
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

9-2014

Efficient Data Compression with Error Bound
Guarantee in Wireless Sensor Networks
Mohammad Abu Alsheikh

P. K. Poh

S. Lin

Hwee-Pink TAN
Singapore Management University, hptan@smu.edu.sg

D. Niyato

DOI: https://doi.org/10.1145/2641798.2641799

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the OS and Networks Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
Mohammad Abu Alsheikh; P. K. Poh; S. Lin; TAN, Hwee-Pink; and D. Niyato. Efficient Data Compression with Error Bound
Guarantee in Wireless Sensor Networks. (2014). Proceedings of the 17th ACM international conference on Modeling , analysis and
simulation of wireless and mobile systems. 307-311. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/2940

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/35456269?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/2641798.2641799
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2940&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2940&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Efficient Data Compression with Error Bound
Guarantee in Wireless Sensor Networks

Mohammad Abu Alsheikh
Nanyang Technological

University
Singapore 639798

mohammad027@e.ntu.edu.sg

Puay Kai Poh
National University of

Singapore
Singapore 119077

puaykai@nus.edu.sg
Shaowei Lin

Institute for Infocomm
Research

Singapore 138632
lins@i2r.a-star.edu.sg

Hwee-Pink Tan
Institute for Infocomm

Research
Singapore 138632

hptan@i2r.a-star.edu.sg

Dusit Niyato
Nanyang Technological

University
Singapore 639798

dniyato@ntu.edu.sg

ABSTRACT
We present a data compression and dimensionality reduc-
tion scheme for data fusion and aggregation applications to
prevent data congestion and reduce energy consumption at
network connecting points such as cluster heads and gate-
ways. Our in-network approach can be easily tuned to ana-
lyze the data temporal or spatial correlation using an unsu-
pervised neural network scheme, namely the autoencoders.
In particular, our algorithm extracts intrinsic data features
from previously collected historical samples to transform the
raw data into a low dimensional representation. Moreover,
the proposed framework provides an error bound guarantee
mechanism. We evaluate the proposed solution using real-
world data sets and compare it with traditional methods for
temporal and spatial data compression. The experimental
validation reveals that our approach outperforms several ex-
isting wireless sensor network’s data compression methods in
terms of compression efficiency and signal reconstruction.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless Com-
munication; E.4 [Coding and Information Theory]: Data
Compaction and Compression

Keywords
Lossy data compression; error guarantee; wireless sensor
networks; neural network

1. INTRODUCTION
Many wireless sensor networks today play an important

role in collecting big amounts of real-time sensing data over
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large areas. A gateway, for instance, may gather data from
the sensor network before sending it over long distances to
a base station. The sensor network might also have clus-
ter heads that aggregate the data from its corresponding
nodes for transport to other cluster heads. Data compres-
sion and dimensionality reduction in wireless sensor net-
works (WSNs) refer to the problem of encoding the data
collected from sensor nodes using fewer bits. Compression
at cluster heads, gateways, or even within a sensor node
with multiple sensing units, is one key ingredient in prolong-
ing network lifetime [2]. Moreover, archiving the collected
data for several years requires a tremendous capacity of stor-
age that ranges from terabytes to petabytes [3]. However,
traditional data compression schemes from information and
coding theory cannot be directly applied to a resource lim-
ited framework like WSNs as they are designed to optimize
storage rather than energy consumption [8].

Lossy compression methods in WSNs are preferable over
the lossless ones as they provide better compression ratio
at lower computational cost [8]. However, most traditional
lossy data compression algorithms in WSNs lack an error
guarantee mechanism due to the high computational de-
mand of data decompression and reconstruction [8]. There-
fore, many existing lossy methods rely on statistical anal-
ysis to examine the probability of data loss or assume the
data loss is due to noise effects such that the loss can be
ignored [13]. Moreover, the complexity of the decompres-
sion routine becomes critical when the data destination is
another node in the network. Thus, the computational com-
plexity of data decompression is still an important concern.

