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Abstract. Image fusion deals with the ability to integrate data from image sensors at different instants when
the source information is uncertain. Although there exist many techniques on the subject, in this paper, we
develop two originative techniques based on principal component analysis and slicing image transformation
to efficiently fuse a small set of noisy images. For instance, in neural data fusion, this approach requires
a considerable number of corrupted images to efficiently produce the desired outcome and also requiring a
considerable computing time because of the dynamics involved in the fusion data process. In our approaches,
the computation time is considerably smaller. This results appealing to increasing feasibility, for instance, in
remote sensing or wireless sensor network. Moreover, and according to our numerical experiments, when our
methods are compared against the neural data fusion algorithm, they present better performance.

1 Introduction

On one hand, data fusion consists in measurements
integration from different sensors at different time instants
when the original information is uncertain [1–3]. As
a result, the fused data are more valuable for situation
awareness understanding by completing notable infor-
mation. Nowadays, and because of the availability of
high technology and faster computers, suitable discrete
dataset has been applied in many research activities
such as medical image, machine vision, remote sensing,
vehicle driving, robotics, secure communication design,
pattern recognition, diagnosis, job shop scheduling, etc.
[1, 3–11]. Generally speaking, image multi-sensor mea-
surements data fusion refers to the acquisition, processing
and synergistic combination of information gathered by
various knowledge sources to provide a better understand-
ing of a phenomenon. It is worth noticing that data fusion
presents a notable difficulty when the available data is
incomplete, inconsistent or imprecise; and additionally
if the information is corrupted by external additive noise
[1, 3, 12–14].

Additionally, data fusion not only consists in using
integration measurements based on sensors but also
integration of decisions, conflicts facts, and human
intelligent assessments, [15–17]. Even the same human
brain uses data fusion to make an inference regarding the
surrounding environment by realizing data fusion coming
from the sight, smell, hearing, taste, and touch [18].
Moreover, in the multi-sensor data fusion theory, there
are many related data fusion techniques. For instance,
the well known Kalman filter can be viewed as a data
∗e-mail: leonardo.acho@upc.edu
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fusion algorithm [18, 19]. Fuzzy logic [20, 21], genetic
algorithms [22, 23], and wavelet analysis [24] can also
be sorted as artificial intelligence techniques for data
fusion. Statistical methods and Bayesian theory both can
be invoked for data fusion too [25, 26]. Just to name
a few. As a complementary information on it, see, for
instance, [27]. Finally, it is interesting to highlight that
there exist other definitions for data fusion: ’multilevel,
multifaceted process handling the automatic detection,
association, correlation, estimation, and combination of
data and information from several sources’ [27].

On the other hand, for instance, the design of new fault
detection systems based on image or signal processing is
an important and challenging task in many engineering
applications, such as chemical processes, nuclear engi-
neering, automotive system, wind turbines, and so on
[4, 12, 28]. Where, basically, the main motivation on
designing new monitoring processes is to maintain safe
and proper operation of these plants. In recent literature,
the design of fault detection systems can be classified into
two main categories (see, for instance, [12]): model-based
and data-based methods, where some of the model-based
techniques invoke the statistical hypothesis testing tech-
nique for monitoring and diagnosis [12], among many
other ideas. Nerveless, in these and other applications
of image processing require a pre-processing stage (like,
for instance, noise filtering, data fusion, noise analysis,
and so on) to go further in diagnosis and/or control.
Therefore, the typical pre-preprocessing stage consists
of a kind of noise data filtering -data fusion may be
employed as a kind of noise filtering although data fusion
may also mitigate intrinsic sensor uncertainties too-.
Moreover, among the different todays image precessing
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methods (see, for instance [29–34] and references there
in), we are going to specially focus on the principal
component analysis (PCA) along with slicing image
transformation. The principal motivation to invoke PCA
is to separate redundant information from the contami-
nated data [12, 35–38]. And slicing image transformation
(or bit-plane slicing) is commonly employed to extract
significant amount of visual entropy from a given image
[39]. Hence, the main objective of this paper is to analyze
image data fusion by invoking the previous cited methods
and to grant new numerical algorithms for noisy image
data fusion under the situation of limited access to image
sensors information. It is worth noticing that the data
fusion by using Lagrangian network converges to its
optimal fusion if we have access to a huge number of
discrete measurement information. In resume, by taking
into account that image data fusion can be realized by
doing a proper linear combination of the acquired image
samples at certain instant of times [1, 2, 40–43], the main
objective of this paper is to present two novel numerical
techniques on data fusion by using PCA and slicing image
transformation. To support our designs, several numerical
scenarios are prepared. According to our numerical ex-
periments, our approaches present beneficial performance
because they are efficient on separating the useful image
data from the noisy information by showing both of them
separately. The performance evaluation of our processes
were carried out by utilizing the structural similarity index
measurement (SSIM). See [44]. In resume, so far, and to
our best knowledge, the PCA technique in combination
to the slicing image transformation has not been related.
Specially, and according to the SSIM index, our second
approach presents better performance. This fact is illus-
trated in our numerical experiments specially when the
least significant bit-plane images are incorporated to the
image fusion process.

