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Abstract — In this paper we present a novel algorithm for 

fusion of multimodal surveillance images, based on ICA, 
which has an improved performance over sensor networks. 
Improvements have been demonstrated through separate 
training process for different modalities and the use of a 
fusion metric to maximise the quality of the fused image. 
Sparse coding of the coefficients in ICA domain is used to 
minimize noise transferred from input images into the fused 
output. Experimental results confirm that the proposed 
method outperforms other state-of-the-art methods in the 
sensor network environment, characterized by JPEG 2000 
compression and data packetisation. 
 

Index Terms — Image fusion, Independent Component 
Analysis, fusion metrics, sensor networks, JPEG 2000. 

I. INTRODUCTION 
As the size and cost of sensors decrease, sensor networks 

are increasingly becoming an attractive method to collect 
information in a given area [1]. However, there are still many 
technical challenges, mainly related to fusing the individual 
sensor data through an intelligent decision making process 
while reducing errors and compression noise [2]. Multi-sensor 
data often presents complementary information about the 
region surveyed and data fusion provides an effective method 
to enable comparison, interpretation and analysis of such data. 
Image and video fusion is a sub area of the more general topic 
of data fusion, dealing with image and video data [3]. The aim 
of image fusion, apart from reducing the amount of data, is to 
create new images that are more suitable for the purposes of 
human/machine perception, and for further image-processing 
tasks such as segmentation, object detection or target 
recognition [4]. 

A relatively lower level of interest in infrared imagery, 
compared to visible imagery, has been due to high cost of 
thermal sensors, lower image resolution, higher image noise 
and lack of widely available data sets. However, these 
drawbacks are becoming less relevant as infrared imaging 
advances, making the technology important for applications 
such as video surveillance and navigation and object tracking.  
Night vision cameras, which produce images in multiple 
spectral bands, e.g. thermal and visible, also became available. 

 

1 This work has been funded by the UK Data and Information Fusion 
Defence Technology Centre (DIF DTC). Authors are with the Centre for 
Communications Research, Department of Electrical and Electronic 
Engineering, University of Bristol, Merchant Venturers Building, Woodland 
Road, Bristol BS8 1UB, United Kingdom. Corresponding author’s email: 
n.cvejic@bristol.ac.uk. 

These different bands provide complementary information 
since they represent different characteristics of a scene 

Fusion of visible and infrared (IR) images and video 
sources is becoming increasingly important for surveillance 
purposes. The main reason is that a fused image, constructed 
by combination of features of visible and infrared inputs, 
enables improved detection and unambiguous localisation of a 
target (represented in the thermal image) with respect to its 
background (represented in the visible image) [5]. A human 
operator using a suitably fused representation of visible and 
IR images may therefore be able to construct a more complete 
and accurate mental representation of the perceived scene, 
resulting in a larger degree of situation awareness [6]. 

The image fusion process can be performed at different 
levels of information representation: signal, pixel, feature and 
symbolic level. Nikolov et al [4] proposed a classification of 
image fusion algorithms into spatial domain and transform 
domain techniques. The transform domain image fusion 
consists of performing a transform on each input image and, 
following specific rules, combining them into a composite 
transform domain representation. The composite image is 
obtained by applying the inverse transform on this composite 
transform domain representation. 

Instead of using a standard bases system, such as the DFT, 
the mother wavelet or cosine bases of the DCT, one can train 
a set of bases that are suitable for a specific type of image. A 
training set of image patches, which are acquired randomly 
from images of similar content, can be used to train a set of 
statistically independent bases. Independent Component 
Analysis (ICA) is a widely used method that is able to identify 
statistically independent basis vectors in a linear generative 
model [7]. Recently, several algorithms have been proposed 
[8,9], in which ICA and bases are used for transform domain 
image fusion. 

In this paper, we present a novel algorithm for fusion of 
multimodal images based on the ICA. It was tested in a 
sensors network environment and it has exhibited an 
improvement in performance in fusion of infrared (IR) and 
visible images over other state-of-the-art methods. 