The above discussion motivates the need for one solution
that collectively supports the aforementioned design essen-
tials. Briefly, our main contributions are as follows.

• We propose a low-cost (both compression and decom-
pression) lossy compression technique with error bound
guarantee. The routines for compression and decom-
pression are implemented using only linear and sig-
moidal operations.

• Unlike many traditional methods, our method is easily
customized for both temporal and spatial compression.
This allows the design of a uniform sensing framework
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that does not require many dedicated compression so-
lutions, one for each application.

• Experiments over real world data sets show that the
algorithm outperforms several well-known and tradi-
tional methods for data compression in WSNs.

2. RELATED WORKS
In this section, we identify a variety of coding schemes in

the literature [8,13,16], and discuss some important consid-
erations for signal compression in WSNs.

The lightweight temporal compression (LTC) algorithm
[12] is an efficient method that finds a piece-wise linear rep-
resentation for time series in sensor data. Unfortunately, it
performs poorly if the sensor readings fluctuate frequently,
even when the fluctuations follow some fixed patterns over
time. Moreover, as its name implies, it can only be used
for temporal data compression. Principal component analy-
sis (PCA) has been widely used to extract dominant linear
features in sensor readings [9]. Another large class of lossy
data compression techniques involves the transformation of
the raw data into other data domains. Examples of these
methods are based on discrete Fourier transforms (DFT) and
fast Fourier transforms (FFT) [16] and the different types of
discrete cosine transforms (DCT) [7]. However, such algo-
rithms suffer from poor performance when used to compress
data spatially or when noise is present in the collected read-
ings.

If a sparse representation for the given signals is known,
compressive sensing (CS) is another framework for trans-
forming the signal into an efficient compressed form, which
will be used later to recover an approximation of the origi-
nal signal, e.g., [14]. However, the assumption of sparsity in
the input signal can be highly restrictive, as the sensor data
may not be sparse in the time domain, the frequency do-
main, or even in some other traditional domains. Moreover,
introducing a few noisy readings may corrupt the sparse
data representation, and the complexity of CS’s data de-
coding hinders the development of an error bound for such
lossy methods. For dictionary-based lossless data compres-
sion in WSNs, the Sensor Lempel-Ziv-Welch (S-LZW) algo-
rithm [10] is a typical approach. However, S-LZW does not
consider the temporal and spatial characteristics of collected
data which, if used, can significantly enhance the compres-
sion performance.

3. NEURAL AUTOENCODERS
An autoencoder (or auto-associative neural network en-

coder) is a three-layer neural network that maps an input
vector ~x ∈ RN to a hidden representation ~y ∈ RK and fi-
nally to an output vector ~z ∈ RN that approximates the
input ~x, as shown in Figure 1. The vectors satisfy

~y = F
(
Wenc~x + ~benc

)
(1a)

~zθ(~x) = F
(
Wdec~y + ~bdec

)
(1b)

F (υ) =
1

1 + exp(−υ)
(1c)

where θ := [Wenc, ~benc,Wdec, ~bdec] are real-valued param-
eters that must be learned by a suitable training algorithm,
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Figure 1: Using AE to project the data to a lower dimen-
sional representation (K � N).

and F (·) is the sigmoidal logistic function (other nonlinear
function such as the hyperbolic tangent can also be used).

The parameters Wenc and ~benc are the encoding weight

matrix and bias respectively, while Wdec and ~bdec are the
decoding weight matrix and bias. The entries of ~y and ~z are
sometimes called activations.

To learn optimal neural weights θ using training data D,
we define the cost function of the basic autoencoder (AE):

ΓAE (θ,D) =
1

|D|
∑
~x∈D

1

2
‖~x− ~zθ(~x)‖2. (2)

This function penalizes the difference between each input
data vector ~x and its reconstruction ~zθ(~x). Consequently,
the optimal neural weights may be computed using stan-
dard optimization algorithms such as the limited memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm.

Different variants of the basic AE have been introduced
in the literature to discourage the neural network from over-
fitting the training data. Generally speaking, these regular-
ization methods penalize the neural weight characteristics or
the hidden layer sparsity characteristics.