The rest of this paper is organized as follows. Section
2 gives the standard theory and the main statement on
image data fusion by using Lagrangian networks in
continuous-time domain. In Section 3, we grant our main
contribution on PCA image data fusion. The related
numerical experiments are depicted in Section 4. Results
and discussion are shown in Section 5. In this section,
we also test the robustness of our design by proposing
another example by using three captured frames coming
from a film and noisily corrupted, among other examples.
Finally, some concluding remarks are stated in Section 6.

Notations.- Throughout this paper, symbols in boldface
format represent vectors or matrices, the un-boldface
style for scalar variables, and T denotes the transpose.
E[·] represents the expected value of a random variable,
∇ f (x) is the gradient of the given scalar function f (x), and
∇2 f (x) is the Hessian matrix of the stated function f (x).

2 Image multi-sensor data system
modeling

Consider an image multi-sensor system with K (K ≥ 2)
image sensors and processed at the pixel detail. Let the
k-th image sensor measurement be given by [1]:

xk(t) = ak s(t) + nk(t), (k = 1, ..,K; t = 1, ..,N), (1)

where ak is the sensor scaling coefficient -or sensor gain-,
N is the number of sensor measurements, s(t) is the mother
signal, and nk(t) represents the additive white Gaussian
noise at the kth sensor with zero mean value. Recall that
noise is a random variation on the image density [39].
Principal sources of Gaussian noise in digital images arise
during the acquisition of the image by the sensor due to,
for instance, poor illumination, high temperature, and the
noise induced by the electronic circuit system. Further-
more, s(t) and nk(t) are mutually independent random pro-
cesses. See Fig. 1. Hence, in the mentioned scheme,
the pixel by pixel image processing system is adopted.
Then, by defining a = [a1, .., aK]T , x(t) = [x1(t), .., xK(t)]T

(called the non-mean deviation observation vector), and
n(t) = [n1(t), .., nK(t)]T , the above system can be repre-
sented as follows:

x(t) = as(t) + n(t). (2)

The principal objective of data fusion consists to finding a
weighting vector w = [w1, .., wK]T such that

f (w) = E[(z(t) − s(t))2], (3)

be minimized with

z(t) = wT x(t). (4)

In this way, z(t) represents the optimal fused data so that
the uncertainty (for instance, the set of additive noises)
is optimally attenuated. See Fig. 1. Hence, z(t) is in
fact a linear combination of the sensor measurements. In
this way, the corresponding optimal ’weighting’ vector w
linearly combine the pixels coming from the images to
be processed in the restricted class of linear optimization
theory.

The above data fusion statement is also equivalent to [1]:

minimize f1(w) = wT Rw
subject to aTw = 1, (5)

where

R =
1
N

N∑
t=1

x(t)xT (t) =
1
N

XXT (6)

being X = [x(1) x(2) · · · x(N)] the non-mean-
deviation observation matrix.