II. IMAGE ANALYSIS USING ICA 
In order to obtain a set of statistically independent bases for 

image fusion in the ICA domain, training is performed with a 
predefined set of images. Training images are selected in such 
a way that the content and statistical properties are similar for 
the training images and the images to be fused. An input 
image i(x,y) is randomly windowed using a rectangular 
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window w of size N×N, centred around the pixel (m0, n0)). 
The result of windowing is an “image patch” which is defined 
as [8]: 

nNnmNminmwnmp +−+−⋅= 2/,2/(),(),( 00  (1) 
where m and n take integer values from the interval 

[0,N−1]. Each image patch p(m,n) can be represented by a 
linear combination of a set of M basis patches bi(m,n): 

∑
=
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where v1,v2,...,vM stand for the projections of the original 
image patch on the basis patch, i.e. vi=〈p(m,n),bi(m,n)〉. A 2D 
representation of the image patches can be simplified to a 1D 
representation, using lexicographic ordering. This implies that 
an image patch p(m,n) is reshaped into a vector p, mapping all 
the elements from the image patch matrix to the vector in a 
row-wise fashion. Decomposition of image patches into a 
linear combination of basis patches can be expressed as 
follows: 
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where t represents the image patch index. If we denote 
B=[b1b2...bM] and v(t)=[v1(t) v2(t)…vM(t)]T , then equation (3) 
reduces to: 

)()( tvBtp =          (4) 

)()()( 1 tpAtpBtv == −         (5) 

Thus, B=[b1b2...bM]T represents an unknown mixing matrix 
(analysis kernel) and A=[a1a2...aM]T the unmixing matrix 
(synthesis kernel). This transform projects the observed signal 
p(t) on a set of basis vectors. The aim is to estimate a finite set 
of K<N2 basis vectors that will be capable of capturing most 
of the input image properties and structure. 

In the first stage of basis estimation, Principal Component 
Analysis (PCA) is used for dimensionality reduction. This is 
obtained by eigenvalue decomposition of the data correlation 
matrix C=E{ppT}. The eigenvalues of the correlation matrix 
illustrate the significance of their corresponding basis vector 
[8]. If V is the obtained K×N2 PCA matrix, the input image 
patches are transformed by: 

)()( tpVtz =          (6) 

After the PCA preprocessing step we select the statistically 
independent basis vectors using the optimisation of the 
negentropy. The following rule defines a FastICA approach 
that optimises negentropy, as proposed in [7]: 

Kiazazaaa i
T
i
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where φ(x)=−∂G(x)/∂x defines the statistical properties 
G(x)=log p(x) of the signals in the transform domain [7]. In 
our implementation we used: 

βζα ++= xxG )(         (9) 
where α and β are constants and ζ is a small constant to 
prevent numerical instability, in the case that x→0 [7]. 

After the input image patches p(t) are transformed to their 
ICA domain representations vk(t), we can perform image 

fusion in the ICA domain in the same manner as it is 
performed in, for example, the wavelet domain. The 
equivalent vectors vk(t) from each image are combined in the 
ICA domain to obtain a new image vf(t). The method that 
combines the coefficients in the ICA domain is called the 
“fusion rule”. After the composite image vf(t) is constructed in 
the ICA domain, we can move back to the spatial domain, 
using the synthesis kernel A, and synthesise the image if(x, y). 

III. PROPOSED FUSION METHOD 

A. Separated Training Sets 
In the proposed method, images used for training the ICA 

bases are separated in two groups prior to the training process. 
Namely, all IR training images are grouped into a separate 
training subset, whereas all the visible training images 
constitute the second training subset. Introduction of separate 
training subsets provides us with two sets of ICA bases. The 
first ICA basis set is used to decompose the IR input image 
patches vi(t)=Aipi(t) and the second subset to transform the 
visible input image patches to ICA domain vv(t)=Avpv(t). 