Weight decaying autoencoder (WAE): In this vari-
ant, the cost function is defined with an extra weight decay
term:

ΓWAE (θ,D) = ΓAE (θ,D) +
β

2

(
‖Wenc‖2 + ‖Wdec‖2

)
(3)

where ‖W‖2 represents the sum of the squares of the entries
of a matrix W, and β is a hyperparameter1 that controls the
contribution from the weight decay term.

Sparse autoencoder (SAE): This version extracts a
sparse data representation at the hidden layer, i.e. we want
most of the entries of ~y to be close to zero. Sparsity is
encouraged by adding the Kullback–Leibler (KL) divergence
function [6]:

ΓSAE (θ,D) = ΓWAE (θ,D) + η

K∑
k=1

KL(ρ||ρ̂k) (4a)

KL(ρ||ρ̂k) = ρ loge

ρ

ρ̂k
+ (1− ρ) loge

(
1− ρ
1− ρ̂k

)
(4b)

where η is a hyperparameter that controls the sparsity weight,
ρ is the sparsity parameter (target activation) that is chosen

1A hyperparameter is a variable that is selected a priori.
This differentiates it from a model parameter, e.g., the en-
coding weight, which is adjusted during the learning process.
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to be close to zero, and ρ̂k is the average activation of the
k-th node in the hidden layer.

4. LOSSY COMPRESSION WITH ERROR
BOUND GUARANTEE

We propose to apply the autoencoder to the data com-
pression and dimensionality reduction problem in WSNs to
represent the captured data using fewer bits as demonstrated
in Figure 2. This is motivated by reasons related to WSN
characteristics, as well as the ability of AEs to automatically
extract features in the data. Firstly, similar to other lossy
data compression algorithms, it is important to realize that
AEs are used to extract a suitable, low-dimensional, code
representation that retains most of the information content
of the original data. This process of automatic feature ex-
traction is not, by any means, intended to randomly dis-
card data items, but instead to find better data representa-
tion domains. Secondly, sensor networks are used to collect
data in a variety of distinct situations each with its network
structure and data patterns. Therefore, the designer must
be familiar with a collection of temporal and spatial com-
pression algorithms to support each case. In contrast, the
proposed algorithm has the flexibility of supporting many
scenarios using one technique. Thirdly, AEs are commonly
used to extract intrinsic features that can be used by several
data analysis, manipulations, storage, communications, and
visualization algorithms [4]. Further, AEs with nonlinear
activation transfer functions, such as the logistic regression,
can learn more representative features than the well-known
PCA algorithm [5]. Fourthly, the distributed data compres-
sion alleviates the need for data archiving and storage so-
lutions (for such lossy data archiving solution on database
systems, please see [3]). Indeed, the centralized solutions
focus on data compression and archiving into the database
systems, without considering the bandwidth and the energy
limitations during the data funneling and aggregation. Fi-
nally, after learning the AE’s parameters, the process of data
encoding and decoding can be simply programmed with a
few lines of code. On the one hand, the simplicity of the
encoding process is important as the nodes are resource lim-
ited devices. On the other hand, the decoder complexity
is crucial when sending data between the sensors or when
dealing with thousands of sensor nodes sending their com-
pressed data continually to a central base station, i.e., as the
base station will be required to decompress big data set.

4.1 Error bound mechanism
In some applications, it is important to provide a guar-

antee that the reconstructed signal is close to the original
(source). The error bound εbound is defined as the maximum
acceptable difference between each collected reading by the
sensor and the recovered one by the receiver after receiving
the compressed representation. Basically, the error bound is
tuned by considering several factors such as the application
requirements and the used sensors’ precision. For example,
the RM Young/05103 wind monitor sensor [15] measures the
wind speed and direction with accuracy of 0.3 m/s and 5◦C,
respectively. Thus, setting the error bound to be equal to
the sensor accuracy may be an acceptable design basis.