Then, by solving the above optimization problem, we give
a solution to the data fusion statement. Obviously, it is
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Figure 1. Processing image data fusion technique based on K
image sensors at the pixel level.

assumed that the probabilistic density model of the noise
is known - as previously mentioned, the Gaussian case in
our case-. Moreover, the obtained optimal fused signal
z(t) is an unbiased estimation of the mother signal s(t) [1].
A solution to the higher up optimization problem can be
realized by invoking the next Lagrangian network [1, 2]:

d
dt

[
w
y

]
= −
[
∇ f1(w) − ay

aTw − 1

]
. (7)

It is worth noticing that another option to the previous op-
timization problem is as follows [1]:

minimize f2(w) = wT (α)Rw = α f1(w)
subject to aTw = 1, (8)

being its corresponding Lagrangian network:

d
dt

[
w
y

]
= −
[
α∇ f1(w) − ay

aTw − 1

]
, (9)

where α is a given positive constant. In fact, by manip-
ulating the value of α, the convergence speed of the La-
grangian dynamics is also manipulated (see, for instance,
[40]). y = y(t) is the Lagrangian multiplier. Moreover, the
next important statistical properties are cited [1]:

• E[z(t)] = E[s(t)]

• E[x(t)xT ] = limN→∞
1
N
∑N

t=1 x(t)xT (t) with probability
one (w.p. 1).

Lately, the optimal fusion solution is z∗(t) = (w∗)T x(t)
where [1]:

w∗ = lim
N→∞

arg min
wT a=1

f1(w) = lim
N→∞

arg min
wT a=1

f2(w), (w. p.1)

(10)
From the previous properties, we can observe that the
optimal solution is obtainable if we have access to an
enough huge number of images to be processed.

In summary, we have the following result [2, 40]:
Theorem 1: Assume that ∇2 f1(w) is positive definite.
Then, the Lagrangian network in (7) (or (9)) is stable

in the Lyapunov sense and is globally convergent to
an equilibrium point of (7) (or (9)), which corresponds
a unique optimal solution of the stated minimization
problem.

Next, we will comment a key important reflexion to justify
the use of PCA as an alternative technique on data fusion.
According to [1], the optimization problem stated in (5)
follows after invoking

E[(wT a − 1)s(t)] = 0, (11)

which is true if wT a = 1. But it is also true if E[s(t)] = 0.
This realism can be obtained if we produce the corre-
sponding mean-deviation observation matrix from the
non-mean-deviation observation matrix. In fact, this is
realized by the PCA technique. Hence, by producing
the mean-deviation matrix, we arrive to a sub-optimal
data fusion by just using PCA. And because of this,
Lagrangian dynamic is not need anymore. Obviously, this
brings a potential improvement in computer calculations.
In other words, by invoking (6) and extracting its noise in-
formation (by employing, for instance, the PCA method),
we are solving the un-constraint sub-optimal case to the
cited image fusion objective. Finally, and because of data
fusion by using Lagrangian networks assumes additive
Gaussian noise in the sensor signals, this assumption is
not restricted.

3 Introduction to principal component
analysis

In signal processing, the principal component analysis can
be efficiently utilized as a mathematical tool able to sep-
arate noisy data into two sets. One containing its filtered
version, and in the other an estimation of the noisy entropy
affecting the original clean data. To resume this mathemat-
ical method, let

[X1 X2 · · · XN] ∈ Rk×N (12)

be the matrix observation, where X1, · · · , XN ∈ Rk are the
non-mean-deviation observation vectors. Then, its sample
mean matrix is given by

M =
1
N

(X1 + · · · + XN) ∈ Rk×1. (13)

The mean-deviation matrix is then stated as:

B = [X̂1 X̂2 · · · X̂N] ∈ Rk×N (14)

where

X̂k = Xk − M, k = 1, · · · ,N. (15)

Finally, the PCA covariance matrix is defined as:

S =
1

N − 1
BBT ∈ Rk×k. (16)

The essential PCA procedure consists in finding a orthog-
onal matrix P such that
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PT SP = D, (17)

where D is a diagonal matrix with the eigenvalues
λ1,λ2,· · · ,λk of S in its diagonal arranged so that
λ1 ≥ λ2 · · · ≥ λk ≥ 0.

Consider P = [u1 u2 · · · uk], where u1, u2,· · · ,uk are
the corresponding unit eigenvectors of the related eigen-
values λ1,λ2,· · · ,λk. Consequently, the first principal com-
ponent is u1 =

[
f1, f2, · · · , fk

]T and, for instance, the K
one yields uK = [K1,K2, · · · ,Kk]T , and so on. Lately, a
filtering image fusion is obtained by realizing the follow-
ing linear combination:

NI1 = f1Im1 + f2Im2 + fkImk , (18)

and the next represents the estimation noisy image data
affecting the measured image information:

NI2 = K1Im1 + K2Im2 + KkImk , (19)

where Im1 ,Im2 ,· · · ,Imk are the noisy images to be processed
and invoked to produce the PCA covariance matrix. To
note that the standard representations in (24) and (25)
represent a linear vector combination being f1, f2, and f3;
and K1, K2, and K3 the weighting elements.