TABLE I 
FUSION PERFORMANCE MEASURED BY PETROVIC METRIC; THE FIGURES 
REPRESENT THE MEAN VALUE OF THE METRIC OVER 25 FRAMES OF THE 

SURVEILLANCE SEQUENCE “UN CAMP”. 
Number of ICA training patches Fusion 

method 100 200 400 1000 2000 
Standard ICA 0.472  0.533 0.572 0.581 0.584 
Proposed ICA 0.320   0.355 0.387 0.396 0.401 

Number of ICA training patches Fusion 
method 4·103  8·103 104 2·104 4·104 

Standard ICA 0.587   0.585 0.588 0.587 0.592 
Proposed ICA 0.405    0.406 0.406 0.406 0.406 

 

 
Fig. 1. Impact of the number of training patches on the subjective quality 
of the fused images. Top: input IR image (left) and input visible image 
(right). Bottom: fused image using standard ICA fusion and 100 training 
patches (left) and fused image using the proposed method and 100 
training patches (right). 

 
Separate ICA basis sets for decomposition of input images 

are more specifically trained to capture statistical properties of 
the specific modality of the input images (IR/visual). This 
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enables the proposed method to outperform the standard 
method [9], in which images of both IR and visible modality 
are used for training which results in an ”average” ICA bases 
set that is not able to take the full advantage of ICA 
decomposition. 

Fig.1 confirms that when two separate training sets are 
used, the subjective quality of the fused image is increased 
considerably; e.g. fence detail is far more visible and person 
walking is brighter and less blurred. In Table I, subjective 
results are reinforced by values obtained by the Petrovic 
image fusion metric [10]. It is clear that significantly higher 
metric values are obtained using separate training sets. Table I 
also shows that performance of the ICA fusion algorithm does 
not improve significantly when the number of training patches 
exceeds 103. Thus, the number of training patches has been 
fixed to 103 in order to make a trade-off between performance 
and computational complexity of the algorithm. 

B. Nonlinear shrinkage of coefficients in ICA domain 
In the case when the images to be fused and possibly also 

the set of training images are corrupted with noise, it is crucial 
to determine the ICA coefficients to be used in the 
reconstruction of the fused image so that the noise transferred 
from input images into the fused output is minimized. An 
approach similar to image denoising in the ICA domain [11] 
has been used to reduce noise in the fused image. Assume that 
we observe an N−dimensional vector x as: 

nsx +=           (10) 
where s is the vector of the original signal and n is Gaussian 
white noise. The goal of signal denoising is to find s’=g(x) 
such that n’ is close to n in some well-defined sense. In order 
to use the standard ICA domain method to denoise noisy 
images [12], one needs to employ the fixed-point algorithm on 
the noise-free data to get the ICA transformation matrix, and 
then to use maximum likelihood to estimate parameters for the 
shrinkage scheme. The method [12] works as follows: 
 
1. Estimate the orthogonal ICA transformation matrix W using 
a set of noise-free representative data z. 
2. For i=1,2,...,N estimate a density model which 
approximates the actual distribution of the variable si=wi

Tz 
(where wi is the i-th column of W). Based on the estimated 
model and the variance of n, determine the nonlinear 
shrinkage function gi. 
3. For each observed x, ICA transform is performed (y=Wx), 
nonlinear shrinkage derived (si’=gi(yi)) and finally reverse 
transform calculated. 
 

Comparing with wavelet based methods, the ICA method 
needs additional noise-free data to estimate the transformation 
matrix W and shrinkage nonlinearities. In some cases, as 
fusing surveillance images obtained using a sensor network, 
this might be difficult to obtain. Therefore, it is desirable to 
develop methods for estimating transformation matrix W and 
shrinkage nonlinearities gi directly from noisy data. If the 

method [12] is implemented on 8×8 frames in the input 
images, there are 2×63 parameters to estimate. The variance of 
noise in the corrupted signal must be known as well in order 
to facilitate the basis selection.  