Our method first computes the residual ~r = ~p−~q between
the source ~p and the recovered data ~q, as shown in Figure 3.
Any entry of the residual vector exceeding the bound εbound

Historical

data

N
RÎz

K
RÎy

N
RÎx decdec

bW ,

Data

preparation

Learning

Compress

Decompress

Rx

Tx

encenc
bW ,

Figure 2: AE adoption for data compression and dimension-
ality reduction in wireless sensor networks. Initially, the net-

work’s parameters Wenc, ~benc,Wdec, and ~bdec are adjusted
during the learning stage (offline mode). Subsequently, the
encoding part will be executed in the transmitter side (Tx)
to achieve a compressed representation of the data. Then
the receiver (Rx) will deploy the decoding part to recover a
proper approximation of the original signal.

7 6 5 4 3 2 18

68

Value

Position

Save the error values that

exceed the acceptable

error bound

Collected readings encoder decoder

Compute residual

Source signal Approximated signal

Int('01000100', 2)

Figure 3: The error bound mechanism performed by the
transmitting node.

will be transmitted, using the residual code

~ε = residualCode(~r, εbound) =
(
1I , (ri)i∈I

)
(5)

where I ⊂ {1, . . . , N} is the set of indices i where ri > εbound

and 1I is the indicator vector for the subset I, i.e. (1I)i = 1
if i ∈ I and (1I)i = 0 if i /∈ I. Conversely, given the code ~ε,
it is easy to compute an estimate of the original residual by
constructing a vector whose zeros are determined by 1I and
whose non-zero entries are given by (ri)i∈I . We denote this
vector as residual(~ε).

4.2 Data sphering
The entries of the output vector ~z of the AE come from the

sigmoid function, so they are all between 0 and 1. Because
the AE attempts to reconstruct the input vector ~x ∈ RN , we
need to normalize our input data so that the entries are also
between 0 and 1. Moreover, for the AE to work, the input
data vectors must be distributed somewhat uniformly near
the unit sphere in RN . This process is called data sphering
[6]. One simple method involves truncating readings that lie
outside three standard deviations from the vector mean, and
rescaling the remaining readings so that they lie between 0.1
and 0.9. In particular, the formula is

~x = normalize(~p, σ)

= 0.5 +
0.4

3σ
max (min (~p−mean(~p), 3σ) ,−3σ)

(6)
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where ~p is the data vector and σ is the standard deviation of
the entries of ~p−mean(~p) over all ~p in the training data set.
Furthermore, assuming the data is normally distributed, the
probability that a reading is located within three standard
deviations from the mean is 99.7%. Conversely, given the
mean m, the original data vector ~p may be reconstructed
(up to truncated outliers) using the formula:

denormalize(~x,m, σ) =
3σ

0.4
(~x− 0.5) +m. (7)

4.3 Training, encoding and decoding
After describing different components of our algorithms,

we are now ready to put them together. We assume that
all the data mentioned in this section have been aligned and
that missing values have been filled in. For the training data
D, we also ensure that outliers were removed and that read-
ings were normalized. Let σ denote the standard deviation
used in the normalization of the data.

We first learn optimal weights θ for the autoencoder by
minimizing the cost function ΓWAE(θ,D) using the L-BFGS
algorithm. This computationally-intensive process only oc-
curs once at the start of our network deployment, and the
parameters θ, σ are distributed to the transmitters and re-
ceivers.

The algorithms for compressing and decompressing the
sensor readings are outlined in Algorithms 1 and 2 respec-
tively. For our experiments, we send the compressed sig-
nal (~y,~ε,m) using floating point representation for the real
numbers and binary string for the indicator vector 1I in ~ε.
Note that all the steps have low computational complexity.
Here, we also see why decoder complexity in algorithms like
compressed sensing impedes the provision of error bound
guarantees.