4 Numerical experiments

By discomposing an image into its bit planes, see Figure
2, results useful for analyzing the relative entropy of
the number of bits used to quantize an image [39].
The reconstruction is realized by multiplying the pixel
intensity of the nth image plane by the constant 2n−1. This
corresponds to converting the nth significant binary bit
into its decimal format. On the other hand, by using the
two more significant bit planes outcomes the most relevant
image information. We use them in our next algorithms.
For easy reference and without loss of generality, we
invoke three noisy images.

4.1 First approach on data fusion based on PCA

In this subsection we are going to present our first ap-
proach on data fusion based on PCA and slicing image
transformation. Given three noise images, L1, L2 and L2,
we obtain their two bit planes slicing transformation La,
Lb and Lc (we use the bitget Matlab command) to obtain
the first and third principal components by following the
PCA algorithm previously commented:

NIa = −( f1L1 + f2L2 + fkL3), (20)

NI =
255

max(max(NIa))
NIa, (21)

and

Figure 2. Slicing bit planes representation of an 8-bit image.

NIa2 = −(K1L1 + K2L2 + KkL3), (22)

NI2 =
255

max(max(NIa))
NIa2. (23)

Then NI and NI2 represent the obtained fusion image (a
filtered image version) and the noisy image estimation, re-
spectively. We decide to use the slicing transformation
in order to illustrate the potentiality of the method to be
used, for instance, in compressed images. Moreover, the
negative sign in (20) is inserted to avoid image inversion
and followed by a mathematical normalization (in equa-
tion (21)) to avoid image saturation. For comparison ob-
jective, we also realize the average filtering:

AverFilt =
1
3

(L1 + L2 + L3). (24)

Finally, for performance evaluation, we use the structural
similarity index (we invoke the ssim Matlab command)
between the corresponding processed image and the
original one. See [44]. For sake of simplicity, Appendix
A.1 shows the corresponding Matlab code. By using
the original image depicted in Figure 3, and its noise
corrupted images shown in Figure 4 (in these figures,
the noisy images are corrupted by uncorrelated Gaussian
noise of zero mean and variance 0.01), numerical exper-
iment results are shown in Figures 5-6. A second round
of numerical experiments is repeated by using the noisy
images now affected by the uncorrelated Poisson noise
and shown in Figure 7. Figures 8-9 show the agreeing
simulation results.

4.2 Second approach on data fusion based on PCA

In this subsection we will present our second approach on
data fusion based on PCA and slicing image transforma-
tion. Given three noise images, L1, L2 and L2, we again
obtain their two bit planes slicing transformation La, Lb

and Lc to obtain the first and third principal components
by using the PCA method. Then, we propose:

NIa = −( f1La + f2Lb + fkLc), (25)

NI =
255

max(max(NIa))
NIa, (26)

and
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Figure 3. Original image of Lena (200X200 pixels).

Figure 4. The uncorrelated Gaussian noisy images for process-
ing.

Figure 5. The corresponding processed images. Left: by using
the average filtering (SSIM=0.4174). Right: by invoking our first
approach (SSIM=0.4091)

NIa2 = −(K1La + K2Lb + KkLc), (27)

NI2 =
255

max(max(NIa))
NIa2. (28)

Once again, NI and NI2 represent the obtained fusion im-
age (a filtered image version) and the noisy image estima-
tion, respectively. Over again, we decide to employ the
slicing transformation in order to illustrate the potentiality

Figure 6. The noisy image estimation affecting our original im-
age and its histogram.

Figure 7. The uncorrelated Poisson noisy images for processing.

Figure 8. The corresponding processed images. Left: by using
the average filtering (SSIM=0.6834). Right: by invoking our first
approach (SSIM=0.6720).

of the method to be used in compressed images. Then, the
negative sign in (25) is inserted to avoid image inversion
and followed by a mathematical normalization (in equa-
tion (26)) to avoid image saturation. For comparison ob-
jective, once more we realize the related average filtering:
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Figure 9. The noisy image estimation affecting our original im-
age and its histogram.

Figure 10. The original clean image (200X200 pixels).