In order to keep the computational complexity of the 
algorithm low, we decided to use a shrinkage scheme in [11], 
in which only one control parameter is required. The 
experiments in [11] showed that the method with this new 
shrinkage scheme produces similar performance in image 
denoising as the method in [12], while keeping the 
computational load significantly lower. The shrinkage scheme 
described in [11] is defined as follows: 

⎩
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⎧ <

=
otherwisey
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y
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ii
i

|),(|||0 ρ      (11) 

where ρ is a control parameter. It is clear that yi depends on 
two variables: 

iii WnWsy )()( +=        (12) 
In most cases (Ws)i should be a very sparse matrix. As an 
illustration, let the distribution of (Ws)i be as follows: 

andaWsob i == ]0)[(Pr      (13) 

2
1]1)[(Pr]1)[(Pr aWsobWsob ii
−

===−=   (14) 

Because of the sparseness, a should be close to 1, for instance 
let a=0.8 and (Wn)i be Gaussian noise with a standard 
deviation 0.2. Thus, 

2.0|)(| ≈iyE          (15) 
If we set ρ=2 and based on the property of the Gaussian 
distribution, we have  

008.004.02.0])([ 2 =×≈− ii WsyE    (16) 
That implies that the scheme [11] can efficiently reduce the 
noise in the images. It should also be pointed out that for the 
above approximation still holds for 2<ρ<4. It means that this 
scheme is considerably robust with respect to selection of the 
control parameterρ. 

C.  Reconstruction of the Fused Image Using Fusion 
Metrics 
  Here, we propose a novel method for reconstruction of the 

fused image using statistical properties of both the input 
images. In the standard ICA method, reconstruction of the 
fused image is performed on the patch-per-patch base [8]: 

)()()()( tMtMtUtp vif ++=       (17) 

where pf(t) represents the t-th patch of the fused image if(x,y) 
and U(t) is the t-th frame obtained by inverse transform of the 
fused ICA coefficients. Mi(t) is the mean value of the 
corresponding frame from the IR input image ii(x,y) and Mv(t) 
is the mean value of the corresponding frame from the visual 
input image iv(x,y). We propose a new approach for 
reconstruction of the fused image [9]: 

vviif wtMwtMtUtp ⋅+⋅+= )()()()(    (18) 

Weights wi∈[0,1] and wv(=1−wi)∈[0,1] are used to balance 
the contributions from both visual and IR images in the 
synthesis of the fused image. Weighting coefficients are set to 
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a predefined value (e.g. wi=1 and wv=0) and then gradually 
increased/decreased. The Petrovic metric [10] is calculated at 
each step and when the maximum value of a fusion 
performance metric is reached, the process stops and 
reconstruction of the fused image is performed with the 
calculated weights. In that sense, the weighting coefficients 
are chosen so that the quality of the fused image is 
maximized. 

IV. IMPACT OF ERRORS ON PERFORMANCE OF IMAGE 
FUSION ALGORITHMS 

To advance the work on image fusion without incurring the 
overhead of communications system simulation, we have 
investigated the possibilities for abstracting the behaviour of 
the underlying paths between sensors and sinks. 

In the case of image fusion applications, it is relatively easy 
to study the effect of packet losses on the quality of received 
and fused images. A simple way of doing this would be to 
apply a random loss parameter to the image data to simulate 
the loss of a certain percentage of the transmitted packets and 
then see what the output quality of the image is. This method 
is only good for studying the effect of random packet losses or 
delays of a certain probability, i.e. as if the packets were 
going through a network that exhibited stationary impairment 
behaviour, meaning that errors are mutually independent. 

However, it is rare that any network would reveal such 
stationary behaviour. In reality, network behaviour can be 
highly dynamic and correlated, with many factors influencing 
the presented impairments, such as congestion, buffer 
overflows, traffic patterns and route reliability. Sensor 
networks especially add further factors such as unpredictable 
radio conditions, mobility, energy levels and node loss 
possibilities. 

A quick assessment of these aspects of the wireless sensor 
networks reveals that they can potentially exhibit a dynamic 
and rapidly changing response to any traffic. Application 
testing for these types of networks thus becomes a more 
complex and non-trivial task. It is desirable to find a way of 
accurately modelling the impairment behaviour of these 
networks and for these models to be used for better 
application testing. 