Algorithm 1: The online data compression

Input: readings ~p; parameters

σ,Wenc, ~benc,Wdec, ~bdec

Output: signal ~y,~ε,m
begin

m← mean(~p)
~x← normalize(~p, σ)

~y← F (Wenc~x + ~benc)

~z← F (Wdec~y + ~bdec)
~q← denormalize(~z,m, σ)
~ε← residualCode(~p− ~q, εbound)

Algorithm 2: The online data decompression

Input: signal ~y,~ε,m; parameters σ,Wdec, ~bdec

Output: reconstruction ~p
begin

~z← F (Wdec~y + ~bdec)
~q← denormalize(~z,m, σ)
~r← residual(~ε)
~p← ~q +~r

5. EXPERIMENTAL RESULTS
We evaluate the performance of the proposed algorithm

using data from actual sensor test beds. Our data set is
divided into 10 random folds for training and testing. In
each experiment, the system is trained using 9 folds and
tested using the last fold. Due to randomness in initializing
the neural weights, we conduct each experiment 20 times
to ensure consistency in the test results. Therefore, the sys-
tem performance presented is the average obtained from 200
experiments. Our implementation adopts the L-BFGS algo-
rithm [1] to tune the AE’s weights during the learning stage.
We define the following error metrics:

Mean absolute error = εabs =
1

N

N∑
i=1

|pi − qi| (8a)

Relative error = εrel =

∑N
i=1 |pi − qi|

2∑N
i=1 p

2
i

× 100 (8b)

where pi is the i−th entry of the input vector ~p ∈ RN and qi
is the reconstructed value for pi. To measure the extent that
the data is being compressed, we use the following metric:

Compression ratio = CR =

(
1− B(~y) +B(~ε)

B(~p)

)
×100 (9)

where B(~y), B(~ε), and B(~p) are the number of bits used
to represent the compressed, the residual, and the original
data, respectively. We evaluate our solution using meteoro-
logical data set from the Grand-St-Bernard deployment [11].
We use data from 23 sensors that collect surface temperature
readings between Switzerland and Italy at an elevation of
2.3km. This data set contains readings ranging from −32◦C
to 48◦C, though observations suggest that the maximum
and minimum values are most likely from a malfunctioning
sensor node.

5.1 Overall performance
As shown in Figure 4, our algorithm demonstrates bet-

ter performance on real world data sets when compared to
traditional methods for data compression in WSNs. The
data compression is considered as a challenging task due to
the non-uniform data distribution through different sensor
nodes. Comparatively, using basic AE or WAE provides the
best performance over the other AE’s variants (Figure 4a).
Moreover, WAE outperforms other traditional compression
methods such as PCA, DCT and FFT (Figure 4b).

LZW is commonly used as a basis for comparison against
other data compression algorithms. In our modified method,
we first convert the base-10 floating point readings into the
base-2 representation, e.g., 10.51 is represented as 00001010.1
under 0.1 error bound. As a result, the truncated LZW al-
gorithm can be realized as a lossy data compression scheme
with a compression ratio that significantly outperforms the
traditional LZW method. Moreover, we chose LTC algo-
rithm for bench-marking as several comparative studies, e.g.,
[16], discussed the efficiency of the LTC algorithm over other
methods. Even though the used high resolution data set is
very suitable for the LTC method as the data changes slowly
between subsequent samples, the compression efficiency of
the proposed algorithm is still superior (Figure 4c). We note
that LTC performs as well as AE for large error bounds,
but is unable to keep up when the error bound is small. On
the other hand, the truncated LZW does well for small error
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Figure 4: Experimental results and validation of the spatial and temporal compression techniques.

bounds since it is suited for lossless compression, but fails to
handle large error bounds. Moreover, the truncated LZW
is more computationally- and memory-intensive than AE,
making it unsuitable for simple sensor nodes.

6. CONCLUSION
Instead of using computationally expensive transforma-

tions on raw data or introducing strong assumptions on data
statistical models, we proposed an adaptive data compres-
sion with feature extraction technique using AEs. Our so-
lution exploits spatial-temporal correlations in the training
data to generate a low dimensional representation of the raw
data, thus significantly prolonging the lifespan of data aggre-
gation and funneling systems. Moreover, the algorithm can
optionally be adjusted to support error bound guarantee.
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