AverFilt =
1
3

(La + Lb + Lc). (29)

Lately, for performance evaluation, we keep using the
structural similarity index between the corresponding
processed image and the original one. Appendix A.2
shows the corresponding Matlab code. By using the orig-
inal image depicted in Figure 10, and its noise corrupted
images show in Figure 11 (in these figures, the noisy
images are corrupted by uncorrelated Gaussian noise
of zero mean and variance 0.01), numerical experiment
results are shown in Figures 12-13. A second round of
numerical experiments is repeated by using the noisy
images now affected by the uncorrelated Poisson noise
and shown in Figure 14. Figures 15-16 show the agreeing
simulation results.

5 Results and Discussion

Nonlinear convex programming by using Lagrangian net-
works in the sense of [2, 41, 42, 45–48] is stated in
continuous-time domain. One of its main application is
linked to the data fusion when linear equality constraints
is imposed to the optimization objective. However, and
taking into account that digital devices are usually em-
ployed for physical realization, translating the above state-
ment into discrete-time domain requires special modifica-
tion due to the next facts:

Figure 11. The uncorrelated Gaussian noisy images for process-
ing.

Figure 12. The corresponding processed images. Left: by us-
ing the average filtering (SSIM=0.4462). Right: by invoking our
second approach (SSIM=0.4731).

Figure 13. The noisy image estimation affecting our original
image and its histogram.

• Stability of discrete-time systems depend on the
sampling-rate of the employed digital device.

• Stability of the Lagrangian network dynamics will de-
pend on the positive definiteness of ∇2 f1(w).

• Positive definiteness of ∇2 f1(w) will depend on the
available data to process and captured in R.

• The available captured data to produce R may cause that
the Lagrangian network dynamics be un-convergent.

From the above writing, data fusion by using Lagrangian
networks results inappropriate if the number sensors is
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Figure 14. The uncorrelated Poisson noisy images for process-
ing.

Figure 15. The corresponding processed images. Left: by us-
ing the average filtering (SSIM=0.5433). Right: by invoking our
second approach (SSIM=0.5787).

Figure 16. The noisy image estimation affecting our original
image and its histogram.

small. Hence, our approaches are simpler and effective
due to the following facts:

• They produce a fused image.

• They provide an estimation of the noise affecting our
image sensors.

The second one results attractive because by knowing an
estimation of the noise we can figure out the reason of it.
For instance, the speckle noise can be induced by a kind
of radiation, and so on.

On the other hand, in some applications, the set of image
to be processed arrives from the same image sensor,
which means that these image samples can be considered
perfectly aligned. But if different image sensors are used,
or if the scene presents slightly time moving agents,
then a perfect alignment among the image pixels is not
true anymore. With this issue in mind, we prepare the
following experiment. From a film, three different screen
captures were obtained (see Figure 17). These images, in
fact, capture a slightly moving environment. Moreover,
and because the captures were realized by using the
classical selecting, copying and pasting method into an
image file, and then adding, for instance, the uncorrelated
Gaussian noise, the spatial variation among them is also
presented. The numerical results by using, for example,
our first approach, are shown in Figures 18-19. Clearly,
this experiment shows the robustness of our approach.

To amplify our numerical examples, we slightly modify
our second approach by changing the slicing images La,
Lb, and Lc by (see Appendix A.2):

La=
1*double(bitget(uint8(L1),1))+...
1*2*double(bitget(uint8(L1),2))+...
1*64*double(bitget(uint8(L1),7))+...
128*double(bitget(uint8(L1),8));
Lb=
1*double(bitget(uint8(L2),1))+...
1*2*double(bitget(uint8(L2),2))+...
1*64*double(bitget(uint8(L2),7))+...
128*double(bitget(uint8(L2),8));
Lc=
1*double(bitget(uint8(L3),1))+...
1*2*double(bitget(uint8(L3),2))+...
1*64*double(bitget(uint8(L3),7))+...
128*double(bitget(uint8(L3),8));

On this way, and by adding the least significant slicing
images, we increase noise information to the data fusion
procedure. The obtained results by employing the clean
image given in Figure 20, and its noise samples shown
in Figure 21, the received results are shown in Figures
22 and 23. By reading the structural similarity index
measurement (SSIM), our approach present better per-
formance. Moreover, the corresponding histogram to the
third principal component gives important information
about the noise information in the images. For instance,
the average gray scale of the image is most affected by
the related noise. To conclude our numerical realizations,
Figure 25 shows the corresponding first and third principal
components by invoking our second approach given in
Appendix A.2 to the noisy images shown in Figure 24.
We select this experiment to illustrate the ability of the
slicing process to highlight the influence of the noise on
the rocked instead of the image background. This realism
follows because of algorithm.