A. Packet Loss 
In the set of simulations described below, each JPEG frame 

was assumed to be 50kB in size and the frame data was 
accordingly fragmented into number packets, where packet 
length ranges from 64 to 1024 bytes – note that this 
assumption eliminates residual variable-length frames. The 
loss data from the trace files can be used to derive which parts 
of each JPEG frame were lost; the remaining packets can then 
be pieced together to see what effect on the image the lost 
packets have had (within an image fusion context).  

The trace files are sorted according to the arrival time of 
each packet at the destination node. This means that packets 
are displayed as they arrive, i.e. the packets from each traffic 
flow are combined. A sort of the impairment data based on 

source, destination, port number and sequence number (in that 
order) will separate the flows contained within each trace file 
so that they can be examined individually and the impairment 
mapping on the real application data applied. Passing real 
application data through the generated network impairments 
will have the effect of emulating the flow of the traffic 
through a wireless sensor network, thus providing results 
approximating a real system. 

B. Packet Delay 
In a system with real-time constraints (e.g. real-time image 

fusion performed during a military operation), network 
impairments associated with packet delay become important 
as there is a limited time window within which each fusion 
task can be performed. Packets arriving at a fusion node from 
different sources will not necessarily be aligned in time, so the 
fusion algorithm must cater for this in its processing of source 
images. A way to incorporate delay characteristics in the 
evaluation of a fusion algorithm could be to treat packets 
received after a certain time delay as lost packets and then 
performing the fusion task only with currently available data. 
For example, consider a real time image fusion system that 
needs half a second to perform a fusion task and is receiving 
images at the rate of one every second. In such a case, the 
system can only afford to use packets that have been received 
within the first half-second following the previous fusion task 
so that the current fusion task will be completed on time. 

C. Markov modelling of network impairments 
There are many stochastic processes in the area of wireless 

communications that exhibit analytical intractability, and other 
methods have to be used to estimate their performance. One 
such method which has been employed with success in a wide 
variety of problems is the notion of Markov chains (MC) [13]. 
With the help of existing efficient statistical tools, MC can 
often be applied to the specifics of different random stochastic 
problems in an accurate manner.  

Markov models have been used extensively in areas such as 
wireless channel characterisation [14], for the characterisation of 
packet loss and delay at the radio [15], and at the MAC level 
[16]. Of course, the higher one progresses into the system, 
composing services layer by layer, to investigate the dynamics 
that occur, the more complex it is to describe the behaviour, since 
more parameters and relationships become important. Markov 
models exist in many forms (e.g. Multiple Markov chains, Monte 
Carlo based models, etc.) and there are potentially many 
parameters to configure without any default approach being 
available. Hence, intuition and experience play an important role 
in the ability to produce an accurate model using MC.  

In the experiments presented in Section V we modelled the 
impairments that the network impacts upon the traffic it 
generates by the time it reaches its final destination within the 
network. This comes mainly in the form of packet delay and 
loss that any type of application traffic may be subjected to 
whilst relaying its packets through the sensor network. Our 
focus is aimed specifically at modelling the packet irregularities 
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within a sensor network used for image fusion applications. We 
have aimed to be generic in approach, anticipating that this 
technique can easily be ported to other application types. 
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Fig. 2. Fusion performance in a simulated wireless sensor network, 
measured by Petrovic metric. Values represent the mean value of the 
metric over 32 fused images in the image sequence “UN Camp”. Top: 
Fusion performance for probability of packet loss equal to 10−3. Middle: 
Fusion performance for probability of packet loss equal to 10−2. Bottom: 
Fusion performance for probability of packet loss equal to 10−1.  

