertial sensors and a feed-forward neural network or Multi-Layer Perceptron (MLP) to classify the possible animal behavior based on the collected sensory information. Experimental results over horse gaits case study show that the recognition system achieves an accuracy of up to 95.6%.Junta de AndalucĂ­a P12-TIC-130

    An objective based classification of aggregation techniques for wireless sensor networks

    No full text
    Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented

    Self-Calibration Methods for Uncontrolled Environments in Sensor Networks: A Reference Survey

    Get PDF
    Growing progress in sensor technology has constantly expanded the number and range of low-cost, small, and portable sensors on the market, increasing the number and type of physical phenomena that can be measured with wirelessly connected sensors. Large-scale deployments of wireless sensor networks (WSN) involving hundreds or thousands of devices and limited budgets often constrain the choice of sensing hardware, which generally has reduced accuracy, precision, and reliability. Therefore, it is challenging to achieve good data quality and maintain error-free measurements during the whole system lifetime. Self-calibration or recalibration in ad hoc sensor networks to preserve data quality is essential, yet challenging, for several reasons, such as the existence of random noise and the absence of suitable general models. Calibration performed in the field, without accurate and controlled instrumentation, is said to be in an uncontrolled environment. This paper provides current and fundamental self-calibration approaches and models for wireless sensor networks in uncontrolled environments

    Energy efficient wireless sensor network communications based on computational intelligent data fusion for environmental monitoring

    Get PDF
    The study presents a novel computational intelligence algorithm designed to optimise energy consumption in an environmental monitoring process: specifically, water level measurements in flooded areas. This algorithm aims to obtain a tradeoff between accuracy and power consumption. The implementation constitutes a data aggregation and fusion in itself. A harsh environment can make the direct measurement of flood levels a difficult task. This study proposes a flood level estimation, inferred through the measurement of other common environmental variables. The benefit of this algorithm is tested both with simulations and real experiments conducted in Donñana, a national park in southern Spain where flood level measurements have traditionally been done manually.Junta de Andalucía P07-TIC-0247

    Improving fusion of surveillance images in sensor networks using independent component analysis

    Get PDF
    • …
    corecore