In addition, from the revised literature on data fusion
methods stated in the Introduction section, our design
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Figure 17. Noisy frames taken from a film.

Figure 18. The obtained image fusion by using our first ap-
proach.

Figure 19. The noisy image estimation affecting our original
image and its histogram.

has the following gains. For instance, in comparison to
the method given in [18], our propose does not require
clustering nor update prediction rules. In contrast to the
Fuzzy logic technique shown in [20, 21], our strategic
does not involve implementing inference rules, implica-
tion, aggregation, and defuzzification processes. These
tasks are no always easy to realize, especially to write
down the corresponding input and output membership
functions. On the other hand, the genetic algorithms
granted in [22, 23] basically needs a kind of intelligent

Figure 20. The sample clean image (200X200 pixels).

Figure 21. The uncorrelated Speckle noisy images with multi-
plicative noise 0.7 for processing.

Figure 22. The corresponding processed images. Left: by us-
ing the average filtering (SSIM=0.2609). Right: by invoking our
second approach (SSIM=0.2805)

exploitation of a random search to solve optimization
part. This may consume a notable machine computation
time. Lastly, the statistical and Bayesian designs given
in [25, 26] essentially require decision rules based on
probabilistic loss functions requiring a training process. In
our approaches, we just follow a deterministic solution by
employing PCA. In our opinion, it is easier to programing.
On the other hand, image processing by using wavelets
transformation requires, as in the Fourier theory, the next
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Figure 23. The noisy image estimation affecting our original
image and its histogram.

Figure 24. The uncorrelated Poisson noisy images for process-
ing.

Figure 25. The obtained image fusion by using our second ap-
proach: the related first and third principal components.

basic steps [39]:

• Compute a 2-D wavelet transform of an image.

• Alter the transform.

• Compute the inverse transform.

Hence, to essential capture the philosophy design by using
this technique, we first involve some basic acknowledge
on Fourier transform [39]. Therefore, we can say that
our design and the wavelets transformation tool are two
completely different approaches and each one has theirs
own advantages and disadvantages depending on the

Figure 26. Data fusion by using the Lena noisy images and the
Lagrangian neuronal method sated in [1].

application because data fusion has the main aim to
obtain information of greater quality from the supplied
image information, where the exact definition of "greater
quality" will specially depend upon the application [49].
Furthermore, by using the data fusion stated in [1],
the obtained image fusion by using the Lena Gaussian
noisy images is shown in Figure 26. It is clear that this
technique is un-convergent due to the small number of
images to process. To highlight that the computation time
to obtain this result was around 75 minutes by using a
common personal computer. Hence the PCA technique is
substantially faster.

To close this section, although there are some PCA
solutions to image fusion, our main approach presents
an alternative resolution. For instance, in [50], the
proposed PCA algorithm is used in combination with
the intensity-hue-saturation transform. But this tech-
nique was not conceived as an image fusion method
to attenuate the external noise effect on the images
to be fused. In [51], some other PCA procedures
are commented to integrate the geometric detail of a
given high-resolution panchromatic image. Finally, in
[52], more PCA techniques to image applications are
documented. However, the mixing combination of PCA
with the slicing image transformation has not been related.

6 Conclusions

In this paper we have presented two data fusion methods
based on PCA and slicing image transformation. Ac-
cording to our numerical experiments, our approaches
are able to separate the noise from the fused image. This
results useful to study, for instance, the environmental
noise affecting our sensors. In this way, we can detect,
for instance, some kind of external radiation. Moreover,
in our approaches, the computation time is considerably
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A.1 First approach