 
It was decided to use one of the simplest of models to see 

how well it models the loss behaviour. A sequence of 2500 
packets (amongst other traffic) was sent over a wireless ad-hoc 
network (simulated according to the parameters in [17]) with the 
received packets being processed to result in a binary sequence 
showing the temporal loss, i.e. which packets were dropped. 
This binary sequence was then used to train a 2-state Markov 

model. Each of the two states corresponded to the status of the 
network for the current packet (i.e. successful packet delivery or 
packet loss). State 0 is a packet loss and state 1 is a successful 
packet delivery. The resulting state transition and emission 
matrices were then used as the model parameters to generate a 
new binary sequence, corresponding to the temporal loss 
produced by the Markov modelling process. 

V. EXPERIMENTAL RESULTS 
The proposed image fusion method was tested in a 

surveillance scenario with two input images: infrared and 
visible. The images used in our experiments are surveillance 
images from TNO Human Factors and Octec Ltd., publicly 
available at the Image Fusion web site [18]. We compared the 
proposed method with a simple averaging method, the contrast 
pyramid (CP) method [3], ratio pyramid (RP) method [3] and 
the dual-tree complex wavelet transform (DT-CWT) [19]. CP, 
RP and DT-CWT methods have been chosen for comparison 
because they have been previously reported to obtain excellent 
performance in multimodal image fusion [3,11]. Before 
performing image fusion using the proposed algorithm, the 
ICA bases were trained using a set of images with content 
comparable to the test set. The number of rectangular patches 
(N=8) used for training was 1000, randomly selected from the 
training set. Obtained ICA coefficients are combined using the 
principle described in Section 3, while reconstruction of the 
fused image was done using optimisation based on the 
Petrovic metric [11].  
 

  

  

  
Fig. 3. Subjective fusion results, image 1827, UN camp sequence, packet 
length 128 bytes, probability of packet loss 10−1. Top: input IR image 
(left), input visible image (right). Middle: fused image using averaging 
(left) and contrast pyramid (right). Bottom: fused image using DT-CWT 
(left) and the proposed ICA method (right) 
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Fig. 4. Fusion performance in a simulated wireless sensor network, 
measured by Petrovic metric. Values represent the mean value of the 
metric over 19 fused images in the image sequence “Trees”. Top: Fusion 
performance for probability of packet loss equal to 10−3. Middle: Fusion 
performance for probability of packet loss equal to 10−2. Bottom: Fusion 
performance for probability of packet loss equal to 10−1.   

 
In order to evaluate performance of the image fusion 

algorithms in the sensor network environment, input images 
were first compressed using JPEG2000. Sensor network 
transmission was simulated by dividing the image into data 
packets. These packets were transmitted over a simulated 
sensor network in which the packet loss was modelled by the 
2-state Markov model, obtained as described in Section IV. 
After the recovered packets at the receiver side were 
recomposed into images, these images were used as inputs for 
the fusion algorithms. The performance of methods was 
measured using the Petrovic metric and the results are given in 
Fig. 2. and Fig. 4. 

Results show that the proposed algorithm performs 
significantly better in the sensor network environment than the 
other state-of-the-art methods, for all data packet lengths and 
probability of packet loss. The subjective quality of the fused 
images using the aforementioned fusion methods is presented 
in Fig. 3 and Fig. 5. When fused outputs are inspected 
visually, it can be seen that the fused image obtained using the 
proposed algorithm incorporates less noise from each of the 
input images.  Compared to the multiresolutional methods, the 
noise in the fused image obtained using the proposed method 
is visually less annoying, while the important detail is still 
adequately represented. 
 

  

  

  
Fig. 5. Subjective fusion results, image 4917, Trees sequence, packet 
length 128 bytes, probability of packet loss 10−1. Top: input IR image 
(left), input visible image (right). Middle: fused image using averaging 
(left) and contrast pyramid (right). Bottom: fused image using DT-CWT 
(left) and the proposed ICA method (right) 
 

In general, the proposed method is able to more 
successfully suppress the noise in the input images in different 
modalities, reducing significantly the distortion in the fused 
image, both visually and objectively. It also outperforms other 
state-of-the-art algorithms, in terms of the Petrovic fusion 
performance metric. 
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