clear all;
A1=double(rgb2gray(imread(’file_name’,’bmp’)));
A=imresize(A1,[200,200]); %%%%%<-----Image size
figure(1);imshow(mat2gray(A));
%%%%% Different sample noisy images to analyze
%%%%% by selecting one set of the
%%%%% below shown
% %%%%% 1) Gaussian noise:
% L1=double(imnoise(uint8(A),’gaussian’,0,0.01));
% figure(2);imshow(mat2gray(L1));
% L2=double(imnoise(uint8(A),’gaussian’,0,0.01));
% figure(3);imshow(mat2gray(L2));
% L3=double(imnoise(uint8(A),’gaussian’,0,0.01));
% figure(4);imshow(mat2gray(L3));
%%%%% 2) Salt and pepper noise:
% L1=double(imnoise(uint8(A),’salt & pepper’,0.05));
% figure(2);imshow(mat2gray(L1));
% L2=double(imnoise(uint8(A),’salt & pepper’,0.05));
% figure(3);imshow(mat2gray(L2));
% L3=double(imnoise(uint8(A),’salt & pepper’,0.05));
% figure(4);imshow(mat2gray(L3));
%%%%% 3) Speckle noise:
% L1=double(imnoise(uint8(A),’speckle’,0.5));
% figure(2);imshow(mat2gray(L1));
% L2=double(imnoise(uint8(A),’speckle’,0.5));
% figure(3);imshow(mat2gray(L2));
% L3=double(imnoise(uint8(A),’speckle’,0.5));
% figure(4);imshow(mat2gray(L3));
%%%%% 4) Poisson noise:
L1=double(imnoise(uint8(A),’poisson’));
figure(2);imshow(mat2gray(L1));
L2=double(imnoise(uint8(A),’poisson’));
figure(3);imshow(mat2gray(L2));
L3=double(imnoise(uint8(A),’poisson’));
figure(4);imshow(mat2gray(L3));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Creation of the mean-deviation observation matrix by using slicing transformation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[I,J]=size(A);i=1;
La=1*64*double(bitget(uint8(L1),7))+128*double(bitget(uint8(L1),8));
Lb=1*64*double(bitget(uint8(L2),7))+128*double(bitget(uint8(L2),8));
Lc=1*64*double(bitget(uint8(L3),7))+128*double(bitget(uint8(L3),8));
for r=1:I

for c=1:J
X(1,i)=La(r,c);
X(2,i)=Lb(r,c);
X(3,i)=Lc(r,c);
i=i+1;

end
end
M_1=0;M_2=0;M_3=0;
for k=1:i-1

M_1=M_1+X(1,k);
M_2=M_2+X(2,k);
M_3=M_3+X(3,k);

end
M_1=M_1/(i-1);
M_2=M_2/(i-1);
M_3=M_3/(i-1);
i=1;
for r=1:I

for c=1:J
B(1,i)=X(1,i)-M_1;
B(2,i)=X(2,i)-M_2;
B(3,i)=X(3,i)-M_3;
i=i+1;

end
end
%%%%% Creation of the covariance matrix S
S=(1/(i-2))*B*B’;
%%%%% Conception of the SVD of S by using the standard procedure
[U,D,V]=svd(S);
%%%%% Image fusion by using the first principle component vector,
NIa=-(U(1,1)*L1+U(2,1)*L2+U(3,1)*L3);
%%%%% then its normalization to avoid image saturation
NI=NIa*255/max(max(NIa));
%%%%% and noise extraction by using the third principle component vector,
NIa2=-(U(1,3)*L1+U(2,3)*L2+U(3,3)*L3);
NI2=NIa2*255/max(max(NIa2));
figure(5);imshow(mat2gray(NI));
%%%%% Average filter for contrasting our numerical experiments
AverFilt=(L1+L2+L3)/3;figure(6);imshow(mat2gray(AverFilt));
%%%%% The corresponding structural similarity parameters
SSIM1=ssim(A,NI)
SSIM2=ssim(A,AverFilt)

figure(7);imshow(mat2gray(NI2));
figure(8);imhist(mat2gray(NI2));
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A.2 Second approach

clear all;
A1=double(rgb2gray(imread(’file_name’,’jpg’)));
A=imresize(A1,[200,200]); %%%%%<-----Image size
figure(1);imshow(mat2gray(A));
%%%%% Different sample noisy images to analyze by selecting one set of the
%%%%% below shown
% %%%%% 1) Gaussian noise:
% L1=double(imnoise(uint8(A),’gaussian’,0,0.01));
%figure(2);imshow(mat2gray(L1));
% L2=double(imnoise(uint8(A),’gaussian’,0,0.01));
%figure(3);imshow(mat2gray(L2));
% L3=double(imnoise(uint8(A),’gaussian’,0,0.01));
%figure(4);imshow(mat2gray(L3));
%%%%% 2) Salt and pepper noise:
% L1=double(imnoise(uint8(A),’salt & pepper’,0.05));figure(2);imshow(mat2gray(L1));
% L2=double(imnoise(uint8(A),’salt & pepper’,0.05));figure(3);imshow(mat2gray(L2));
% L3=double(imnoise(uint8(A),’salt & pepper’,0.05));figure(4);imshow(mat2gray(L3));
%%%%% 3) Speckle noise:
% L1=double(imnoise(uint8(A),’speckle’,0.5));
%figure(2);imshow(mat2gray(L1));
% L2=double(imnoise(uint8(A),’speckle’,0.5));
%figure(3);imshow(mat2gray(L2));
% L3=double(imnoise(uint8(A),’speckle’,0.5));
%figure(4);imshow(mat2gray(L3));
%%%%% 4) Poisson noise:
L1=double(imnoise(uint8(A),’poisson’));
figure(2);imshow(mat2gray(L1));
L2=double(imnoise(uint8(A),’poisson’));
figure(3);imshow(mat2gray(L2));
L3=double(imnoise(uint8(A),’poisson’));
figure(4);imshow(mat2gray(L3));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Creation of the mean-deviation observation matrix by using slicing transformation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[I,J]=size(A);i=1;
La=1*64*double(bitget(uint8(L1),7))+128*double(bitget(uint8(L1),8));
Lb=1*64*double(bitget(uint8(L2),7))+128*double(bitget(uint8(L2),8));
Lc=1*64*double(bitget(uint8(L3),7))+128*double(bitget(uint8(L3),8));
for r=1:I

for c=1:J
X(1,i)=La(r,c);
X(2,i)=Lb(r,c);
X(3,i)=Lc(r,c);
i=i+1;

end
end
M_1=0;M_2=0;M_3=0;
for k=1:i-1

M_1=M_1+X(1,k);
M_2=M_2+X(2,k);
M_3=M_3+X(3,k);

end
M_1=M_1/(i-1);
M_2=M_2/(i-1);
M_3=M_3/(i-1);
i=1;
for r=1:I

for c=1:J
B(1,i)=X(1,i)-M_1;
B(2,i)=X(2,i)-M_2;
B(3,i)=X(3,i)-M_3;
i=i+1;

end
end
%%%%% Creation of the covariance matrix S
S=(1/(i-2))*B*B’;
%%%%% Conception of the SVD of S by using the standard procedure
[U,D,V]=svd(S);
%%%%% Image fusion by using the first principle component vector,
NIa=-(U(1,1)*La+U(2,1)*Lb+U(3,1)*Lc);
%%%%% then its normalization to avoid image saturation
NI=NIa*255/max(max(NIa));
%%%%% and noise extraction by using the third principle component vector,
NIa2=-(U(1,3)*La+U(2,3)*Lb+U(3,3)*Lc);
NI2=NIa2*255/max(max(NIa2));
figure(5);imshow(mat2gray(NI));
%%%%% Average filter for contrasting our numerical experiments
AverFilt=(La+Lb+Lc)/3;figure(6);imshow(mat2gray(AverFilt));
%%%%% The corresponding structural similarity parameters
SSIM1=ssim(A,NI)
SSIM2=ssim(A,AverFilt)
figure(7);imshow(mat2gray(NI2));
figure(8);imhist(mat2gray(NI2));
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smaller in comparison to other image fusion techniques.
This results appealing to increasing feasibility, for in-
stance, in remote sensing or wireless sensor network.
Finally, we have used a neuronal Lagrangian technique to
develop image fusion by using the given Gaussian noisy
Lena images, and the obtained result was un-convergent.
Therefore, our essential approach based on PCA is better.

7 Conclusions

In this paper, we have developed a controller based on
K-means clustering theory. In our philosophy design,
the controller continuously observes the plant output and
when the data measurement is located outside of the
desired cluster size located around the closed-loop system
equilibrium point, it is forced to be in it. Moreover, the
obtained controller is robust against un-vanishing pertur-
bation and nonlinearity effects on the overall closed-loop
system such as saturation, slew-rate limit, limit bandwidth
frequency operation, and so on. Finally, and from the
academic point of view, the employed base to reach our
controller approach seems interesting.
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